MATH-405 corrected
git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@984404 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
31fef8fab1
commit
784e4f69ec
|
@ -247,12 +247,7 @@ public abstract class AbstractLeastSquaresOptimizer implements DifferentiableMul
|
||||||
* @return chi-square value
|
* @return chi-square value
|
||||||
*/
|
*/
|
||||||
public double getChiSquare() {
|
public double getChiSquare() {
|
||||||
double chiSquare = 0;
|
return cost*cost;
|
||||||
for (int i = 0; i < rows; ++i) {
|
|
||||||
final double residual = residuals[i];
|
|
||||||
chiSquare += residual * residual * residualsWeights[i];
|
|
||||||
}
|
|
||||||
return chiSquare;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
|
|
|
@ -255,6 +255,8 @@ public class LevenbergMarquardtOptimizer extends AbstractLeastSquaresOptimizer {
|
||||||
double[] diag = new double[cols];
|
double[] diag = new double[cols];
|
||||||
double[] oldX = new double[cols];
|
double[] oldX = new double[cols];
|
||||||
double[] oldRes = new double[rows];
|
double[] oldRes = new double[rows];
|
||||||
|
double[] oldObj = new double[rows];
|
||||||
|
double[] qtf = new double[rows];
|
||||||
double[] work1 = new double[cols];
|
double[] work1 = new double[cols];
|
||||||
double[] work2 = new double[cols];
|
double[] work2 = new double[cols];
|
||||||
double[] work3 = new double[cols];
|
double[] work3 = new double[cols];
|
||||||
|
@ -267,7 +269,9 @@ public class LevenbergMarquardtOptimizer extends AbstractLeastSquaresOptimizer {
|
||||||
boolean firstIteration = true;
|
boolean firstIteration = true;
|
||||||
VectorialPointValuePair current = new VectorialPointValuePair(point, objective);
|
VectorialPointValuePair current = new VectorialPointValuePair(point, objective);
|
||||||
while (true) {
|
while (true) {
|
||||||
|
for (int i=0;i<rows;i++) {
|
||||||
|
qtf[i]=residuals[i];
|
||||||
|
}
|
||||||
incrementIterationsCounter();
|
incrementIterationsCounter();
|
||||||
|
|
||||||
// compute the Q.R. decomposition of the jacobian matrix
|
// compute the Q.R. decomposition of the jacobian matrix
|
||||||
|
@ -276,8 +280,7 @@ public class LevenbergMarquardtOptimizer extends AbstractLeastSquaresOptimizer {
|
||||||
qrDecomposition();
|
qrDecomposition();
|
||||||
|
|
||||||
// compute Qt.res
|
// compute Qt.res
|
||||||
qTy(residuals);
|
qTy(qtf);
|
||||||
|
|
||||||
// now we don't need Q anymore,
|
// now we don't need Q anymore,
|
||||||
// so let jacobian contain the R matrix with its diagonal elements
|
// so let jacobian contain the R matrix with its diagonal elements
|
||||||
for (int k = 0; k < solvedCols; ++k) {
|
for (int k = 0; k < solvedCols; ++k) {
|
||||||
|
@ -315,7 +318,7 @@ public class LevenbergMarquardtOptimizer extends AbstractLeastSquaresOptimizer {
|
||||||
if (s != 0) {
|
if (s != 0) {
|
||||||
double sum = 0;
|
double sum = 0;
|
||||||
for (int i = 0; i <= j; ++i) {
|
for (int i = 0; i <= j; ++i) {
|
||||||
sum += jacobian[i][pj] * residuals[i];
|
sum += jacobian[i][pj] * qtf[i];
|
||||||
}
|
}
|
||||||
maxCosine = Math.max(maxCosine, Math.abs(sum) / (s * cost));
|
maxCosine = Math.max(maxCosine, Math.abs(sum) / (s * cost));
|
||||||
}
|
}
|
||||||
|
@ -323,6 +326,8 @@ public class LevenbergMarquardtOptimizer extends AbstractLeastSquaresOptimizer {
|
||||||
}
|
}
|
||||||
if (maxCosine <= orthoTolerance) {
|
if (maxCosine <= orthoTolerance) {
|
||||||
// convergence has been reached
|
// convergence has been reached
|
||||||
|
updateResidualsAndCost();
|
||||||
|
current = new VectorialPointValuePair(point, objective);
|
||||||
return current;
|
return current;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -343,9 +348,12 @@ public class LevenbergMarquardtOptimizer extends AbstractLeastSquaresOptimizer {
|
||||||
double[] tmpVec = residuals;
|
double[] tmpVec = residuals;
|
||||||
residuals = oldRes;
|
residuals = oldRes;
|
||||||
oldRes = tmpVec;
|
oldRes = tmpVec;
|
||||||
|
tmpVec = objective;
|
||||||
|
objective = oldObj;
|
||||||
|
oldObj = tmpVec;
|
||||||
|
|
||||||
// determine the Levenberg-Marquardt parameter
|
// determine the Levenberg-Marquardt parameter
|
||||||
determineLMParameter(oldRes, delta, diag, work1, work2, work3);
|
determineLMParameter(qtf, delta, diag, work1, work2, work3);
|
||||||
|
|
||||||
// compute the new point and the norm of the evolution direction
|
// compute the new point and the norm of the evolution direction
|
||||||
double lmNorm = 0;
|
double lmNorm = 0;
|
||||||
|
@ -357,7 +365,6 @@ public class LevenbergMarquardtOptimizer extends AbstractLeastSquaresOptimizer {
|
||||||
lmNorm += s * s;
|
lmNorm += s * s;
|
||||||
}
|
}
|
||||||
lmNorm = Math.sqrt(lmNorm);
|
lmNorm = Math.sqrt(lmNorm);
|
||||||
|
|
||||||
// on the first iteration, adjust the initial step bound.
