This is an Implementation of StatUtils that uses the new UnivariateStatistic Framework and passes all JUnit StatUtils tests.
git-svn-id: https://svn.apache.org/repos/asf/jakarta/commons/proper/math/trunk@140963 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
88d6952806
commit
77aa09dab9
|
@ -53,6 +53,21 @@
|
|||
*/
|
||||
package org.apache.commons.math.stat;
|
||||
|
||||
import org.apache.commons.math.stat.univariate.UnivariateStatistic;
|
||||
import org.apache.commons.math.stat.univariate.moment.GeometricMean;
|
||||
import org.apache.commons.math.stat.univariate.moment.Kurtosis;
|
||||
import org.apache.commons.math.stat.univariate.moment.Mean;
|
||||
import org.apache.commons.math.stat.univariate.moment.Skewness;
|
||||
import org.apache.commons.math.stat.univariate.moment.Variance;
|
||||
import org.apache.commons.math.stat.univariate.rank.Max;
|
||||
import org.apache.commons.math.stat.univariate.rank.Median;
|
||||
import org.apache.commons.math.stat.univariate.rank.Min;
|
||||
import org.apache.commons.math.stat.univariate.rank.Percentile;
|
||||
import org.apache.commons.math.stat.univariate.summary.Product;
|
||||
import org.apache.commons.math.stat.univariate.summary.Sum;
|
||||
import org.apache.commons.math.stat.univariate.summary.SumOfLogs;
|
||||
import org.apache.commons.math.stat.univariate.summary.SumOfSquares;
|
||||
|
||||
/**
|
||||
* StatUtils provides easy static implementations of common double[] based
|
||||
* statistical methods. These return a single result value or in some cases, as
|
||||
|
@ -62,13 +77,52 @@ package org.apache.commons.math.stat;
|
|||
*/
|
||||
public class StatUtils {
|
||||
|
||||
/** Sum Of Logs */
|
||||
private static UnivariateStatistic sumLog = new SumOfLogs();
|
||||
|
||||
/** Product */
|
||||
private static UnivariateStatistic product = new Product();
|
||||
|
||||
/** Geometric Mean */
|
||||
private static UnivariateStatistic geoMean = new GeometricMean();
|
||||
|
||||
/** Mean */
|
||||
private static UnivariateStatistic mean = new Mean();
|
||||
|
||||
/** Variance */
|
||||
private static UnivariateStatistic var = new Variance();
|
||||
|
||||
/** Skewness */
|
||||
private static UnivariateStatistic skew = new Skewness();
|
||||
|
||||
/** Kurtosis */
|
||||
private static UnivariateStatistic kurt = new Kurtosis();
|
||||
|
||||
/** Min Of Logs */
|
||||
private static UnivariateStatistic min = new Min();
|
||||
|
||||
/** Max */
|
||||
private static UnivariateStatistic max = new Max();
|
||||
|
||||
/** Median */
|
||||
private static UnivariateStatistic median = new Median();
|
||||
|
||||
/** Sum */
|
||||
private static UnivariateStatistic sum = new Sum();
|
||||
|
||||
/** Sum Of Squares */
|
||||
private static UnivariateStatistic sumSq = new SumOfSquares();
|
||||
|
||||
/** Percentile */
|
||||
private static Percentile percentile = new Percentile();
|
||||
|
||||
/**
|
||||
* The sum of the values that have been added to Univariate.
