From 794f28c200a140985c74ea0a1e14f5aff42b0bb0 Mon Sep 17 00:00:00 2001 From: Mikkel Meyer Andersen Date: Thu, 30 Dec 2010 09:52:00 +0000 Subject: [PATCH] Starting point for fixing MATH-431. Still some validation tests and documentation are missing. git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1053836 13f79535-47bb-0310-9956-ffa450edef68 --- .../math/stat/inference/MannWhitneyUTest.java | 96 +++++++ .../stat/inference/MannWhitneyUTestImpl.java | 199 +++++++++++++ .../inference/WilcoxonSignedRankTest.java | 107 +++++++ .../inference/WilcoxonSignedRankTestImpl.java | 271 ++++++++++++++++++ .../stat/inference/MannWhitneyUTestTest.java | 101 +++++++ .../inference/WilcoxonSignedRankTestTest.java | 180 ++++++++++++ 6 files changed, 954 insertions(+) create mode 100644 src/main/java/org/apache/commons/math/stat/inference/MannWhitneyUTest.java create mode 100644 src/main/java/org/apache/commons/math/stat/inference/MannWhitneyUTestImpl.java create mode 100644 src/main/java/org/apache/commons/math/stat/inference/WilcoxonSignedRankTest.java create mode 100644 src/main/java/org/apache/commons/math/stat/inference/WilcoxonSignedRankTestImpl.java create mode 100644 src/test/java/org/apache/commons/math/stat/inference/MannWhitneyUTestTest.java create mode 100644 src/test/java/org/apache/commons/math/stat/inference/WilcoxonSignedRankTestTest.java diff --git a/src/main/java/org/apache/commons/math/stat/inference/MannWhitneyUTest.java b/src/main/java/org/apache/commons/math/stat/inference/MannWhitneyUTest.java new file mode 100644 index 000000000..14d74ec84 --- /dev/null +++ b/src/main/java/org/apache/commons/math/stat/inference/MannWhitneyUTest.java @@ -0,0 +1,96 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math.stat.inference; + +import org.apache.commons.math.MathException; + +/** + * An interface for Mann-Whitney U test (also called Wilcoxon rank-sum test). + * + * @version $Revision: $ $Date: $ + */ +public interface MannWhitneyUTest { + + /** + * Computes the Mann-Whitney + * U statistic comparing mean for two independent samples possibly of + * different length. + *

+ * This statistic can be used to perform a Mann-Whitney U test evaluating + * the null hypothesis that the two independent samples has equal mean. + *

+ *

+ * Let Xi denote the i'th individual of the first sample and + * Yj the j'th individual in the second sample. Note that the + * samples would often have different length. + *

+ *

+ * Preconditions: + *

+ *

+ * + * @param x + * the first sample + * @param y + * the second sample + * @return mannWhitneyU statistic + * @throws IllegalArgumentException + * if preconditions are not met + */ + double mannWhitneyU(final double[] x, final double[] y) + throws IllegalArgumentException; + + /** + * Returns the asymptotic observed significance level, or + * p-value, associated with a Mann-Whitney + * U statistic comparing mean for two independent samples. + *

+ * Let Xi denote the i'th individual of the first sample and + * Yj the j'th individual in the second sample. Note that the + * samples would often have different length. + *