|
// on the first iteration, adjust the initial step bound.
|
||||||
if (firstIteration) {
|
if (firstIteration) {
|
||||||
delta = Math.min(delta, lmNorm);
|
delta = Math.min(delta, lmNorm);
|
||||||
|
@ -365,7 +372,6 @@ public class LevenbergMarquardtOptimizer extends AbstractLeastSquaresOptimizer {
|
||||||
|
|
||||||
// evaluate the function at x + p and calculate its norm
|
// evaluate the function at x + p and calculate its norm
|
||||||
updateResidualsAndCost();
|
updateResidualsAndCost();
|
||||||
current = new VectorialPointValuePair(point, objective);
|
|
||||||
|
|
||||||
// compute the scaled actual reduction
|
// compute the scaled actual reduction
|
||||||
double actRed = -1.0;
|
double actRed = -1.0;
|
||||||
|
@ -421,6 +427,15 @@ public class LevenbergMarquardtOptimizer extends AbstractLeastSquaresOptimizer {
|
||||||
xNorm += xK * xK;
|
xNorm += xK * xK;
|
||||||
}
|
}
|
||||||
xNorm = Math.sqrt(xNorm);
|
xNorm = Math.sqrt(xNorm);
|
||||||
|
current = new VectorialPointValuePair(point, objective);
|
||||||
|
|
||||||
|
// tests for convergence.
|
||||||
|
if (checker != null) {
|
||||||
|
// we use the vectorial convergence checker
|
||||||
|
if (checker.converged(getIterations(), previous, current)) {
|
||||||
|
return current;
|
||||||
|
}
|
||||||
|
}
|
||||||
} else {
|
} else {
|
||||||
// failed iteration, reset the previous values
|
// failed iteration, reset the previous values
|
||||||
cost = previousCost;
|
cost = previousCost;
|
||||||
|
@ -431,24 +446,18 @@ public class LevenbergMarquardtOptimizer extends AbstractLeastSquaresOptimizer {
|
||||||
tmpVec = residuals;
|
tmpVec = residuals;
|
||||||
residuals = oldRes;
|
residuals = oldRes;
|
||||||
oldRes = tmpVec;
|
oldRes = tmpVec;
|
||||||
|
tmpVec = objective;
|
||||||
|
objective = oldObj;
|
||||||
|
oldObj = tmpVec;
|
||||||
}
|
}
|
||||||
|
if (checker==null) {
|
||||||
// tests for convergence.
|
if (((Math.abs(actRed) <= costRelativeTolerance) &&
|
||||||
if (checker != null) {
|
(preRed <= costRelativeTolerance) &&
|
||||||
// we use the vectorial convergence checker
|
(ratio <= 2.0)) ||
|
||||||
if (checker.converged(getIterations(), previous, current)) {
|
(delta <= parRelativeTolerance * xNorm)) {
|
||||||
return current;
|
return current;
|
||||||
}
|
}
|
||||||
} else {
|
|
||||||
// we use the Levenberg-Marquardt specific convergence parameters
|
|
||||||
if (((Math.abs(actRed) <= costRelativeTolerance) &&
|
|
||||||
(preRed <= costRelativeTolerance) &&
|
|
||||||
(ratio <= 2.0)) ||
|
|
||||||
(delta <= parRelativeTolerance * xNorm)) {
|
|
||||||
return current;
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// tests for termination and stringent tolerances
|
// tests for termination and stringent tolerances
|
||||||
// (2.2204e-16 is the machine epsilon for IEEE754)
|
// (2.2204e-16 is the machine epsilon for IEEE754)
|
||||||
if ((Math.abs(actRed) <= 2.2204e-16) && (preRed <= 2.2204e-16) && (ratio <= 2.0)) {
|
if ((Math.abs(actRed) <= 2.2204e-16) && (preRed <= 2.2204e-16) && (ratio <= 2.0)) {
|
||||||
|
|
|
@ -152,14 +152,14 @@ public class MinpackTest extends TestCase {
|
||||||
minpackTest(new FreudensteinRothFunction(new double[] { 5.0, -20.0 },
|
minpackTest(new FreudensteinRothFunction(new double[] { 5.0, -20.0 },
|
||||||
12432.833948863, 6.9988751744895,
|
12432.833948863, 6.9988751744895,
|
||||||
new double[] {
|
new double[] {
|
||||||
11.4121122022341,
|
11.41300466147456,
|
||||||
-0.8968550851268697
|
-0.896796038685959
|
||||||
}), false);
|
}), false);
|
||||||
minpackTest(new FreudensteinRothFunction(new double[] { 50.0, -200.0 },
|
minpackTest(new FreudensteinRothFunction(new double[] { 50.0, -200.0 },
|
||||||
11426454.595762, 6.99887517242903,
|
11426454.595762, 6.99887517242903,
|
||||||
new double[] {
|
new double[] {
|
||||||
11.412069435091231,
|
11.412781785788564,
|
||||||
-0.8968582807605691
|
-0.8968051074920405
|
||||||
}), false);
|
}), false);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -325,7 +325,8 @@ public class MinpackTest extends TestCase {
|
||||||
minpackTest(new JennrichSampsonFunction(10, new double[] { 0.3, 0.4 },
|
minpackTest(new JennrichSampsonFunction(10, new double[] { 0.3, 0.4 },
|
||||||
64.5856498144943, 11.1517793413499,
|
64.5856498144943, 11.1517793413499,
|
||||||
new double[] {
|
new double[] {
|
||||||
0.2578330049, 0.257829976764542
|
// 0.2578330049, 0.257829976764542
|
||||||
|
0.2578199266368004, 0.25782997676455244
|
||||||
}), false);
|
}), false);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue