MATH-697
New interface and abstract base class for separate support of unconstrained and simple bounds constraints optimizers. git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1202140 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
3ad3a1fa41
commit
754434a4c0
|
@ -137,16 +137,6 @@ public class BaseMultiStartMultivariateRealOptimizer<FUNC extends MultivariateRe
|
|||
public RealPointValuePair optimize(int maxEval, final FUNC f,
|
||||
final GoalType goal,
|
||||
double[] startPoint) {
|
||||
return optimize(maxEval, f, goal, startPoint, null, null);
|
||||
}
|
||||
|
||||
/**
|
||||
* {@inheritDoc}
|
||||
*/
|
||||
public RealPointValuePair optimize(int maxEval, final FUNC f,
|
||||
final GoalType goal,
|
||||
double[] startPoint,
|
||||
double[] lowerBound, double[] upperBound) {
|
||||
maxEvaluations = maxEval;
|
||||
RuntimeException lastException = null;
|
||||
optima = new RealPointValuePair[starts];
|
||||
|
@ -157,8 +147,7 @@ public class BaseMultiStartMultivariateRealOptimizer<FUNC extends MultivariateRe
|
|||
// CHECKSTYLE: stop IllegalCatch
|
||||
try {
|
||||
optima[i] = optimizer.optimize(maxEval - totalEvaluations, f, goal,
|
||||
i == 0 ? startPoint : generator.nextVector(),
|
||||
lowerBound, upperBound);
|
||||
i == 0 ? startPoint : generator.nextVector());
|
||||
} catch (RuntimeException mue) {
|
||||
lastException = mue;
|
||||
optima[i] = null;
|
||||
|
|
|
@ -54,31 +54,4 @@ public interface BaseMultivariateRealOptimizer<FUNC extends MultivariateRealFunc
|
|||
*/
|
||||
RealPointValuePair optimize(int maxEval, FUNC f, GoalType goalType,
|
||||
double[] startPoint);
|
||||
|
||||
/**
|
||||
* Optimize an objective function.
|
||||
*
|
||||
* @param f Objective function.
|
||||
* @param goalType Type of optimization goal: either
|
||||
* {@link GoalType#MAXIMIZE} or {@link GoalType#MINIMIZE}.
|
||||
* @param startPoint Start point for optimization.
|
||||
* @param maxEval Maximum number of function evaluations.
|
||||
* @param lowerBound Lower bound for each of the parameters.
|
||||
* @param upperBound Upper bound for each of the parameters.
|
||||
* @return the point/value pair giving the optimal value for objective
|
||||
* function.
|
||||
* @throws org.apache.commons.math.exception.DimensionMismatchException
|
||||
* if the array sizes are wrong.
|
||||
* @throws org.apache.commons.math.exception.TooManyEvaluationsException
|
||||
* if the maximal number of evaluations is exceeded.
|
||||
* @throws org.apache.commons.math.exception.NullArgumentException if
|
||||
* {@code f}, {@code goalType} or {@code startPoint} is {@code null}.
|
||||
* @throws org.apache.commons.math.exception.NumberIsTooSmallException if any
|
||||
* of the initial values is less than its lower bound.
|
||||
* @throws org.apache.commons.math.exception.NumberIsTooLargeException if any
|
||||
* of the initial values is greater than its upper bound.
|
||||
*/
|
||||
RealPointValuePair optimize(int maxEval, FUNC f, GoalType goalType,
|
||||
double[] startPoint,
|
||||
double[] lowerBound, double[] upperBound);
|
||||
}
|
||||
|
|
|
@ -0,0 +1,64 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package org.apache.commons.math.optimization;
|
||||
|
||||
import org.apache.commons.math.analysis.MultivariateRealFunction;
|
||||
|
||||
/**
|
||||
* This interface is mainly intended to enforce the internal coherence of
|
||||
* Commons-FastMath. Users of the API are advised to base their code on
|
||||
* the following interfaces:
|
||||
* <ul>
|
||||
* <li>{@link org.apache.commons.math.optimization.MultivariateRealOptimizer}</li>
|
||||
* <li>{@link org.apache.commons.math.optimization.DifferentiableMultivariateRealOptimizer}</li>
|
||||
* </ul>
|
||||
*
|
||||
* @param <FUNC> Type of the objective function to be optimized.