+ *

+ * Preconditions: + *

+ *

+ * + * @param x + * the first sample + * @param y + * the second sample + * @param exactPValue + * if the exact p-value is wanted (only works for x.length <= 30, + * if true and x.length > 30, this is ignored because + * calculations may take too long) + * @return asymptotic p-value + * @throws IllegalArgumentException + * if preconditions are not met + * @throws MathException + * if an error occurs computing the p-value + */ + double mannWhitneyUTest(final double[] x, final double[] y) + throws IllegalArgumentException, MathException; +} diff --git a/src/main/java/org/apache/commons/math/stat/inference/MannWhitneyUTestImpl.java b/src/main/java/org/apache/commons/math/stat/inference/MannWhitneyUTestImpl.java new file mode 100644 index 000000000..ac249b7bc --- /dev/null +++ b/src/main/java/org/apache/commons/math/stat/inference/MannWhitneyUTestImpl.java @@ -0,0 +1,199 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math.stat.inference; + +import org.apache.commons.math.MathException; +import org.apache.commons.math.distribution.NormalDistributionImpl; +import org.apache.commons.math.stat.ranking.NaNStrategy; +import org.apache.commons.math.stat.ranking.NaturalRanking; +import org.apache.commons.math.stat.ranking.TiesStrategy; +import org.apache.commons.math.util.FastMath; + +/** + * An implementation of the Mann-Whitney U test (also called Wilcoxon rank-sum + * test). + * + * @version $Revision: $ $Date: $ + */ +public class MannWhitneyUTestImpl implements MannWhitneyUTest { + private NaturalRanking naturalRanking; + + /** + * Create a test instance using where NaN's are left in place and ties get + * the average of applicable ranks. Use this unless you are very sure of + * what you are doing. + */ + public MannWhitneyUTestImpl() { + naturalRanking = new NaturalRanking(NaNStrategy.FIXED, + TiesStrategy.AVERAGE); + } + + /** + * Create a test instance using the given strategies for NaN's and ties. + * Only use this if you are sure of what you are doing. + * + * @param nanStrategy + * specifies the strategy that should be used for Double.NaN's + * @param tiesStrategy + * specifies the strategy that should be used for ties + */ + public MannWhitneyUTestImpl(NaNStrategy nanStrategy, + TiesStrategy tiesStrategy) { + naturalRanking = new NaturalRanking(nanStrategy, tiesStrategy); + } + + /** + * Ensures that the provided arrays fulfills the assumptions. + * + * @param x + * @param y + * @throws IllegalArgumentException + * if assumptions are not met + */ + private void ensureDataConformance(final double[] x, final double[] y) + throws IllegalArgumentException { + if (x == null) { + throw new IllegalArgumentException("x must not be null"); + } + + if (y == null) { + throw new IllegalArgumentException("y must not be null"); + } + + if (x.length == 0) { + throw new IllegalArgumentException( + "x must contain at least one element"); + } + + if (y.length == 0) { + throw new IllegalArgumentException( + "y must contain at least one element"); + } + } + + private double[] concatinateSamples(final double[] x, final double[] y) { + final double[] z = new double[x.length + y.length]; + + System.arraycopy(x, 0, z, 0, x.length); + System.arraycopy(y, 0, z, x.length, y.length); + + return z; + } + + /** + * {@inheritDoc} + * + * @param x + * the first sample + * @param y + * the second sample + * @return mannWhitneyU statistic U (maximum of Ux and Uy) + * @throws IllegalArgumentException + * if preconditions are not met + */ + public double mannWhitneyU(final double[] x, final double[] y) + throws IllegalArgumentException { + + ensureDataConformance(x, y); + + final double[] z = concatinateSamples(x, y); + final double[] ranks = naturalRanking.rank(z); + + double sumRankX = 0; + + /* + * The ranks for x is in the first x.length entries in ranks because x + * is in the first x.length entries in z + */ + for (int i = 0; i < x.length; ++i) { + sumRankX += ranks[i]; + } + + /* + * U1 = R1 - (n1 * (n1 + 1)) / 2 where R1 is sum of ranks for sample 1, + * e.g. x, n1 is the number of observations in sample 1. + */ + final double U1 = sumRankX - (x.length * (x.length + 1)) / 2; + + /* + * It can be shown that U1 + U2 = n1 * n2 + */ + final double U2 = x.length * y.length - U1; + + return FastMath.max(U1, U2); + } + + /** + * @param Umin + * smallest Mann-Whitney U value + * @param N + * number of subjects (corresponding to x.length) + * @return two-sided asymptotic p-value + * @throws MathException + * if an error occurs computing the p-value + */ + private double calculateAsymptoticPValue(final double Umin, final int n1, + final int n2) throws MathException { + + final int n1n2prod = n1 * n2; + + // http://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U#Normal_approximation + final double EU = (double) n1n2prod / 2.0; + final double VarU = (double) (n1n2prod * (n1 + n2 + 1)) / 12.0; + + final double z = (Umin - EU) / FastMath.sqrt(VarU); + + final NormalDistributionImpl standardNormal = new NormalDistributionImpl( + 0, 1); + + return 2 * standardNormal.cumulativeProbability(z); + } + + /** + * Ties give rise to biased variance at the moment. See e.g. http://mlsc.lboro.ac.uk/resources/statistics/Mannwhitney.pdf. + * + * {@inheritDoc} + * + * @param x + * the first sample + * @param y + * the second sample + * @param exactPValue + * if the exact p-value is wanted (only for x.length <= 50) + * @return asymptotic p-value (biased for samples with ties) + * @throws IllegalArgumentException + * if preconditions are not met + * @throws MathException + * if an error occurs computing the p-value + */ + public double mannWhitneyUTest(final double[] x, final double[] y) + throws IllegalArgumentException, MathException { + + ensureDataConformance(x, y); + + final double Umax = mannWhitneyU(x, y); + + /* + * It can be shown that U1 + U2 = n1 * n2 + */ + final double Umin = x.length * y.length - Umax; + + return calculateAsymptoticPValue(Umin, x.length, y.length); + } +} diff --git a/src/main/java/org/apache/commons/math/stat/inference/WilcoxonSignedRankTest.java b/src/main/java/org/apache/commons/math/stat/inference/WilcoxonSignedRankTest.java new file mode 100644 index 000000000..c03b5de4d --- /dev/null +++ b/src/main/java/org/apache/commons/math/stat/inference/WilcoxonSignedRankTest.java @@ -0,0 +1,107 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math.stat.inference; + +import org.apache.commons.math.MathException; + +/** + * An interface for Wilcoxon signed-rank test. + * + * @version $Revision: $ $Date: $ + */ +public interface WilcoxonSignedRankTest { + + /** + * Computes the + * Wilcoxon signed ranked statistic comparing mean for two related + * samples or repeated measurements on a single sample. + *

