diff --git a/src/changes/changes.xml b/src/changes/changes.xml
index 211b5d4d3..4f23f92f1 100644
--- a/src/changes/changes.xml
+++ b/src/changes/changes.xml
@@ -52,6 +52,9 @@ If the output is not quite correct, check for invisible trailing spaces!
+
+ New "Quaternion" class (package "o.a.c.m.complex").
+
Added method to test for floating-point numbers equality with a
relative tolerance (class "o.a.c.m.util.Precision").
diff --git a/src/main/java/org/apache/commons/math3/complex/Quaternion.java b/src/main/java/org/apache/commons/math3/complex/Quaternion.java
new file mode 100644
index 000000000..096818c6d
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/complex/Quaternion.java
@@ -0,0 +1,465 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.complex;
+
+import java.io.Serializable;
+import org.apache.commons.math3.util.FastMath;
+import org.apache.commons.math3.util.MathUtils;
+import org.apache.commons.math3.util.Precision;
+import org.apache.commons.math3.exception.DimensionMismatchException;
+import org.apache.commons.math3.exception.ZeroException;
+import org.apache.commons.math3.exception.util.LocalizedFormats;
+
+/**
+ * This class implements
+ * quaternions (Hamilton's hypercomplex numbers).
+ *
+ * Instance of this class are guaranteed to be immutable.
+ *
+ * @since 3.1
+ * @version $Id$
+ */
+public final class Quaternion implements Serializable {
+ /** Identity quaternion. */
+ public static final Quaternion IDENTITY = new Quaternion(1, 0, 0, 0);
+ /** Zero quaternion. */
+ public static final Quaternion ZERO = new Quaternion(0, 0, 0, 0);
+ /** i */
+ public static final Quaternion I = new Quaternion(0, 1, 0, 0);
+ /** j */
+ public static final Quaternion J = new Quaternion(0, 0, 1, 0);
+ /** k */
+ public static final Quaternion K = new Quaternion(0, 0, 0, 1);
+
+ /** Serializable version identifier. */
+ private static final long serialVersionUID = 20092012L;
+
+ /** First component (scalar part). */
+ private final double q0;
+ /** Second component (first vector part). */
+ private final double q1;
+ /** Third component (second vector part). */
+ private final double q2;
+ /** Fourth component (third vector part). */
+ private final double q3;
+
+ /**
+ * Builds a quaternion from its components.
+ *
+ * @param a Scalar component.
+ * @param b First vector component.
+ * @param c Second vector component.
+ * @param d Third vector component.
+ */
+ public Quaternion(final double a,
+ final double b,
+ final double c,
+ final double d) {
+ this.q0 = a;
+ this.q1 = b;
+ this.q2 = c;
+ this.q3 = d;
+ }
+
+ /**
+ * Builds a quaternion from scalar and vector parts.
+ *
+ * @param scalar Scalar part of the quaternion.
+ * @param v Components of the vector part of the quaternion.
+ *
+ * @throws DimensionMismatchException if the array length is not 3.
+ */
+ public Quaternion(final double scalar,
+ final double[] v)
+ throws DimensionMismatchException {
+ if (v.length != 3) {
+ throw new DimensionMismatchException(v.length, 3);
+ }
+ this.q0 = 0;
+ this.q1 = v[0];
+ this.q2 = v[1];
+ this.q3 = v[2];
+ }
+
+ /**
+ * Builds a pure quaternion from a vector (assuming that the scalar
+ * part is zero.
+ *
+ * @param v Components of the vector part of the pure quaternion.
+ */
+ public Quaternion(final double[] v) {
+ this(0, v);
+ }
+
+ /**
+ * Returns the conjugate quaternion of the instance.
+ *
+ * @return the conjugate quaternion
+ */
+ public Quaternion getConjugate() {
+ return new Quaternion(q0, -q1, -q2, -q3);
+ }
+
+ /**
+ * Returns the Hamilton product of two quaternions.
+ *
+ * @param q1 First quaternion.
+ * @param q2 Second quaternion.
+ * @return the product {@code q1} and {@code q2}, in that order.
+ */
+ public static Quaternion product(final Quaternion q1, final Quaternion q2) {
+ // Components of the first quaternion.
+ final double q1a = q1.getQ0();
+ final double q1b = q1.getQ1();
+ final double q1c = q1.getQ2();
+ final double q1d = q1.getQ3();
+
+ // Components of the second quaternion.
+ final double q2a = q2.getQ0();
+ final double q2b = q2.getQ1();
+ final double q2c = q2.getQ2();
+ final double q2d = q2.getQ3();
+
+ // Components of the product.
+ final double w = q1a * q2a - q1b * q2b - q1c * q2c - q1d * q2d;
+ final double x = q1a * q2b + q1b * q2a + q1c * q2d - q1d * q2c;
+ final double y = q1a * q2c - q1b * q2d + q1c * q2a + q1d * q2b;
+ final double z = q1a * q2d + q1b * q2c - q1c * q2b + q1d * q2a;
+
+ return new Quaternion(w, x, y, z);
+ }
+
+ /**
+ * Returns the Hamilton product of the instance by a quaternion.
+ *
+ * @param q Quaternion.
+ * @return the product of this instance with {@code q}, in that order.
+ */
+ public Quaternion multiply(final Quaternion q) {
+ return product(this, q);
+ }
+
+ /**
+ * Computes the sum of two quaternions.
+ *
+ * @param q1 Quaternion.
+ * @param q2 Quaternion.
+ * @return the sum of {@code q1} and {@code q2}.
+ */
+ public static Quaternion add(final Quaternion q1,
+ final Quaternion q2) {
+ return new Quaternion(q1.getQ0() + q2.getQ0(),
+ q1.getQ1() + q2.getQ1(),
+ q1.getQ2() + q2.getQ2(),
+ q1.getQ3() + q2.getQ3());
+ }
+
+ /**
+ * Computes the sum of the instance and another quaternion.
+ *
+ * @param q Quaternion.
+ * @return the sum of this instance and {@code q}
+ */
+ public Quaternion add(final Quaternion q) {
+ return add(this, q);
+ }
+
+ /**
+ * Subtracts two quaternions.
+ *
+ * @param q1 First Quaternion.
+ * @param q2 Second quaternion.
+ * @return the difference between {@code q1} and {@code q2}.
+ */
+ public static Quaternion subtract(final Quaternion q1,
+ final Quaternion q2) {
+ return new Quaternion(q1.getQ0() - q2.getQ0(),
+ q1.getQ1() - q2.getQ1(),
+ q1.getQ2() - q2.getQ2(),
+ q1.getQ3() - q2.getQ3());
+ }
+
+ /**
+ * Subtracts a quaternion from the instance.
+ *
+ * @param q Quaternion.
+ * @return the difference between this instance and {@code q}.
+ */
+ public Quaternion subtract(final Quaternion q) {
+ return subtract(this, q);
+ }
+
+ /**
+ * Computes the dot-product of two quaternions.
+ *
+ * @param q1 Quaternion.
+ * @param q2 Quaternion.
+ * @return the dot product of {@code q1} and {@code q2}.
+ */
+ public static double dotProduct(final Quaternion q1,
+ final Quaternion q2) {
+ return q1.getQ0() * q2.getQ0() +
+ q1.getQ1() * q2.getQ1() +
+ q1.getQ2() * q2.getQ2() +
+ q1.getQ3() * q2.getQ3();
+ }
+
+ /**
+ * Compute the dot-product of the instance by a quaternion.
+ *
+ * @param q Quaternion.
+ * @return the dot product of this instance and {@code q}.
+ */
+ public double dotProduct(final Quaternion q) {
+ return dotProduct(q);
+ }
+
+ /**
+ * Computes the norm of the quaternion.
+ *
+ * @return the norm.
+ */
+ public double getNorm() {
+ return FastMath.sqrt(q0 * q0 +
+ q1 * q1 +
+ q2 * q2 +
+ q3 * q3);
+ }
+
+ /**
+ * Computes the normalized quaternion (the versor of the instance).
+ * The norm of the quaternion must not be zero.
+ *
+ * @return a normalized quaternion.
+ * @throws ZeroException if the norm of the quaternion is zero.
+ */
+ public Quaternion normalize() {
+ final double norm = getNorm();
+
+ if (norm < Precision.SAFE_MIN) {
+ throw new ZeroException(LocalizedFormats.NORM, norm);
+ }
+
+ return new Quaternion(q0 / norm,
+ q1 / norm,
+ q2 / norm,
+ q3 / norm);
+ }
+
+ /**
+ * {@inheritDoc}
+ */
+ @Override
+ public boolean equals(Object other) {
+ if (this == other) {
+ return true;
+ }
+ if (other instanceof Quaternion) {
+ final Quaternion q = (Quaternion) other;
+ return q0 == q.getQ0() &&
+ q1 == q.getQ1() &&
+ q2 == q.getQ2() &&
+ q3 == q.getQ3();
+ }
+
+ return false;
+ }
+
+ /**
+ * {@inheritDoc}
+ */
+ @Override
+ public int hashCode() {
+ // "Effective Java" (second edition, p. 47).