|
||||
* @param values Is a double[] containing the values
|
||||
* @return the sum of the values or Double.NaN if the array is empty
|
||||
*/
|
||||
public static double sum(double[] values) {
|
||||
return sum(values, 0, values.length);
|
||||
return sum.evaluate(values, 0, values.length);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -79,12 +133,7 @@ public class StatUtils {
|
|||
* @return the sum of the values or Double.NaN if the array is empty
|
||||
*/
|
||||
public static double sum(double[] values, int begin, int length) {
|
||||
testInput(values, begin, length);
|
||||
double accum = 0.0;
|
||||
for (int i = begin; i < begin + length; i++) {
|
||||
accum += values[i];
|
||||
}
|
||||
return accum;
|
||||
return sum.evaluate(values, begin, length);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -93,7 +142,7 @@ public class StatUtils {
|
|||
* @return the sum of the squared values or Double.NaN if the array is empty
|
||||
*/
|
||||
public static double sumSq(double[] values) {
|
||||
return sumSq(values, 0, values.length);
|
||||
return sumSq.evaluate(values);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -104,12 +153,7 @@ public class StatUtils {
|
|||
* @return the sum of the squared values or Double.NaN if the array is empty
|
||||
*/
|
||||
public static double sumSq(double[] values, int begin, int length) {
|
||||
testInput(values, begin, length);
|
||||
double accum = 0.0;
|
||||
for (int i = begin; i < begin + length; i++) {
|
||||
accum += Math.pow(values[i], 2.0);
|
||||
}
|
||||
return accum;
|
||||
return sumSq.evaluate(values, begin, length);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -118,7 +162,7 @@ public class StatUtils {
|
|||
* @return the product values or Double.NaN if the array is empty
|
||||
*/
|
||||
public static double product(double[] values) {
|
||||
return product(values, 0, values.length);
|
||||
return product.evaluate(values);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -129,12 +173,7 @@ public class StatUtils {
|
|||
* @return the product values or Double.NaN if the array is empty
|
||||
*/
|
||||
public static double product(double[] values, int begin, int length) {
|
||||
testInput(values, begin, length);
|
||||
double product = 1.0;
|
||||
for (int i = begin; i < begin + length; i++) {
|
||||
product *= values[i];
|
||||
}
|
||||
return product;
|
||||
return product.evaluate(values, begin, length);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -143,7 +182,7 @@ public class StatUtils {
|
|||
* @return the sumLog value or Double.NaN if the array is empty
|
||||
*/
|
||||
public static double sumLog(double[] values) {
|
||||
return sumLog(values, 0, values.length);
|
||||
return sumLog.evaluate(values);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -154,12 +193,7 @@ public class StatUtils {
|
|||
* @return the sumLog value or Double.NaN if the array is empty
|
||||
*/
|
||||
public static double sumLog(double[] values, int begin, int length) {
|
||||
testInput(values, begin, length);
|
||||
double sumLog = 0.0;
|
||||
for (int i = begin; i < begin + length; i++) {
|
||||
sumLog += Math.log(values[i]);
|
||||
}
|
||||
return sumLog;
|
||||
return sumLog.evaluate(values, begin, length);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -169,7 +203,7 @@ public class StatUtils {
|
|||
* any of the values are <= 0.
|
||||
*/
|
||||
public static double geometricMean(double[] values) {
|
||||
return geometricMean(values, 0, values.length);
|
||||
return geoMean.evaluate(values);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -180,9 +214,11 @@ public class StatUtils {
|
|||
* @return the geometric mean or Double.NaN if the array is empty or
|
||||
* any of the values are <= 0.
|
||||
*/
|
||||
public static double geometricMean(double[] values, int begin, int length) {
|
||||
testInput(values, begin, length);
|
||||
return Math.exp(sumLog(values, begin, length) / (double) length );
|
||||
public static double geometricMean(
|
||||
double[] values,
|
||||
int begin,
|
||||
int length) {
|
||||
return geoMean.evaluate(values, begin, length);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -192,7 +228,7 @@ public class StatUtils {
|
|||
* @return the mean of the values or Double.NaN if the array is empty
|
||||
*/
|
||||
public static double mean(double[] values) {
|
||||
return sum(values) / (double) values.length;
|
||||
return mean.evaluate(values);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -204,8 +240,7 @@ public class StatUtils {
|
|||
* @return the mean of the values or Double.NaN if the array is empty
|
||||
*/
|
||||
public static double mean(double[] values, int begin, int length) {
|
||||
testInput(values, begin, length);
|
||||
return sum(values, begin, length) / ((double) length);
|
||||
return mean.evaluate(values, begin, length);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -230,7 +265,7 @@ public class StatUtils {
|
|||
double[] values,
|
||||
int begin,
|
||||
int length) {
|
||||
testInput(values, begin, length);
|
||||
|
||||
double stdDev = Double.NaN;
|
||||
if (values.length != 0) {
|
||||
stdDev = Math.sqrt(variance(values, begin, length));
|
||||
|
@ -271,24 +306,7 @@ public class StatUtils {
|
|||
* or 0.0 for a single value set.
