Prepared tests for field-based ODE.

This commit is contained in:
Luc Maisonobe 2015-11-22 20:49:53 +01:00
parent 4b698fbf79
commit 7954482001
8 changed files with 928 additions and 0 deletions

View File

@ -0,0 +1,78 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.ode;
import org.apache.commons.math3.Field;
import org.apache.commons.math3.RealFieldElement;
import org.apache.commons.math3.util.MathArrays;
/**
* This class is used in the junit tests for the ODE integrators.
* <p>This specific problem is the following differential equation :
* <pre>
* y' = -y
* </pre>
* the solution of this equation is a simple exponential function :
* <pre>
* y (t) = y (t0) exp (t0-t)
* </pre>
* </p>
* @param <T> the type of the field elements
*/
public class TestFieldProblem1<T extends RealFieldElement<T>>
extends TestFieldProblemAbstract<T> {
/**
* Simple constructor.
* @param field field to which elements belong
*/
public TestFieldProblem1(Field<T> field) {
super(field);
setInitialConditions(convert(0.0), convert(1.0, 0.1));
setFinalConditions(convert(4.0));
setErrorScale(convert(1.0, 1.0));
}
@Override
public T[] doComputeDerivatives(T t, T[] y) {
final T[] yDot = MathArrays.buildArray(getField(), getDimension());
// compute the derivatives
for (int i = 0; i < getDimension(); ++i) {
yDot[i] = y[i].negate();
}
return yDot;
}
@Override
public T[] computeTheoreticalState(T t) {
final T[] y0 = getInitialState();
final T[] y = MathArrays.buildArray(getField(), getDimension());
T c = getInitialTime().subtract(t).exp();
for (int i = 0; i < getDimension(); ++i) {
y[i] = c.multiply(y0[i]);
}
return y;
}
}

View File

@ -0,0 +1,78 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.ode;
import org.apache.commons.math3.Field;
import org.apache.commons.math3.RealFieldElement;
import org.apache.commons.math3.util.MathArrays;
/**
* This class is used in the junit tests for the ODE integrators.
* <p>This specific problem is the following differential equation :
* <pre>
* y' = t^3 - t y
* </pre>
* with the initial condition y (0) = 0. The solution of this equation
* is the following function :
* <pre>
* y (t) = t^2 + 2 (exp (- t^2 / 2) - 1)
* </pre>
* </p>
* @param <T> the type of the field elements
*/
public class TestFieldProblem2<T extends RealFieldElement<T>>
extends TestFieldProblemAbstract<T> {
/**
* Simple constructor.
* @param field field to which elements belong
*/
public TestFieldProblem2(Field<T> field) {
super(field);
setInitialConditions(convert(0.0), convert(new double[] { 0.0 }));
setFinalConditions(convert(1.0));
setErrorScale(convert(new double[] { 1.0 }));
}
@Override
public T[] doComputeDerivatives(T t, T[] y) {
final T[] yDot = MathArrays.buildArray(getField(), getDimension());
// compute the derivatives
for (int i = 0; i < getDimension(); ++i) {
yDot[i] = t.multiply(t.multiply(t).subtract(y[i]));
}
return yDot;
}
@Override
public T[] computeTheoreticalState(T t) {
final T[] y = MathArrays.buildArray(getField(), getDimension());
T t2 = t.multiply(t);
T c = t2.add(t2.multiply(-0.5).exp().subtract(1).multiply(2));
for (int i = 0; i < getDimension(); ++i) {
y[i] = c;
}
return y;
}
}