|
||||
*
|
||||
* @version $Id$
|
||||
* @since 3.0
|
||||
*/
|
||||
public interface BaseSimpleBoundsMultivariateRealOptimizer<FUNC extends MultivariateRealFunction>
|
||||
extends BaseMultivariateRealOptimizer<FUNC> {
|
||||
/**
|
||||
* Optimize an objective function.
|
||||
*
|
||||
* @param f Objective function.
|
||||
* @param goalType Type of optimization goal: either
|
||||
* {@link GoalType#MAXIMIZE} or {@link GoalType#MINIMIZE}.
|
||||
* @param startPoint Start point for optimization.
|
||||
* @param maxEval Maximum number of function evaluations.
|
||||
* @param lowerBound Lower bound for each of the parameters.
|
||||
* @param upperBound Upper bound for each of the parameters.
|
||||
* @return the point/value pair giving the optimal value for objective
|
||||
* function.
|
||||
* @throws org.apache.commons.math.exception.DimensionMismatchException
|
||||
* if the array sizes are wrong.
|
||||
* @throws org.apache.commons.math.exception.TooManyEvaluationsException
|
||||
* if the maximal number of evaluations is exceeded.
|
||||
* @throws org.apache.commons.math.exception.NullArgumentException if
|
||||
* {@code f}, {@code goalType} or {@code startPoint} is {@code null}.
|
||||
* @throws org.apache.commons.math.exception.NumberIsTooSmallException if any
|
||||
* of the initial values is less than its lower bound.
|
||||
* @throws org.apache.commons.math.exception.NumberIsTooLargeException if any
|
||||
* of the initial values is greater than its upper bound.
|
||||
*/
|
||||
RealPointValuePair optimize(int maxEval, FUNC f, GoalType goalType,
|
||||
double[] startPoint,
|
||||
double[] lowerBound, double[] upperBound);
|
||||
}
|
|
@ -28,8 +28,9 @@ import org.apache.commons.math.linear.Array2DRowRealMatrix;
|
|||
import org.apache.commons.math.linear.ArrayRealVector;
|
||||
import org.apache.commons.math.linear.RealVector;
|
||||
import org.apache.commons.math.optimization.GoalType;
|
||||
import org.apache.commons.math.optimization.MultivariateRealOptimizer;
|
||||
import org.apache.commons.math.optimization.BaseSimpleBoundsMultivariateRealOptimizer;
|
||||
import org.apache.commons.math.optimization.RealPointValuePair;
|
||||
import org.apache.commons.math.optimization.MultivariateRealOptimizer;
|
||||
|
||||
/**
|
||||
* Powell's BOBYQA algorithm. This implementation is translated and
|
||||
|
@ -50,7 +51,7 @@ import org.apache.commons.math.optimization.RealPointValuePair;
|
|||
* @since 3.0
|
||||
*/
|
||||
public class BOBYQAOptimizer
|
||||
extends BaseAbstractScalarOptimizer<MultivariateRealFunction>
|
||||
extends BaseAbstractSimpleBoundsScalarOptimizer<MultivariateRealFunction>
|
||||
implements MultivariateRealOptimizer {
|
||||
/** Minimum dimension of the problem: {@value} */
|
||||
public static final int MINIMUM_PROBLEM_DIMENSION = 2;
|
||||
|
|
|
@ -21,9 +21,6 @@ import org.apache.commons.math.util.Incrementor;
|
|||
import org.apache.commons.math.exception.MaxCountExceededException;
|
||||
import org.apache.commons.math.exception.TooManyEvaluationsException;
|
||||
import org.apache.commons.math.exception.NullArgumentException;
|
||||
import org.apache.commons.math.exception.DimensionMismatchException;
|
||||
import org.apache.commons.math.exception.NumberIsTooSmallException;
|
||||
import org.apache.commons.math.exception.NumberIsTooLargeException;
|
||||
import org.apache.commons.math.analysis.MultivariateRealFunction;
|
||||
import org.apache.commons.math.optimization.BaseMultivariateRealOptimizer;
|
||||
import org.apache.commons.math.optimization.GoalType;
|
||||
|
@ -36,7 +33,7 @@ import org.apache.commons.math.optimization.SimpleScalarValueChecker;
|
|||
* This base class handles the boiler-plate methods associated to thresholds
|
||||
* settings, iterations and evaluations counting.