+ int result = 17;
+ for (double comp : new double[] { q0, q1, q2, q3 }) {
+ final int c = MathUtils.hash(comp);
+ result = 31 * result + c;
+ }
+ return result;
+ }
+
+ /**
+ * Checks whether this instance is equal to another quaternion
+ * within a given tolerance.
+ *
+ * @param q Quaternion with which to compare the current quaternion.
+ * @param eps Tolerance.
+ * @return {@code true} if the each of the components are equal
+ * within the allowed absolute error.
+ */
+ public boolean equals(final Quaternion q,
+ final double eps) {
+ return Precision.equals(q0, q.getQ0(), eps) &&
+ Precision.equals(q1, q.getQ1(), eps) &&
+ Precision.equals(q2, q.getQ2(), eps) &&
+ Precision.equals(q3, q.getQ3(), eps);
+ }
+
+ /**
+ * Checks whether the instance is a unit quaternion within a given
+ * tolerance.
+ *
+ * @param eps Tolerance (absolute error).
+ * @return {@code true} if the norm is 1 within the given tolerance,
+ * {@code false} otherwise
+ */
+ public boolean isUnitQuaternion(double eps) {
+ return Precision.equals(getNorm(), 1d, eps);
+ }
+
+ /**
+ * Checks whether the instance is a pure quaternion within a given
+ * tolerance.
+ *
+ * @param eps Tolerance (absolute error).
+ * @return {@code true} if the scalar part of the quaternion is zero.
+ */
+ public boolean isPureQuaternion(double eps) {
+ return FastMath.abs(getQ0()) <= eps;
+ }
+
+ /**
+ * Returns the polar form of the quaternion.
+ *
+ * @return the unit quaternion with positive scalar part.
+ */
+ public Quaternion getPositivePolarForm() {
+ if (getQ0() < 0) {
+ final Quaternion unitQ = normalize();
+ // The quaternion of rotation (normalized quaternion) q and -q
+ // are equivalent (i.e. represent the same rotation).
+ return new Quaternion(-unitQ.getQ0(),
+ -unitQ.getQ1(),
+ -unitQ.getQ2(),
+ -unitQ.getQ3());
+ } else {
+ return this.normalize();
+ }
+ }
+
+ /**
+ * Returns the inverse of this instance.
+ * The norm of the quaternion must not be zero.
+ *
+ * @return the inverse.
+ * @throws ZeroException if the norm (squared) of the quaternion is zero.
+ */
+ public Quaternion getInverse() {
+ final double squareNorm = q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3;
+ if (squareNorm < Precision.SAFE_MIN) {
+ throw new ZeroException(LocalizedFormats.NORM, squareNorm);
+ }
+
+ return new Quaternion(q0 / squareNorm,
+ -q1 / squareNorm,
+ -q2 / squareNorm,
+ -q3 / squareNorm);
+ }
+
+ /**
+ * Gets the first component of the quaternion (scalar part).
+ *
+ * @return the scalar part.
+ */
+ public double getQ0() {
+ return q0;
+ }
+
+ /**
+ * Gets the second component of the quaternion (first component
+ * of the vector part).
+ *
+ * @return the first component of the vector part.
+ */
+ public double getQ1() {
+ return q1;
+ }
+
+ /**
+ * Gets the third component of the quaternion (second component
+ * of the vector part).
+ *
+ * @return the second component of the vector part.
+ */
+ public double getQ2() {
+ return q2;
+ }
+
+ /**
+ * Gets the fourth component of the quaternion (third component
+ * of the vector part).
+ *
+ * @return the third component of the vector part.
+ */
+ public double getQ3() {
+ return q3;
+ }
+
+ /**
+ * Gets the scalar part of the quaternion.
+ *
+ * @return the scalar part.
+ * @see #getQ0()
+ */
+ public double getScalarPart() {
+ return getQ0();
+ }
+
+ /**
+ * Gets the three components of the vector part of the quaternion.
+ *
+ * @return the vector part.
+ * @see #getQ1()
+ * @see #getQ2()
+ * @see #getQ3()
+ */
+ public double[] getVectorPart() {
+ return new double[] { getQ1(), getQ2(), getQ3() };
+ }
+
+ /**
+ * Multiplies the instance by a scalar.