View File

@ -0,0 +1,124 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.ode;
import org.apache.commons.math3.Field;
import org.apache.commons.math3.RealFieldElement;
import org.apache.commons.math3.util.MathArrays;
/**
* This class is used in the junit tests for the ODE integrators.
* <p>This specific problem is the following differential equation :
* <pre>
* y1'' = -y1/r^3 y1 (0) = 1-e y1' (0) = 0
* y2'' = -y2/r^3 y2 (0) = 0 y2' (0) =sqrt((1+e)/(1-e))
* r = sqrt (y1^2 + y2^2), e = 0.9
* </pre>
* This is a two-body problem in the plane which can be solved by
* Kepler's equation
* <pre>
* y1 (t) = ...
* </pre>
* </p>
* @param <T> the type of the field elements
*/
public class TestFieldProblem3<T extends RealFieldElement<T>>
extends TestFieldProblemAbstract<T> {
/** Eccentricity */
T e;
/**
* Simple constructor.
* @param field field to which elements belong
* @param e eccentricity
*/
public TestFieldProblem3(Field<T> field, T e) {
super(field);
this.e = e;
T[] y0 = MathArrays.buildArray(field, 4);
y0[0] = e.subtract(1).negate();
y0[1] = field.getZero();
y0[2] = field.getZero();
y0[3] = e.add(1).divide(y0[0]).sqrt();
setInitialConditions(convert(0.0), y0);
setFinalConditions(convert(20.0));
setErrorScale(convert(1.0, 1.0, 1.0, 1.0));
}
/**
* Simple constructor.
* @param field field to which elements belong
*/
public TestFieldProblem3(Field<T> field) {
this(field, field.getZero().add(0.1));
}
@Override
public T[] doComputeDerivatives(T t, T[] y) {
final T[] yDot = MathArrays.buildArray(getField(), getDimension());
// current radius
T r2 = y[0].multiply(y[0]).add(y[1].multiply(y[1]));
T invR3 = r2.multiply(r2.sqrt()).reciprocal();
// compute the derivatives
yDot[0] = y[2];
yDot[1] = y[3];
yDot[2] = invR3.negate().multiply(y[0]);
yDot[3] = invR3.negate().multiply(y[1]);
return yDot;
}
@Override
public T[] computeTheoreticalState(T t) {
final T[] y = MathArrays.buildArray(getField(), getDimension());
// solve Kepler's equation
T E = t;
T d = convert(0);
T corr = convert(999.0);
for (int i = 0; (i < 50) && (corr.abs().getReal() > 1.0e-12); ++i) {
T f2 = e.multiply(E.sin());
T f0 = d.subtract(f2);
T f1 = e.multiply(E.cos()).subtract(1).negate();
T f12 = f1.add(f1);
corr = f0.multiply(f12).divide(f1.multiply(f12).subtract(f0.multiply(f2)));
d = d.subtract(corr);
E = t.add(d);
}
T cosE = E.cos();
T sinE = E.sin();
y[0] = cosE.subtract(e);
y[1] = e.multiply(e).subtract(1).negate().sqrt().multiply(sinE);
y[2] = sinE.divide(e.multiply(cosE).subtract(1));
y[3] = e.multiply(e).subtract(1).negate().sqrt().multiply(cosE).divide(e.multiply(cosE).subtract(1).negate());
return y;
}
}

View File

@ -0,0 +1,160 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.ode;
import java.lang.reflect.Array;
import org.apache.commons.math3.Field;
import org.apache.commons.math3.RealFieldElement;
import org.apache.commons.math3.ode.events.Action;
import org.apache.commons.math3.ode.events.FieldEventHandler;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.MathArrays;
/**
* This class is used in the junit tests for the ODE integrators.
* <p>This specific problem is the following differential equation :
* <pre>
* x'' = -x
* </pre>
* And when x decreases down to 0, the state should be changed as follows :
* <pre>
* x' -> -x'
* </pre>
* The theoretical solution of this problem is x = |sin(t+a)|
* </p>
* @param <T> the type of the field elements
*/
public class TestFieldProblem4<T extends RealFieldElement<T>>
extends TestFieldProblemAbstract<T> {
/** Time offset. */
private T a;
/** Simple constructor.
* @param field field to which elements belong
*/
public TestFieldProblem4(Field<T> field) {
super(field);
a = convert(1.2);
T[] y0 = MathArrays.buildArray(field, 2);
y0[0] = a.sin();
y0[1] = a.cos();;
setInitialConditions(convert(0.0), y0);
setFinalConditions(convert(15));
setErrorScale(convert(1.0, 0.0));
}
@Override
public FieldEventHandler<T>[] getEventsHandlers() {
@SuppressWarnings("unchecked")
FieldEventHandler<T>[] handlers =
(FieldEventHandler<T>[]) Array.newInstance(FieldEventHandler.class, 2);
handlers[0] = new Bounce<T>();
handlers[1] = new Stop<T>();
return handlers;
}
/**
* Get the theoretical events times.
* @return theoretical events times
*/
@Override
public T[] getTheoreticalEventsTimes() {
T[] array = MathArrays.buildArray(getField(), 5);
array[0] = a.negate().add(1 * FastMath.PI);
array[1] = a.negate().add(2 * FastMath.PI);
array[2] = a.negate().add(3 * FastMath.PI);
array[3] = a.negate().add(4 * FastMath.PI);
array[4] = convert(120.0);
return array;
}
@Override
public T[] doComputeDerivatives(T t, T[] y) {
final T[] yDot = MathArrays.buildArray(getField(), getDimension());
yDot[0] = y[1];
yDot[1] = y[0].negate();
return yDot;
}
@Override
public T[] computeTheoreticalState(T t) {
T sin = t.add(a).sin();
T cos = t.add(a).cos();
final T[] y = MathArrays.buildArray(getField(), getDimension());
y[0] = sin.abs();
y[1] = (sin.getReal() >= 0) ? cos : cos.negate();
return y;
}
private static class Bounce<T extends RealFieldElement<T>> implements FieldEventHandler<T> {
private int sign;
public Bounce() {
sign = +1;
}
public void init(FieldODEStateAndDerivative<T> state0, T t) {
}
public T g(FieldODEStateAndDerivative<T> state) {
return state.getState()[0].multiply(sign);
}
public Action eventOccurred(FieldODEStateAndDerivative<T> state, boolean increasing) {
// this sign change is needed because the state will be reset soon
sign = -sign;
return Action.RESET_STATE;
}
public FieldODEState<T> resetState(FieldODEStateAndDerivative<T> state) {
T[] y = state.getState();
y[0] = y[0].negate();
y[1] = y[1].negate();
return new FieldODEState<T>(state.getTime(), y);
}
}
private static class Stop<T extends RealFieldElement<T>> implements FieldEventHandler<T> {
public Stop() {
}
public void init(FieldODEStateAndDerivative<T> state0, T t) {
}
public T g(FieldODEStateAndDerivative<T> state) {
return state.getTime().subtract(12.0);
}
public Action eventOccurred(FieldODEStateAndDerivative<T> state, boolean increasing) {
return Action.STOP;
}
public FieldODEState<T> resetState(FieldODEStateAndDerivative<T> state) {
return state;
}
}
}

View File

@ -0,0 +1,41 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.ode;
import org.apache.commons.math3.Field;
import org.apache.commons.math3.RealFieldElement;
/**
* This class is used in the junit tests for the ODE integrators.
* <p>This is the same as problem 1 except integration is done
* backward in time</p>
* @param <T> the type of the field elements
*/
public class TestFieldProblem5<T extends RealFieldElement<T>>
extends TestFieldProblem1<T> {
/**
* Simple constructor.
* @param field field to which elements belong
*/
public TestFieldProblem5(Field<T> field) {
super(field);
setFinalConditions(getInitialTime().multiply(2).subtract(getFinalTime()));
}
}

View File

@ -0,0 +1,84 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.ode;
import org.apache.commons.math3.Field;
import org.apache.commons.math3.RealFieldElement;
import org.apache.commons.math3.util.MathArrays;
/**
* This class is used in the junit tests for the ODE integrators.
* <p>This specific problem is the following differential equation :
* <pre>
* y' = 3x^5 - y
* </pre>
* when the initial condition is y(0) = -360, the solution of this
* equation degenerates to a simple quintic polynomial function :
* <pre>
* y (t) = 3x^5 - 15x^4 + 60x^3 - 180x^2 + 360x - 360
* </pre>
* </p>
* @param <T> the type of the field elements
*/
public class TestFieldProblem6<T extends RealFieldElement<T>>
extends TestFieldProblemAbstract<T> {
/**
* Simple constructor.
* @param field field to which elements belong
*/
public TestFieldProblem6(Field<T> field) {
super(field);
setInitialConditions(convert(0.0), convert( new double[] { -360.0 }));
setFinalConditions(convert(1.0));
setErrorScale(convert( new double[] { 1.0 }));
}
@Override
public T[] doComputeDerivatives(T t, T[] y) {
final T[] yDot = MathArrays.buildArray(getField(), getDimension());
// compute the derivatives
T t2 = t.multiply(t);
T t4 = t2.multiply(t2);
T t5 = t4.multiply(t);
for (int i = 0; i < getDimension(); ++i) {
yDot[i] = t5.multiply(3).subtract(y[i]);
}
return yDot;
}
@Override
public T[] computeTheoreticalState(T t) {
final T[] y = MathArrays.buildArray(getField(), getDimension());
for (int i = 0; i < getDimension(); ++i) {
y[i] = t.multiply(3).subtract(15).multiply(t).add(60).multiply(t).subtract(180).multiply(t).add(360).multiply(t).subtract(360);
}
return y;
}
}