|
||||
*
|
||||
* @param <FUNC> Type of the objective function to be optimized
|
||||
* @param <FUNC> Type of the objective function to be optimized.
|
||||
*
|
||||
* @version $Id$
|
||||
* @since 2.2
|
||||
|
@ -51,10 +48,6 @@ public abstract class BaseAbstractScalarOptimizer<FUNC extends MultivariateRealF
|
|||
private GoalType goal;
|
||||
/** Initial guess. */
|
||||
private double[] start;
|
||||
/** Lower bounds. */
|
||||
private double[] lowerBound;
|
||||
/** Upper bounds. */
|
||||
private double[] upperBound;
|
||||
/** Objective function. */
|
||||
private MultivariateRealFunction function;
|
||||
|
||||
|
@ -108,13 +101,6 @@ public abstract class BaseAbstractScalarOptimizer<FUNC extends MultivariateRealF
|
|||
/** {@inheritDoc} */
|
||||
public RealPointValuePair optimize(int maxEval, FUNC f, GoalType goalType,
|
||||
double[] startPoint) {
|
||||
return optimize(maxEval, f, goalType, startPoint, null, null);
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
public RealPointValuePair optimize(int maxEval, FUNC f, GoalType goalType,
|
||||
double[] startPoint,
|
||||
double[] lower, double[] upper) {
|
||||
// Checks.
|
||||
if (f == null) {
|
||||
throw new NullArgumentException();
|
||||
|
@ -125,31 +111,6 @@ public abstract class BaseAbstractScalarOptimizer<FUNC extends MultivariateRealF
|
|||
if (startPoint == null) {
|
||||
throw new NullArgumentException();
|
||||
}
|
||||
final int dim = startPoint.length;
|
||||
if (lower != null) {
|
||||
if (lower.length != dim) {
|
||||
throw new DimensionMismatchException(lower.length, dim);
|
||||
}
|
||||
for (int i = 0; i < dim; i++) {
|
||||
final double v = startPoint[i];
|
||||
final double lo = lower[i];
|
||||
if (v < lo) {
|
||||
throw new NumberIsTooSmallException(v, lo, true);
|
||||
}
|
||||
}
|
||||
}
|
||||
if (upper != null) {
|
||||
if (upper.length != dim) {
|
||||
throw new DimensionMismatchException(upper.length, dim);
|
||||
}
|
||||
for (int i = 0; i < dim; i++) {
|
||||
final double v = startPoint[i];
|
||||
final double hi = upper[i];
|
||||
if (v > hi) {
|
||||
throw new NumberIsTooLargeException(v, hi, true);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Reset.
|
||||
evaluations.setMaximalCount(maxEval);
|
||||
|
@ -160,23 +121,6 @@ public abstract class BaseAbstractScalarOptimizer<FUNC extends MultivariateRealF
|
|||
goal = goalType;
|
||||
start = startPoint.clone();
|
||||
|
||||
if (lower == null) {
|
||||
lowerBound = new double[dim];
|
||||
for (int i = 0; i < dim; i++) {
|
||||
lowerBound[i] = Double.NEGATIVE_INFINITY;
|
||||
}
|
||||
} else {
|
||||
lowerBound = lower.clone();
|
||||
}
|
||||
if (upper == null) {
|
||||
upperBound = new double[dim];
|
||||
for (int i = 0; i < dim; i++) {
|
||||
upperBound[i] = Double.POSITIVE_INFINITY;
|
||||
}
|
||||
} else {
|
||||
upperBound = upper.clone();
|
||||
}
|
||||
|
||||
// Perform computation.