+ * This statistic can be used to perform a Wilcoxon signed ranked test + * evaluating the null hypothesis that the two related samples or repeated + * measurements on a single sample has equal mean. + *

+ *

+ * Let Xi denote the i'th individual of the first sample and + * Yi the related i'th individual in the second sample. Let + * Zi = Yi - Xi. + *

+ *

+ * Preconditions: + *

+ *

+ * + * @param x + * the first sample + * @param y + * the second sample + * @return wilcoxonSignedRank statistic + * @throws IllegalArgumentException + * if preconditions are not met + */ + double wilcoxonSignedRank(final double[] x, final double[] y) + throws IllegalArgumentException; + + /** + * Returns the observed significance level, or + * p-value, associated with a + * Wilcoxon signed ranked statistic comparing mean for two related + * samples or repeated measurements on a single sample. + *

+ * Let Xi denote the i'th individual of the first sample and + * Yi the related i'th individual in the second sample. Let + * Zi = Yi - Xi. + *

+ *

+ * Preconditions: + *

+ *

+ * + * @param x + * the first sample + * @param y + * the second sample + * @param exactPValue + * if the exact p-value is wanted (only works for x.length <= 30, + * if true and x.length > 30, this is ignored because + * calculations may take too long) + * @return p-value + * @throws IllegalArgumentException + * if preconditions are not met + * @throws MathException + * if an error occurs computing the p-value + */ + double wilcoxonSignedRankTest(final double[] x, final double[] y, + boolean exactPValue) throws IllegalArgumentException, + MathException; +} diff --git a/src/main/java/org/apache/commons/math/stat/inference/WilcoxonSignedRankTestImpl.java b/src/main/java/org/apache/commons/math/stat/inference/WilcoxonSignedRankTestImpl.java new file mode 100644 index 000000000..955753167 --- /dev/null +++ b/src/main/java/org/apache/commons/math/stat/inference/WilcoxonSignedRankTestImpl.java @@ -0,0 +1,271 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math.stat.inference; + +import org.apache.commons.math.MathException; +import org.apache.commons.math.distribution.NormalDistributionImpl; +import org.apache.commons.math.stat.ranking.NaNStrategy; +import org.apache.commons.math.stat.ranking.NaturalRanking; +import org.apache.commons.math.stat.ranking.TiesStrategy; +import org.apache.commons.math.util.FastMath; + +/** + * An implementation of the Wilcoxon signed-rank test. + * + * @version $Revision: $ $Date: $ + */ +public class WilcoxonSignedRankTestImpl implements WilcoxonSignedRankTest { + private NaturalRanking naturalRanking; + + /** + * Create a test instance where NaN's are left in place and ties get + * the average of applicable ranks. Use this unless you are very sure + * of what you are doing. + */ + public WilcoxonSignedRankTestImpl() { + naturalRanking = new NaturalRanking(NaNStrategy.FIXED, + TiesStrategy.AVERAGE); + } + + /** + * Create a test instance using the given strategies for NaN's and ties. + * Only use this if you are sure of what you are doing. + * + * @param nanStrategy + * specifies the strategy that should be used for Double.NaN's + * @param tiesStrategy + * specifies the strategy that should be used for ties + */ + public WilcoxonSignedRankTestImpl(NaNStrategy nanStrategy, + TiesStrategy tiesStrategy) { + naturalRanking = new NaturalRanking(nanStrategy, tiesStrategy); + } + + /** + * Ensures that the provided arrays fulfills the assumptions. + * + * @param x + * @param y + * @throws IllegalArgumentException + * if assumptions are not met + */ + private void ensureDataConformance(final double[] x, final double[] y) + throws IllegalArgumentException { + if (x == null) { + throw new IllegalArgumentException("x must not be null"); + } + + if (y == null) { + throw new IllegalArgumentException("y must not be null"); + } + + if (x.length != y.length) { + throw new IllegalArgumentException( + "x and y must contain the same number of elements"); + } + + if (x.length == 0) { + throw new IllegalArgumentException( + "x and y must contain at least one element"); + } + } + + /** + * Calculates y[i] - x[i] for all i + * + * @param x + * @param y + * @throws IllegalArgumentException + * if