View File

@ -0,0 +1,209 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.ode;
import java.lang.reflect.Array;
import org.apache.commons.math3.Field;
import org.apache.commons.math3.RealFieldElement;
import org.apache.commons.math3.ode.events.FieldEventHandler;
import org.apache.commons.math3.util.MathArrays;
/**
* This class is used as the base class of the problems that are
* integrated during the junit tests for the ODE integrators.
* @param <T> the type of the field elements
*/
public abstract class TestFieldProblemAbstract<T extends RealFieldElement<T>>
implements FieldFirstOrderDifferentialEquations<T> {
/** Field to which elements belong. */
private Field<T> field;
/** Dimension of the problem. */
private int n;
/** Number of functions calls. */
private int calls;
/** Initial time */
private T t0;
/** Initial state */
private T[] y0;
/** Final time */
private T t1;
/** Error scale */
private T[] errorScale;
/**
* Simple constructor.
* @param field field to which elements belong
*/
protected TestFieldProblemAbstract(Field<T> field) {
this.field = field;
n = 0;
calls = 0;
t0 = field.getZero();
y0 = null;
t1 = field.getZero();
errorScale = null;
}
/**
* Set the initial conditions
* @param t0 initial time
* @param y0 initial state vector
*/
protected void setInitialConditions(T t0, T[] y0) {
calls = 0;
n = y0.length;
this.t0 = t0;
this.y0 = y0.clone();
}
/**
* Set the final conditions.
* @param t1 final time
*/
protected void setFinalConditions(T t1) {
this.t1 = t1;
}
/**
* Set the error scale
* @param errorScale error scale
*/
protected void setErrorScale(T[] errorScale) {
this.errorScale = errorScale.clone();
}
/** get the filed to which elements belong.
* @return field to which elements belong
*/
public Field<T> getField() {
return field;
}
/** Get the problem dimension.
* @return problem dimension
*/
public int getDimension() {
return n;
}
/**
* Get the initial time.
* @return initial time
*/
public T getInitialTime() {
return t0;
}
/**
* Get the initial state vector.
* @return initial state vector
*/
public T[] getInitialState() {
return y0;
}
/**
* Get the final time.
* @return final time
*/
public T getFinalTime() {
return t1;
}
/**
* Get the error scale.
* @return error scale
*/
public T[] getErrorScale() {
return errorScale;
}
/**
* Get the events handlers.
* @return events handlers */
public FieldEventHandler<T>[] getEventsHandlers() {
@SuppressWarnings("unchecked")
final FieldEventHandler<T>[] empty =
(FieldEventHandler<T>[]) Array.newInstance(FieldEventHandler.class, 0);
return empty;
}
/**
* Get the theoretical events times.
* @return theoretical events times
*/
public T[] getTheoreticalEventsTimes() {
return MathArrays.buildArray(field, 0);
}
/**
* Get the number of calls.
* @return nuber of calls
*/
public int getCalls() {
return calls;
}
/** {@inheritDoc} */
public void init(T t0, T[] y0, T t) {
}
/** {@inheritDoc} */
public T[] computeDerivatives(T t, T[] y) {
++calls;
return doComputeDerivatives(t, y);
}
abstract public T[] doComputeDerivatives(T t, T[] y);
/**
* Compute the theoretical state at the specified time.
* @param t time at which the state is required
* @return state vector at time t
*/
abstract public T[] computeTheoreticalState(T t);
/** Convert a double.
* @param d double to convert
* @return converted double
*/
protected T convert(double d) {
return field.getZero().add(d);
}
/** Convert a one dimension array.
* @param elements array elements
* @return converted array
*/
protected T[] convert(double ... elements) {
T[] array = MathArrays.buildArray(field, elements.length);
for (int i = 0; i < elements.length; ++i) {
array[i] = convert(elements[i]);
}
return array;
}
}