|
||||
*/
|
||||
public static double variance(double[] values, int begin, int length) {
|
||||
testInput(values, begin, length);
|
||||
|
||||
double variance = Double.NaN;
|
||||
if (values.length == 1) {
|
||||
variance = 0;
|
||||
} else if (values.length > 1) {
|
||||
double mean = mean(values, begin, length);
|
||||
double accum = 0.0;
|
||||
double accum2 = 0.0;
|
||||
for (int i = begin; i < begin + length; i++) {
|
||||
accum += Math.pow((values[i] - mean), 2.0);
|
||||
accum2 += (values[i] - mean);
|
||||
}
|
||||
variance =
|
||||
(accum - (Math.pow(accum2, 2) / ((double)length)))
|
||||
/ (double) (length - 1);
|
||||
}
|
||||
return variance;
|
||||
return var.evaluate(values, begin, length);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -309,42 +327,7 @@ public class StatUtils {
|
|||
* @return the skewness of the values or Double.NaN if the array is empty
|
||||
*/
|
||||
public static double skewness(double[] values, int begin, int length) {
|
||||
|
||||
testInput(values, begin, length);
|
||||
|
||||
// Initialize the skewness
|
||||
double skewness = Double.NaN;
|
||||
|
||||
// Get the mean and the standard deviation
|
||||
double mean = mean(values, begin, length);
|
||||
|
||||
// Calc the std, this is implemented here instead of using the
|
||||
// standardDeviation method eliminate a duplicate pass to get the mean
|
||||
double accum = 0.0;
|
||||
double accum2 = 0.0;
|
||||
for (int i = begin; i < begin + length; i++) {
|
||||
accum += Math.pow((values[i] - mean), 2.0);
|
||||
accum2 += (values[i] - mean);
|
||||
}
|
||||
double stdDev =
|
||||
Math.sqrt(
|
||||
(accum - (Math.pow(accum2, 2) / ((double) length)))
|
||||
/ (double) (length - 1));
|
||||
|
||||
// Calculate the skew as the sum the cubes of the distance
|
||||
// from the mean divided by the standard deviation.
|
||||
double accum3 = 0.0;
|
||||
for (int i = begin; i < begin + length; i++) {
|
||||
accum3 += Math.pow((values[i] - mean) / stdDev, 3.0);
|
||||
}
|
||||
|
||||
// Get N
|
||||
double n = length;
|
||||
|
||||
// Calculate skewness
|
||||
skewness = (n / ((n - 1) * (n - 2))) * accum3;
|
||||
|
||||
return skewness;
|
||||
return skew.evaluate(values, begin, length);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -366,45 +349,7 @@ public class StatUtils {
|
|||
* @return the kurtosis of the values or Double.NaN if the array is empty
|
||||
*/
|
||||
public static double kurtosis(double[] values, int begin, int length) {
|
||||
testInput(values, begin, length);
|
||||
|
||||
// Initialize the kurtosis
|
||||
double kurtosis = Double.NaN;
|
||||
|
||||
// Get the mean and the standard deviation
|
||||
double mean = mean(values, begin, length);
|
||||
|
||||
// Calc the std, this is implemented here instead of using the
|
||||
// standardDeviation method eliminate a duplicate pass to get the mean
|
||||
double accum = 0.0;
|
||||
double accum2 = 0.0;
|
||||
for (int i = begin; i < begin + length; i++) {
|
||||
accum += Math.pow((values[i] - mean), 2.0);
|
||||
accum2 += (values[i] - mean);
|
||||
}
|
||||
|
||||
double stdDev =
|
||||
Math.sqrt(
|
||||
(accum - (Math.pow(accum2, 2) / ((double) length)))
|
||||
/ (double) (length - 1));
|
||||
|
||||
// Sum the ^4 of the distance from the mean divided by the
|
||||
// standard deviation
|
||||
double accum3 = 0.0;
|
||||
for (int i = begin; i < begin + length; i++) {
|
||||
accum3 += Math.pow((values[i] - mean) / stdDev, 4.0);
|
||||
}
|
||||
|
||||
// Get N
|
||||
double n = length;
|
||||
|
||||
double coefficientOne = (n * (n + 1)) / ((n - 1) * (n - 2) * (n - 3));
|
||||
double termTwo = ((3 * Math.pow(n - 1, 2.0)) / ((n - 2) * (n - 3)));
|
||||
|
||||
// Calculate kurtosis
|
||||
kurtosis = (coefficientOne * accum3) - termTwo;
|
||||
|
||||
return kurtosis;
|
||||
return kurt.evaluate(values, begin, length);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -424,16 +369,7 @@ public class StatUtils {
|
|||
* @return the maximum of the values or Double.NaN if the array is empty
|
||||
*/
|
||||
public static double max(double[] values, int begin, int length) {
|
||||
testInput(values, begin, length);
|
||||
double max = Double.NaN;
|
||||
for (int i = begin; i < begin + length; i++) {
|
||||
if (i == 0) {
|
||||
max = values[i];
|
||||
} else {
|
||||
max = (max > values[i]) ? max : values[i];
|
||||
}
|
||||
}
|
||||
return max;
|
||||
return max.evaluate(values, begin, length);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -453,36 +389,32 @@ public class StatUtils {
|
|||
* @return the minimum of the values or Double.NaN if the array is empty
|
||||
*/
|
||||
public static double min(double[] values, int begin, int length) {
|
||||
testInput(values, begin, length);
|
||||
|
||||
double min = Double.NaN;
|
||||
for (int i = begin; i < begin + length; i++) {
|
||||
if (i == 0) {
|
||||
min = values[i];
|
||||
} else {
|
||||
min = (min < values[i]) ? min : values[i];
|
||||
}
|
||||
}
|
||||
return min;
|
||||
return min.evaluate(values, begin, length);
|
||||
}
|
||||
|
||||
/**
|
||||
* Private testInput method used by all methods to verify the content
|
||||
* of the array and indicies are correct.
|
||||
* Returns the p'th percentile for a double[]
|
||||
* @param values Is a double[] containing the values
|
||||
* @param p is 0 <= p <= 100
|
||||
* @return the value at the p'th percentile
|
||||
*/
|
||||
public static double percentile(double[] values, double p) {
|
||||
return percentile.evaluate(values, p);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the p'th percentile for a double[]
|
||||
* @param values Is a double[] containing the values
|
||||
* @param begin processing at this point in the array
|
||||
* @param length processing at this point in the array
|
||||
* @param p is 0 <= p <= 100
|
||||
* @return the value at the p'th percentile
|
||||
*/
|
||||
private static void testInput(double[] values, int begin, int length) {
|
||||
|
||||
if (length > values.length)
|
||||
throw new IllegalArgumentException("length > values.length");
|
||||
|
||||
if (begin + length > values.length)
|
||||
throw new IllegalArgumentException("begin + length > values.length");
|
||||
|
||||
if (values == null)
|
||||
throw new IllegalArgumentException("input value array is null");
|
||||
|
||||
public static double percentile(
|
||||
double[] values,
|
||||
int begin,
|
||||
int length,
|
||||
double p) {
|
||||
return percentile.evaluate(values, begin, length, p);
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue