Changed to use InsufficientDataException when the model does not contain sufficient data for the number of regerssors; fixed error in precondition statement.
git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1540502 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
fdd505d985
commit
78504bde01
|
@ -17,10 +17,10 @@
|
|||
package org.apache.commons.math3.stat.regression;
|
||||
|
||||
import org.apache.commons.math3.exception.DimensionMismatchException;
|
||||
import org.apache.commons.math3.exception.InsufficientDataException;
|
||||
import org.apache.commons.math3.exception.MathIllegalArgumentException;
|
||||
import org.apache.commons.math3.exception.NoDataException;
|
||||
import org.apache.commons.math3.exception.NullArgumentException;
|
||||
import org.apache.commons.math3.exception.NumberIsTooSmallException;
|
||||
import org.apache.commons.math3.exception.util.LocalizedFormats;
|
||||
import org.apache.commons.math3.linear.NonSquareMatrixException;
|
||||
import org.apache.commons.math3.linear.RealMatrix;
|
||||
|
@ -109,8 +109,8 @@ public abstract class AbstractMultipleLinearRegression implements
|
|||
* @throws NullArgumentException if the data array is null
|
||||
* @throws DimensionMismatchException if the length of the data array is not equal
|
||||
* to <code>nobs * (nvars + 1)</code>
|
||||
* @throws NumberIsTooSmallException if <code>nobs</code> is smaller than
|
||||
* <code>nvars</code>
|
||||
* @throws InsufficientDataException if <code>nobs</code> is less than
|
||||
* <code>nvars + 1</code>
|
||||
*/
|
||||
public void newSampleData(double[] data, int nobs, int nvars) {
|
||||
if (data == null) {
|
||||
|
@ -120,7 +120,7 @@ public abstract class AbstractMultipleLinearRegression implements
|
|||
throw new DimensionMismatchException(data.length, nobs * (nvars + 1));
|
||||
}
|
||||
if (nobs <= nvars) {
|
||||
throw new NumberIsTooSmallException(nobs, nvars, false);
|
||||
throw new InsufficientDataException(LocalizedFormats.INSUFFICIENT_OBSERVED_POINTS_IN_SAMPLE, nobs, nvars + 1);
|
||||
}
|
||||
double[] y = new double[nobs];
|
||||
final int cols = noIntercept ? nvars: nvars + 1;
|
||||
|
|
Loading…
Reference in New Issue