assumptions are not met + */ + private double[] calculateDifferences(final double[] x, final double[] y) + throws IllegalArgumentException { + + final double[] z = new double[x.length]; + + for (int i = 0; i < x.length; ++i) { + z[i] = y[i] - x[i]; + } + + return z; + } + + /** + * Calculates |z[i]| for all i + * + * @param z + * @throws IllegalArgumentException + * if assumptions are not met + */ + private double[] calculateAbsoluteDifferences(final double[] z) + throws IllegalArgumentException { + if (z == null) { + throw new IllegalArgumentException("z must not be null"); + } + + if (z.length == 0) { + throw new IllegalArgumentException( + "z must contain at least one element"); + } + + final double[] zAbs = new double[z.length]; + + for (int i = 0; i < z.length; ++i) { + zAbs[i] = FastMath.abs(z[i]); + } + + return zAbs; + } + + /** + * {@inheritDoc} + * + * @param x + * the first sample + * @param y + * the second sample + * @return wilcoxonSignedRank statistic (the larger of W+ and W-) + * @throws IllegalArgumentException + * if preconditions are not met + */ + public double wilcoxonSignedRank(final double[] x, final double[] y) + throws IllegalArgumentException { + + ensureDataConformance(x, y); + + // throws IllegalArgumentException if x and y are not correctly + // specified + final double[] z = calculateDifferences(x, y); + final double[] zAbs = calculateAbsoluteDifferences(z); + + final double[] ranks = naturalRanking.rank(zAbs); + + double Wplus = 0; + + for (int i = 0; i < z.length; ++i) { + if (z[i] > 0) { + Wplus += ranks[i]; + } + } + + final int N = x.length; + final double Wminus = (((double) (N * (N + 1))) / 2.0) - Wplus; + + return FastMath.max(Wplus, Wminus); + } + + /** + * Algorithm inspired by + * http://www.fon.hum.uva.nl/Service/Statistics/Signed_Rank_Algorihms.html#C + * by Rob van Son, Institute of Phonetic Sciences & IFOTT, + * University of Amsterdam + * + * @param Wmax largest Wilcoxon signed rank value + * @param N number of subjects (corresponding to x.length) + * @return two-sided exact p-value + */ + private double calculateExactPValue(final double Wmax, final int N) { + + // Total number of outcomes (equal to 2^N but a lot faster) + final int m = 1 << N; + + int largerRankSums = 0; + + for (int i = 0; i < m; ++i) { + int rankSum = 0; + + // Generate all possible rank sums + for (int j = 0; j < N; ++j) { + + // (i >> j) & 1 extract i's j-th bit from the right + if (((i >> j) & 1) == 1) { + rankSum += j + 1; + } + } + + if (rankSum >= Wmax) { + ++largerRankSums; + } + } + + /* + * largerRankSums / m gives the one-sided p-value, so it's multiplied + * with 2 to get the two-sided p-value + */ + return 2 * ((double) largerRankSums) / ((double) m); + } + + /** + * @param Wmin smallest Wilcoxon signed rank value + * @param N number of subjects (corresponding to x.length) + * @return two-sided asymptotic p-value + * @throws MathException if an error occurs computing the p-value + */ + private double calculateAsymptoticPValue(final double Wmin, final int N) throws MathException { + + final double ES = (double) (N * (N + 1)) / 4.0; + + /* Same as (but saves computations): + * final double VarW = ((double) (N * (N + 1) * (2*N + 1))) / 24; + */ + final double VarS = ES * ((double) (2 * N + 1) / 6.0); + + // - 0.5 is a continuity correction + final double z = (Wmin - ES - 0.5) / FastMath.sqrt(VarS); + + final NormalDistributionImpl standardNormal = new NormalDistributionImpl(0, 1); + + return 2*standardNormal.cumulativeProbability(z); + } + + /** + * {@inheritDoc} + * + * @param x + * the first sample + * @param y + * the second sample + * @param exactPValue + * if the exact p-value is wanted (only for x.length <= 30) + * @return p-value + * @throws IllegalArgumentException + * if preconditions are not met or exact p-value is wanted for + * when x.length > 30 + * @throws MathException + * if an error occurs computing the p-value + */ + public double wilcoxonSignedRankTest(final double[] x, final double[] y, + boolean exactPValue) throws IllegalArgumentException, + MathException { + + ensureDataConformance(x, y); + + final int N = x.length; + final double Wmax = wilcoxonSignedRank(x, y); + + if (exactPValue && N > 30) { + throw new IllegalArgumentException("Exact test can only be made for N <= 30."); + } + + if (exactPValue) { + return calculateExactPValue(Wmax, N); + } else { + final double Wmin = ( (double)(N*(N+1)) / 2.0 ) - Wmax; + return calculateAsymptoticPValue(Wmin, N); + } + } +} diff --git a/src/test/java/org/apache/commons/math/stat/inference/MannWhitneyUTestTest.java b/src/test/java/org/apache/commons/math/stat/inference/MannWhitneyUTestTest.java new file mode 100644 index 000000000..67b29163e --- /dev/null +++ b/src/test/java/org/apache/commons/math/stat/inference/MannWhitneyUTestTest.java @@ -0,0 +1,101 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math.stat.inference; + +import junit.framework.TestCase; + +/** + * Test cases for the ChiSquareTestImpl class. + * + * @version $Revision: $ $Date: $ + */ + +public class MannWhitneyUTestTest extends TestCase { + + protected MannWhitneyUTest testStatistic = new MannWhitneyUTestImpl(); + + public MannWhitneyUTestTest(String name) { + super(name); + } + + public void testMannWhitneyUSimple() throws Exception { + /* Target values computed using R version 2.11.1 + * x <- c(19, 22, 16, 29, 24) + * y <- c(20, 11, 17, 12) + * wilcox.test(x, y, alternative = "two.sided", mu = 0, paired = FALSE, exact = FALSE, correct = FALSE) + * W = 17, p-value = 0.08641 + */ + final double x[] = {19, 22, 16, 29, 24}; + final double y[] = {20, 11, 17, 12}; + + assertEquals(17, testStatistic.mannWhitneyU(x, y), 1e-10); + assertEquals(0.08641, testStatistic.mannWhitneyUTest(x, y), 1e-5); + } + + + public void testMannWhitneyUInputValidation() throws Exception { + /* Samples must be present, i.e. length > 0 + */ + try { + testStatistic.mannWhitneyUTest(new double[] { }, new double[] { 1.0 }); + fail("x does not contain samples (exact), IllegalArgumentException expected"); + } catch (IllegalArgumentException ex) { + // expected + } + + try { + testStatistic.mannWhitneyUTest(new double[] { 1.0 }, new double[] { }); + fail("y does not contain samples (exact), IllegalArgumentException expected"); + } catch (IllegalArgumentException ex) { + // expected + } + + /* + * x and y is null + */ + try { + testStatistic.mannWhitneyUTest(null, null); + fail("x and y is null (exact), IllegalArgumentException expected"); + } catch (IllegalArgumentException ex) { + // expected + } + + try { + testStatistic.mannWhitneyUTest(null, null); + fail("x and y is null (asymptotic), IllegalArgumentException expected"); + } catch (IllegalArgumentException ex) { + // expected + } + + /* + * x or y is null + */ + try { + testStatistic.mannWhitneyUTest(null, new double[] { 1.0 }); + fail("x is null (exact), IllegalArgumentException expected"); + } catch (IllegalArgumentException ex) { + // expected + } + + try { + testStatistic.mannWhitneyUTest(new double[] { 1.0 }, null); + fail("y is null (exact), IllegalArgumentException expected"); + } catch (IllegalArgumentException ex) { + // expected + } + } +} diff --git a/src/test/java/org/apache/commons/math/stat/inference/WilcoxonSignedRankTestTest.java b/src/test/java/org/apache/commons/math/stat/inference/WilcoxonSignedRankTestTest.java new file mode 100644 index 000000000..e9f233850 --- /dev/null +++ b/src/test/java/org/apache/commons/math/stat/inference/WilcoxonSignedRankTestTest.java @@ -0,0 +1,180 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math.stat.inference; + +import junit.framework.TestCase; + +/** + * Test cases for the ChiSquareTestImpl class. + * + * @version $Revision: $ $Date: $ + */ + +public class WilcoxonSignedRankTestTest extends TestCase { + + protected WilcoxonSignedRankTest testStatistic = new WilcoxonSignedRankTestImpl(); + + public WilcoxonSignedRankTestTest(String name) { + super(name); + } + + public void testWilcoxonSignedRankSimple() throws Exception { + /* Target values computed using R version 2.11.1 + * x <- c(1.83, 0.50, 1.62, 2.48, 1.68, 1.88, 1.55, 3.06, 1.30) + * y <- c(0.878, 0.647, 0.598, 2.05, 1.06, 1.29, 1.06, 3.14, 1.29) + */ + final double x[] = {1.83, 0.50, 1.62, 2.48, 1.68, 1.88, 1.55, 3.06, 1.30}; + final double y[] = {0.878, 0.647, 0.598, 2.05, 1.06, 1.29, 1.06, 3.14, 1.29}; + + /* EXACT: + * wilcox.test(x, y, alternative = "two.sided", mu = 0, paired = TRUE, exact = TRUE, correct = FALSE) + * V = 40, p-value = 0.03906 + * + * Corresponds to the value obtained in R. + */ + assertEquals(40, testStatistic.wilcoxonSignedRank(x, y), 1e-10); + assertEquals(0.03906, testStatistic.wilcoxonSignedRankTest(x, y, true), 1e-5); + + /* ASYMPTOTIC: + * wilcox.test(x, y, alternative = "two.sided", mu = 0, paired = TRUE, exact = FALSE, correct = FALSE) + * V = 40, p-value = 0.03815 + * + * This is not entirely the same due to different corrects, + * e.g. http://mlsc.lboro.ac.uk/resources/statistics/wsrt.pdf + * and src/library/stats/R/wilcox.test.R in the R source + */ + assertEquals(40, testStatistic.wilcoxonSignedRank(x, y), 1e-10); + assertEquals(0.0329693812, testStatistic.wilcoxonSignedRankTest(x, y, false), 1e-10); + } + + public void testWilcoxonSignedRankInputValidation() throws Exception { + /* + * Exact only for sample size <= 30 + */ + final double[] x1 = new double[30]; + final double[] x2 = new double[31]; + final double[] y1 = new double[30]; + final double[] y2 = new double[31]; + for (int i = 0; i < 30; ++i) { + x1[i] = x2[i] = y1[i] = y2[i] = i; + } + + // Exactly 30 is okay + testStatistic.wilcoxonSignedRankTest(x1, y1, true); + + try { + testStatistic.wilcoxonSignedRankTest(x2, y2, true); + fail("More than 30 samples and exact chosen, IllegalArgumentException expected"); + } catch (IllegalArgumentException ex) { + // expected + } + + /* Samples must be present, i.e. length > 0 + */ + try { + testStatistic.wilcoxonSignedRankTest(new double[] { }, new double[] { 1.0 }, true); + fail("x does not contain samples (exact), IllegalArgumentException expected"); + } catch (IllegalArgumentException ex) { + // expected + } + + try { + testStatistic.wilcoxonSignedRankTest(new double[] { }, new double[] { 1.0 }, false); + fail("x does not contain samples (asymptotic), IllegalArgumentException expected"); + } catch (IllegalArgumentException ex) { + // expected + } + + try { + testStatistic.wilcoxonSignedRankTest(new double[] { 1.0 }, new double[] { }, true); + fail("y does not contain samples (exact), IllegalArgumentException expected"); + } catch (IllegalArgumentException ex) { + // expected + } + + try { + testStatistic.wilcoxonSignedRankTest(new double[] { 1.0 }, new double[] { }, false); + fail("y does not contain samples (asymptotic), IllegalArgumentException expected"); + } catch (IllegalArgumentException ex) { + // expected + } + + /* Samples not same size, i.e. cannot be pairred + */ + try { + testStatistic.wilcoxonSignedRankTest(new double[] { 1.0, 2.0 }, new double[] { 3.0 }, true); + fail("x and y not same size (exact), IllegalArgumentException expected"); + } catch (IllegalArgumentException ex) { + // expected + } + + try { + testStatistic.wilcoxonSignedRankTest(new double[] { 1.0, 2.0 }, new double[] { 3.0 }, false); + fail("x and y not same size (asymptotic), IllegalArgumentException expected"); + } catch (IllegalArgumentException ex) { + // expected + } + + /* + * x and y is null + */ + try { + testStatistic.wilcoxonSignedRankTest(null, null, true); + fail("x and y is null (exact), IllegalArgumentException expected"); + } catch (IllegalArgumentException ex) { + // expected + } + + try { + testStatistic.wilcoxonSignedRankTest(null, null, false); + fail("x and y is null (asymptotic), IllegalArgumentException expected"); + } catch (IllegalArgumentException ex) { + // expected + } + + /* + * x or y is null + */ + try { + testStatistic.wilcoxonSignedRankTest(null, new double[] { 1.0 }, true); + fail("x is null (exact), IllegalArgumentException expected"); + } catch (IllegalArgumentException ex) { + // expected + } + + try { + testStatistic.wilcoxonSignedRankTest(null, new double[] { 1.0 }, false); + fail("x is null (asymptotic), IllegalArgumentException expected"); + } catch (IllegalArgumentException ex) { + // expected + } + + try { + testStatistic.wilcoxonSignedRankTest(new double[] { 1.0 }, null, true); + fail("y is null (exact), IllegalArgumentException expected"); + } catch (IllegalArgumentException ex) { + // expected + } + + try { + testStatistic.wilcoxonSignedRankTest(new double[] { 1.0 }, null, false); + fail("y is null (asymptotic), IllegalArgumentException expected"); + } catch (IllegalArgumentException ex) { + // expected + } + } +}