+ *
+ * @param alpha Scalar factor.
+ * @return a scaled quaternion.
+ */
+ public Quaternion multiply(final double alpha) {
+ return new Quaternion(alpha * q0,
+ alpha * q1,
+ alpha * q2,
+ alpha * q3);
+ }
+
+ /**
+ * {@inheritDoc}
+ */
+ @Override
+ public String toString() {
+ final String sp = " ";
+ final StringBuilder s = new StringBuilder();
+ s.append("[")
+ .append(q0).append(sp)
+ .append(q1).append(sp)
+ .append(q2).append(sp)
+ .append(q3)
+ .append("]");
+
+ return s.toString();
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/exception/util/LocalizedFormats.java b/src/main/java/org/apache/commons/math3/exception/util/LocalizedFormats.java
index 27c21fbc3..93c57e616 100644
--- a/src/main/java/org/apache/commons/math3/exception/util/LocalizedFormats.java
+++ b/src/main/java/org/apache/commons/math3/exception/util/LocalizedFormats.java
@@ -182,6 +182,7 @@ public enum LocalizedFormats implements Localizable {
NON_REAL_FINITE_ORDINATE("all ordinatae must be finite real numbers, but {0}-th is {1}"),
NON_REAL_FINITE_WEIGHT("all weights must be finite real numbers, but {0}-th is {1}"),
NON_SQUARE_MATRIX("non square ({0}x{1}) matrix"),
+ NORM("Norm ({0})"), /* keep */
NORMALIZE_INFINITE("Cannot normalize to an infinite value"),
NORMALIZE_NAN("Cannot normalize to NaN"),
NOT_ADDITION_COMPATIBLE_MATRICES("{0}x{1} and {2}x{3} matrices are not addition compatible"),
diff --git a/src/main/resources/assets/org/apache/commons/math3/exception/util/LocalizedFormats_fr.properties b/src/main/resources/assets/org/apache/commons/math3/exception/util/LocalizedFormats_fr.properties
index 7a18b8fde..0cb7bba3c 100644
--- a/src/main/resources/assets/org/apache/commons/math3/exception/util/LocalizedFormats_fr.properties
+++ b/src/main/resources/assets/org/apache/commons/math3/exception/util/LocalizedFormats_fr.properties
@@ -153,6 +153,7 @@ NON_REAL_FINITE_ABSCISSA = toutes les abscisses doivent \u00eatre des nombres r\
NON_REAL_FINITE_ORDINATE = toutes les ordonn\u00e9es doivent \u00eatre des nombres r\u00e9els finis, mais l''ordonn\u00e9e {0} vaut {1}
NON_REAL_FINITE_WEIGHT = tous les poids doivent \u00eatre des nombres r\u00e9els finis, mais le poids {0} vaut {1}
NON_SQUARE_MATRIX = matrice non carr\u00e9e ({0}x{1})
+NORM = norme ({0})
NORMALIZE_INFINITE = impossible de normaliser vers une valeur infinie
NORMALIZE_NAN = impossible de normaliser vers NaN
NOT_ADDITION_COMPATIBLE_MATRICES = les dimensions {0}x{1} et {2}x{3} sont incompatibles pour l''addition matricielle
diff --git a/src/test/java/org/apache/commons/math3/complex/QuaternionTest.java b/src/test/java/org/apache/commons/math3/complex/QuaternionTest.java
new file mode 100644
index 000000000..78bd99db2
--- /dev/null
+++ b/src/test/java/org/apache/commons/math3/complex/QuaternionTest.java
@@ -0,0 +1,405 @@
+package org.apache.commons.math3.complex;
+
+import java.util.Random;
+import org.apache.commons.math3.complex.Quaternion;
+import org.apache.commons.math3.exception.DimensionMismatchException;
+import org.apache.commons.math3.exception.ZeroException;
+import org.apache.commons.math3.geometry.euclidean.threed.Rotation;
+import org.apache.commons.math3.geometry.euclidean.threed.Vector3D;
+import org.apache.commons.math3.util.Precision;
+import org.apache.commons.math3.util.FastMath;
+import org.junit.Test;
+import org.junit.Assert;
+
+public class QuaternionTest {
+ /** Epsilon for double comparison. */
+ private static final double EPS = Math.ulp(1d);
+ /** Epsilon for double comparison. */
+ private static final double COMPARISON_EPS = 1e-14;
+
+ @Test
+ public final void testAccessors1() {
+ final double q0 = 2;
+ final double q1 = 5.4;
+ final double q2 = 17;
+ final double q3 = 0.0005;
+ final Quaternion q = new Quaternion(q0, q1, q2, q3);
+
+ Assert.assertEquals(q0, q.getQ0(), 0);
+ Assert.assertEquals(q1, q.getQ1(), 0);
+ Assert.assertEquals(q2, q.getQ2(), 0);
+ Assert.assertEquals(q3, q.getQ3(), 0);
+ }
+
+ @Test
+ public final void testAccessors2() {
+ final double q0 = 2;
+ final double q1 = 5.4;
+ final double q2 = 17;
+ final double q3 = 0.0005;
+ final Quaternion q = new Quaternion(q0, q1, q2, q3);
+
+ final double sP = q.getScalarPart();
+ final double[] vP = q.getVectorPart();
+
+ Assert.assertEquals(q0, sP, 0);
+ Assert.assertEquals(q1, vP[0], 0);
+ Assert.assertEquals(q2, vP[1], 0);
+ Assert.assertEquals(q3, vP[2], 0);
+ }
+
+ @Test(expected=DimensionMismatchException.class)
+ public void testWrongDimension() {
+ new Quaternion(new double[] { 1, 2 });
+ }
+
+ @Test
+ public final void testConjugate() {
+ final double q0 = 2;
+ final double q1 = 5.4;
+ final double q2 = 17;
+ final double q3 = 0.0005;
+ final Quaternion q = new Quaternion(q0, q1, q2, q3);
+
+ final Quaternion qConjugate = q.getConjugate();
+
+ Assert.assertEquals(q0, qConjugate.getQ0(), 0);
+ Assert.assertEquals(-q1, qConjugate.getQ1(), 0);
+ Assert.assertEquals(-q2, qConjugate.getQ2(), 0);
+ Assert.assertEquals(-q3, qConjugate.getQ3(), 0);
+ }
+
+ @Test
+ public final void testProductQuaternionQuaternion() {
+
+ // Case : analytic test case
+
+ final Quaternion qA = new Quaternion(1, 0.5, -3, 4);
+ final Quaternion qB = new Quaternion(6, 2, 1, -9);
+ final Quaternion qResult = Quaternion.product(qA, qB);
+
+ Assert.assertEquals(44, qResult.getQ0(), EPS);
+ Assert.assertEquals(28, qResult.getQ1(), EPS);
+ Assert.assertEquals(-4.5, qResult.getQ2(), EPS);
+ Assert.assertEquals(21.5, qResult.getQ3(), EPS);
+
+ // comparison with the result given by the formula :
+ // qResult = (scalarA * scalarB - vectorA . vectorB) + (scalarA * vectorB + scalarB * vectorA + vectorA ^
+ // vectorB)
+
+ final Vector3D vectorA = new Vector3D(qA.getVectorPart());
+ final Vector3D vectorB = new Vector3D(qB.getVectorPart());
+ final Vector3D vectorResult = new Vector3D(qResult.getVectorPart());
+
+ final double scalarPartRef = qA.getScalarPart() * qB.getScalarPart() - Vector3D.dotProduct(vectorA, vectorB);
+
+ Assert.assertEquals(scalarPartRef, qResult.getScalarPart(), EPS);
+
+ final Vector3D vectorPartRef = ((vectorA.scalarMultiply(qB.getScalarPart())).add(vectorB.scalarMultiply(qA
+ .getScalarPart()))).add(Vector3D.crossProduct(vectorA, vectorB));
+ final double norm = (vectorResult.subtract(vectorPartRef)).getNorm();
+
+ Assert.assertEquals(0, norm, EPS);
+
+ // Conjugate of the product of two quaternions and product of their conjugates :
+ // Conj(qA * qB) = Conj(qB) * Conj(qA)
+
+ final Quaternion conjugateOfProduct = Quaternion.product(qB.getConjugate(), qA.getConjugate());
+ final Quaternion productOfConjugate = (Quaternion.product(qA, qB)).getConjugate();
+
+ Assert.assertEquals(conjugateOfProduct.getQ0(), productOfConjugate.getQ0(), EPS);
+ Assert.assertEquals(conjugateOfProduct.getQ1(), productOfConjugate.getQ1(), EPS);
+ Assert.assertEquals(conjugateOfProduct.getQ2(), productOfConjugate.getQ2(), EPS);
+ Assert.assertEquals(conjugateOfProduct.getQ3(), productOfConjugate.getQ3(), EPS);
+ }
+
+ @Test
+ public final void testProductQuaternionVector() {
+
+ // Case : Product between a vector and a quaternion : QxV
+
+ final Quaternion quaternion = new Quaternion(4, 7, -1, 2);
+ final double[] vector = {2.0, 1.0, 3.0};
+ final Quaternion qResultQxV = Quaternion.product(quaternion, new Quaternion(vector));
+
+ Assert.assertEquals(-19, qResultQxV.getQ0(), EPS);
+ Assert.assertEquals(3, qResultQxV.getQ1(), EPS);
+ Assert.assertEquals(-13, qResultQxV.getQ2(), EPS);
+ Assert.assertEquals(21, qResultQxV.getQ3(), EPS);
+
+ // comparison with the result given by the formula :
+ // qResult = (- vectorQ . vector) + (scalarQ * vector + vectorQ ^ vector)
+
+ final double[] vectorQ = quaternion.getVectorPart();
+ final double[] vectorResultQxV = qResultQxV.getVectorPart();
+
+ final double scalarPartRefQxV = -Vector3D.dotProduct(new Vector3D(vectorQ), new Vector3D(vector));
+ Assert.assertEquals(scalarPartRefQxV, qResultQxV.getScalarPart(), EPS);
+
+ final Vector3D vectorPartRefQxV = (new Vector3D(vector).scalarMultiply(quaternion.getScalarPart())).add(Vector3D
+ .crossProduct(new Vector3D(vectorQ), new Vector3D(vector)));
+ final double normQxV = (new Vector3D(vectorResultQxV).subtract(vectorPartRefQxV)).getNorm();
+ Assert.assertEquals(0, normQxV, EPS);
+
+ // Case : Product between a vector and a quaternion : VxQ
+
+ final Quaternion qResultVxQ = Quaternion.product(new Quaternion(vector), quaternion);
+
+ Assert.assertEquals(-19, qResultVxQ.getQ0(), EPS);
+ Assert.assertEquals(13, qResultVxQ.getQ1(), EPS);
+ Assert.assertEquals(21, qResultVxQ.getQ2(), EPS);
+ Assert.assertEquals(3, qResultVxQ.getQ3(), EPS);
+
+ final double[] vectorResultVxQ = qResultVxQ.getVectorPart();
+
+ // comparison with the result given by the formula :
+ // qResult = (- vector . vectorQ) + (scalarQ * vector + vector ^ vectorQ)
+
+ final double scalarPartRefVxQ = -Vector3D.dotProduct(new Vector3D(vectorQ), new Vector3D(vector));
+ Assert.assertEquals(scalarPartRefVxQ, qResultVxQ.getScalarPart(), EPS);
+
+ final Vector3D vectorPartRefVxQ = (new Vector3D(vector).scalarMultiply(quaternion.getScalarPart())).add(Vector3D
+ .crossProduct(new Vector3D(vector), new Vector3D(vectorQ)));
+ final double normVxQ = (new Vector3D(vectorResultVxQ).subtract(vectorPartRefVxQ)).getNorm();
+ Assert.assertEquals(0, normVxQ, EPS);
+ }
+
+ @Test
+ public final void testDotProductQuaternionQuaternion() {
+ // expected output
+ final double expected = -6.;
+ // inputs
+ final Quaternion q1 = new Quaternion(1, 2, 2, 1);
+ final Quaternion q2 = new Quaternion(3, -2, -1, -3);
+
+ final double actual = Quaternion.dotProduct(q1, q2);
+
+ Assert.assertEquals(expected, actual, EPS);
+ }
+
+ @Test
+ public final void testScalarMultiplyDouble() {
+ // expected outputs
+ final double w = 1.6;
+ final double x = -4.8;
+ final double y = 11.20;
+ final double z = 2.56;
+ // inputs
+ final Quaternion q1 = new Quaternion(0.5, -1.5, 3.5, 0.8);
+ final double a = 3.2;
+
+ final Quaternion q = q1.multiply(a);
+
+ Assert.assertEquals(w, q.getQ0(), COMPARISON_EPS);
+ Assert.assertEquals(x, q.getQ1(), COMPARISON_EPS);
+ Assert.assertEquals(y, q.getQ2(), COMPARISON_EPS);
+ Assert.assertEquals(z, q.getQ3(), COMPARISON_EPS);
+ }
+
+ @Test
+ public final void testAddQuaternionQuaternion() {
+ // expected outputs
+ final double w = 4;
+ final double x = -1;
+ final double y = 2;
+ final double z = -4;
+ // inputs
+ final Quaternion q1 = new Quaternion(1., 2., -2., -1.);
+ final Quaternion q2 = new Quaternion(3., -3., 4., -3.);
+
+ final Quaternion q = Quaternion.add(q1, q2);
+
+ Assert.assertEquals(w, q.getQ0(), EPS);
+ Assert.assertEquals(x, q.getQ1(), EPS);
+ Assert.assertEquals(y, q.getQ2(), EPS);
+ Assert.assertEquals(z, q.getQ3(), EPS);
+ }
+
+ @Test
+ public final void testSubtractQuaternionQuaternion() {
+ // expected outputs
+ final double w = -2.;
+ final double x = 5.;
+ final double y = -6.;
+ final double z = 2.;
+ // inputs
+ final Quaternion q1 = new Quaternion(1., 2., -2., -1.);
+ final Quaternion q2 = new Quaternion(3., -3., 4., -3.);
+
+ final Quaternion q = Quaternion.subtract(q1, q2);
+
+ Assert.assertEquals(w, q.getQ0(), EPS);
+ Assert.assertEquals(x, q.getQ1(), EPS);
+ Assert.assertEquals(y, q.getQ2(), EPS);
+ Assert.assertEquals(z, q.getQ3(), EPS);
+ }
+
+ @Test
+ public final void testNorm() {
+
+ final double q0 = 2;
+ final double q1 = 1;
+ final double q2 = -4;
+ final double q3 = 3;
+ final Quaternion q = new Quaternion(q0, q1, q2, q3);
+
+ final double norm = q.getNorm();
+
+ Assert.assertEquals(Math.sqrt(30), norm, 0);
+
+ final double normSquareRef = Quaternion.product(q, q.getConjugate()).getScalarPart();
+ Assert.assertEquals(Math.sqrt(normSquareRef), norm, 0);
+ }
+
+ @Test
+ public final void testNormalize() {
+
+ final Quaternion q = new Quaternion(2, 1, -4, -2);
+
+ final Quaternion versor = q.normalize();
+
+ Assert.assertEquals(2.0 / 5.0, versor.getQ0(), 0);
+ Assert.assertEquals(1.0 / 5.0, versor.getQ1(), 0);
+ Assert.assertEquals(-4.0 / 5.0, versor.getQ2(), 0);
+ Assert.assertEquals(-2.0 / 5.0, versor.getQ3(), 0);
+
+ Assert.assertEquals(1, versor.getNorm(), 0);
+ }
+
+ @Test(expected=ZeroException.class)
+ public final void testNormalizeFail() {
+ final Quaternion zeroQ = new Quaternion(0, 0, 0, 0);
+ zeroQ.normalize();
+ }
+
+ @Test
+ public final void testObjectEquals() {
+ final double one = 1;
+ final Quaternion q1 = new Quaternion(one, one, one, one);
+ Assert.assertTrue(q1.equals(q1));
+
+ final Quaternion q2 = new Quaternion(one, one, one, one);
+ Assert.assertTrue(q2.equals(q1));
+
+ final Quaternion q3 = new Quaternion(one, FastMath.nextUp(one), one, one);
+ Assert.assertFalse(q3.equals(q1));
+ }
+
+ @Test
+ public final void testQuaternionEquals() {
+ final double inc = 1e-5;
+ final Quaternion q1 = new Quaternion(2, 1, -4, -2);
+ final Quaternion q2 = new Quaternion(q1.getQ0() + inc, q1.getQ1(), q1.getQ2(), q1.getQ3());
+ final Quaternion q3 = new Quaternion(q1.getQ0(), q1.getQ1() + inc, q1.getQ2(), q1.getQ3());
+ final Quaternion q4 = new Quaternion(q1.getQ0(), q1.getQ1(), q1.getQ2() + inc, q1.getQ3());
+ final Quaternion q5 = new Quaternion(q1.getQ0(), q1.getQ1(), q1.getQ2(), q1.getQ3() + inc);
+
+ Assert.assertFalse(q1.equals(q2, 0.9 * inc));
+ Assert.assertFalse(q1.equals(q3, 0.9 * inc));