|
||||
return doOptimize();
|
||||
}
|
||||
|
@ -195,20 +139,6 @@ public abstract class BaseAbstractScalarOptimizer<FUNC extends MultivariateRealF
|
|||
return start.clone();
|
||||
}
|
||||
|
||||
/**
|
||||
* @return the lower bounds.
|
||||
*/
|
||||
public double[] getLowerBound() {
|
||||
return lowerBound.clone();
|
||||
}
|
||||
|
||||
/**
|
||||
* @return the upper bounds.
|
||||
*/
|
||||
public double[] getUpperBound() {
|
||||
return upperBound.clone();
|
||||
}
|
||||
|
||||
/**
|
||||
* Perform the bulk of the optimization algorithm.
|
||||
*
|
||||
|
|
|
@ -0,0 +1,122 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package org.apache.commons.math.optimization.direct;
|
||||
|
||||
import org.apache.commons.math.analysis.MultivariateRealFunction;
|
||||
import org.apache.commons.math.optimization.BaseMultivariateRealOptimizer;
|
||||
import org.apache.commons.math.optimization.BaseSimpleBoundsMultivariateRealOptimizer;
|
||||
import org.apache.commons.math.optimization.GoalType;
|
||||
import org.apache.commons.math.optimization.RealPointValuePair;
|
||||
import org.apache.commons.math.exception.DimensionMismatchException;
|
||||
import org.apache.commons.math.exception.NumberIsTooSmallException;
|
||||
import org.apache.commons.math.exception.NumberIsTooLargeException;
|
||||
|
||||
/**
|
||||
* Base class for implementing optimizers for multivariate scalar functions,
|
||||
* subject to simple bounds: The valid range of the parameters is an interval.
|
||||
* The interval can possibly be infinite (in one or both directions).
|
||||
* This base class handles the boiler-plate methods associated to thresholds
|
||||
* settings, iterations and evaluations counting.
|
||||
*
|
||||
* @param <FUNC> Type of the objective function to be optimized.
|
||||
*
|
||||
* @version $Id$
|
||||
* @since 3.0
|
||||
*/
|
||||
public abstract class BaseAbstractSimpleBoundsScalarOptimizer<FUNC extends MultivariateRealFunction>
|
||||
extends BaseAbstractScalarOptimizer<FUNC>
|
||||
implements BaseMultivariateRealOptimizer<FUNC>,
|
||||
BaseSimpleBoundsMultivariateRealOptimizer<FUNC> {
|
||||
/** Lower bounds. */
|
||||
private double[] lowerBound;
|
||||
/** Upper bounds. */
|
||||
private double[] upperBound;
|
||||
|
||||
/**
|
||||
* @return the lower bounds.
|
||||
*/
|
||||
public double[] getLowerBound() {
|
||||
return lowerBound.clone();
|
||||
}
|
||||
|
||||
/**
|
||||
* @return the upper bounds.
|
||||
*/
|
||||
public double[] getUpperBound() {
|
||||
return upperBound.clone();
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
public RealPointValuePair optimize(int maxEval, FUNC f, GoalType goalType,
|
||||
double[] startPoint) {
|
||||
return optimize(maxEval, f, goalType, startPoint, null, null);
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
public RealPointValuePair optimize(int maxEval, FUNC f, GoalType goalType,
|
||||
double[] startPoint,
|
||||
double[] lower, double[] upper) {
|
||||
// Checks.