View File

@ -0,0 +1,154 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.ode;
import org.apache.commons.math3.RealFieldElement;
import org.apache.commons.math3.exception.MaxCountExceededException;
import org.apache.commons.math3.ode.sampling.FieldStepHandler;
import org.apache.commons.math3.ode.sampling.FieldStepInterpolator;
import org.apache.commons.math3.util.MathUtils;
/**
* This class is used to handle steps for the test problems
* integrated during the junit tests for the ODE integrators.
* @param <T> the type of the field elements
*/
public class TestFieldProblemHandler<T extends RealFieldElement<T>>
implements FieldStepHandler<T> {
/** Associated problem. */
private TestFieldProblemAbstract<T> problem;
/** Maximal errors encountered during the integration. */
private T maxValueError;
private T maxTimeError;
/** Error at the end of the integration. */
private T lastError;
/** Time at the end of integration. */
private T lastTime;
/** ODE solver used. */
private FieldFirstOrderIntegrator<T> integrator;
/** Expected start for step. */
private T expectedStepStart;
/**
* Simple constructor.
* @param problem problem for which steps should be handled
* @param integrator ODE solver used
*/
public TestFieldProblemHandler(TestFieldProblemAbstract<T> problem, FieldFirstOrderIntegrator<T> integrator) {
this.problem = problem;
this.integrator = integrator;
maxValueError = problem.getField().getZero();
maxTimeError = problem.getField().getZero();
lastError = problem.getField().getZero();
expectedStepStart = null;
}
public void init(FieldODEStateAndDerivative<T> state0, T t) {
maxValueError = problem.getField().getZero();
maxTimeError = problem.getField().getZero();
lastError = problem.getField().getZero();
expectedStepStart = null;
}
public void handleStep(FieldStepInterpolator<T> interpolator, boolean isLast) throws MaxCountExceededException {
T start = integrator.getCurrentStepStart().getTime();
if (start.subtract(problem.getInitialTime()).divide(integrator.getCurrentSignedStepsize()).abs().getReal() > 0.001) {
// multistep integrators do not handle the first steps themselves
// so we have to make sure the integrator we look at has really started its work
if (expectedStepStart != null) {
// the step should either start at the end of the integrator step
// or at an event if the step is split into several substeps
T stepError = MathUtils.max(maxTimeError, start.subtract(expectedStepStart).abs());
for (T eventTime : problem.getTheoreticalEventsTimes()) {
stepError = MathUtils.min(stepError, start.subtract(eventTime).abs());
}
maxTimeError = MathUtils.max(maxTimeError, stepError);
}
expectedStepStart = start.add(integrator.getCurrentSignedStepsize());
}
T pT = interpolator.getPreviousState().getTime();
T cT = interpolator.getCurrentState().getTime();
T[] errorScale = problem.getErrorScale();
// store the error at the last step
if (isLast) {
T[] interpolatedY = interpolator.getInterpolatedState(cT).getState();
T[] theoreticalY = problem.computeTheoreticalState(cT);
for (int i = 0; i < interpolatedY.length; ++i) {
T error = interpolatedY[i].subtract(theoreticalY[i]).abs();
lastError = MathUtils.max(error, lastError);
}
lastTime = cT;
}
// walk through the step
for (int k = 0; k <= 20; ++k) {
T time = pT.add(cT.subtract(pT).multiply(k).divide(20));
T[] interpolatedY = interpolator.getInterpolatedState(time).getState();
T[] theoreticalY = problem.computeTheoreticalState(time);
// update the errors
for (int i = 0; i < interpolatedY.length; ++i) {
T error = errorScale[i].multiply(interpolatedY[i].subtract(theoreticalY[i]).abs());
maxValueError = MathUtils.max(error, maxValueError);
}
}
}
/**
* Get the maximal value error encountered during integration.
* @return maximal value error
*/
public T getMaximalValueError() {
return maxValueError;
}
/**
* Get the maximal time error encountered during integration.
* @return maximal time error
*/
public T getMaximalTimeError() {
return maxTimeError;
}
/**
* Get the error at the end of the integration.
* @return error at the end of the integration
*/
public T getLastError() {
return lastError;
}
/**
* Get the time at the end of the integration.
* @return time at the end of the integration.
*/
public T getLastTime() {
return lastTime;
}
}