|
||||
final int dim = startPoint.length;
|
||||
if (lower != null) {
|
||||
if (lower.length != dim) {
|
||||
throw new DimensionMismatchException(lower.length, dim);
|
||||
}
|
||||
for (int i = 0; i < dim; i++) {
|
||||
final double v = startPoint[i];
|
||||
final double lo = lower[i];
|
||||
if (v < lo) {
|
||||
throw new NumberIsTooSmallException(v, lo, true);
|
||||
}
|
||||
}
|
||||
}
|
||||
if (upper != null) {
|
||||
if (upper.length != dim) {
|
||||
throw new DimensionMismatchException(upper.length, dim);
|
||||
}
|
||||
for (int i = 0; i < dim; i++) {
|
||||
final double v = startPoint[i];
|
||||
final double hi = upper[i];
|
||||
if (v > hi) {
|
||||
throw new NumberIsTooLargeException(v, hi, true);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Initialization.
|
||||
if (lower == null) {
|
||||
lowerBound = new double[dim];
|
||||
for (int i = 0; i < dim; i++) {
|
||||
lowerBound[i] = Double.NEGATIVE_INFINITY;
|
||||
}
|
||||
} else {
|
||||
lowerBound = lower.clone();
|
||||
}
|
||||
if (upper == null) {
|
||||
upperBound = new double[dim];
|
||||
for (int i = 0; i < dim; i++) {
|
||||
upperBound[i] = Double.POSITIVE_INFINITY;
|
||||
}
|
||||
} else {
|
||||
upperBound = upper.clone();
|
||||
}
|
||||
|
||||
// Base class method performs the non bound-specific initializations.
|
||||
return super.optimize(maxEval, f, goalType, startPoint);
|
||||
}
|
||||
}
|
|
@ -73,21 +73,9 @@ public abstract class AbstractScalarDifferentiableOptimizer
|
|||
final DifferentiableMultivariateRealFunction f,
|
||||
final GoalType goalType,
|
||||
final double[] startPoint) {
|
||||
return optimize(maxEval, f, goalType, startPoint, null, null);
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
@Override
|
||||
public RealPointValuePair optimize(int maxEval,
|
||||
final DifferentiableMultivariateRealFunction f,
|
||||
final GoalType goalType,
|
||||
final double[] startPoint,
|
||||
double[] lowerBound, double[] upperBound) {
|
||||
// Store optimization problem characteristics.
|
||||
gradient = f.gradient();
|
||||
|
||||
return super.optimize(maxEval, f, goalType,
|
||||
startPoint,
|
||||
lowerBound, upperBound);
|
||||
return super.optimize(maxEval, f, goalType, startPoint);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -52,6 +52,10 @@ The <action> type attribute can be add,update,fix,remove.
|
|||
If the output is not quite correct, check for invisible trailing spaces!
|
||||
-->
|
||||
<release version="3.0" date="TBD" description="TBD">
|
||||
<action dev="erans" type="update" issue="MATH-697">
|
||||
Added interface and abstract class for supporting optimizers classes
|
||||
that can take simple constraints into account.
|
||||
</action>
|
||||
<action dev="luc" type="fix" due-to="MATH-706" >
|
||||
Fixed a bad interaction between step handlers and event handlers in
|
||||
ODE integrators.
|
||||
|
|
|
@ -259,7 +259,7 @@ public class BOBYQAOptimizerTest {
|
|||
// RealPointValuePair result = optim.optimize(100000, func, goal, startPoint);
|
||||
final double[] lB = boundaries == null ? null : boundaries[0];
|
||||
final double[] uB = boundaries == null ? null : boundaries[1];
|
||||
MultivariateRealOptimizer optim = new BOBYQAOptimizer(2 * dim + 1);
|
||||
BOBYQAOptimizer optim = new BOBYQAOptimizer(2 * dim + 1);
|
||||
RealPointValuePair result = optim.optimize(maxEvaluations, func, goal, startPoint, lB, uB);
|
||||
// System.out.println(func.getClass().getName() + " = "
|
||||
// + optim.getEvaluations() + " f(");
|
||||
|
|
Loading…
Reference in New Issue