+ Assert.assertFalse(q1.equals(q4, 0.9 * inc));
+ Assert.assertFalse(q1.equals(q5, 0.9 * inc));
+
+ Assert.assertTrue(q1.equals(q2, 1.1 * inc));
+ Assert.assertTrue(q1.equals(q3, 1.1 * inc));
+ Assert.assertTrue(q1.equals(q4, 1.1 * inc));
+ Assert.assertTrue(q1.equals(q5, 1.1 * inc));
+ }
+
+ @Test
+ public final void testQuaternionEquals2() {
+ final Quaternion q1 = new Quaternion(1, 4, 2, 3);
+ final double gap = 1e-5;
+ final Quaternion q2 = new Quaternion(1 + gap, 4 + gap, 2 + gap, 3 + gap);
+
+ Assert.assertTrue(q1.equals(q2, 10 * gap));
+ Assert.assertFalse(q1.equals(q2, gap));
+ Assert.assertFalse(q1.equals(q2, gap / 10));
+ }
+
+ @Test
+ public final void testIsUnitQuaternion() {
+ final Random r = new Random(48);
+ final int numberOfTrials = 1000;
+ for (int i = 0; i < numberOfTrials; i++) {
+ final Quaternion q1 = new Quaternion(r.nextDouble(), r.nextDouble(), r.nextDouble(), r.nextDouble());
+ final Quaternion q2 = q1.normalize();
+ Assert.assertTrue(q2.isUnitQuaternion(COMPARISON_EPS));
+ }
+
+ final Quaternion q = new Quaternion(1, 1, 1, 1);
+ Assert.assertFalse(q.isUnitQuaternion(COMPARISON_EPS));
+ }
+
+ @Test
+ public final void testIsPureQuaternion() {
+ final Quaternion q1 = new Quaternion(0, 5, 4, 8);
+ Assert.assertTrue(q1.isPureQuaternion(EPS));
+
+ final Quaternion q2 = new Quaternion(0 - EPS, 5, 4, 8);
+ Assert.assertTrue(q2.isPureQuaternion(EPS));
+
+ final Quaternion q3 = new Quaternion(0 - 1.1 * EPS, 5, 4, 8);
+ Assert.assertFalse(q3.isPureQuaternion(EPS));
+
+ final Random r = new Random(48);
+ final double[] v = {r.nextDouble(), r.nextDouble(), r.nextDouble()};
+ final Quaternion q4 = new Quaternion(v);
+ Assert.assertTrue(q4.isPureQuaternion(0));
+
+ final Quaternion q5 = new Quaternion(0, v);
+ Assert.assertTrue(q5.isPureQuaternion(0));
+ }
+
+ @Test
+ public final void testPolarForm() {
+ final Random r = new Random(48);
+ final int numberOfTrials = 1000;
+ for (int i = 0; i < numberOfTrials; i++) {
+ final Quaternion q = new Quaternion(2 * (r.nextDouble() - 0.5), 2 * (r.nextDouble() - 0.5),
+ 2 * (r.nextDouble() - 0.5), 2 * (r.nextDouble() - 0.5));
+ final Quaternion qP = q.getPositivePolarForm();
+
+ Assert.assertTrue(qP.isUnitQuaternion(COMPARISON_EPS));
+ Assert.assertTrue(qP.getQ0() >= 0);
+
+ final Rotation rot = new Rotation(q.getQ0(), q.getQ1(), q.getQ2(), q.getQ3(), true);
+ final Rotation rotP = new Rotation(qP.getQ0(), qP.getQ1(), qP.getQ2(), qP.getQ3(), true);
+
+ Assert.assertEquals(rot.getAngle(), rotP.getAngle(), COMPARISON_EPS);
+ Assert.assertEquals(rot.getAxis().getX(), rot.getAxis().getX(), COMPARISON_EPS);
+ Assert.assertEquals(rot.getAxis().getY(), rot.getAxis().getY(), COMPARISON_EPS);
+ Assert.assertEquals(rot.getAxis().getZ(), rot.getAxis().getZ(), COMPARISON_EPS);
+ }
+ }
+
+ @Test
+ public final void testGetInverse() {
+ final Quaternion q = new Quaternion(1.5, 4, 2, -2.5);
+
+ final Quaternion inverseQ = q.getInverse();
+ Assert.assertEquals(1.5 / 28.5, inverseQ.getQ0(), 0);
+ Assert.assertEquals(-4.0 / 28.5, inverseQ.getQ1(), 0);
+ Assert.assertEquals(-2.0 / 28.5, inverseQ.getQ2(), 0);
+ Assert.assertEquals(2.5 / 28.5, inverseQ.getQ3(), 0);
+
+ final Quaternion product = Quaternion.product(inverseQ, q);
+ Assert.assertEquals(1, product.getQ0(), EPS);
+ Assert.assertEquals(0, product.getQ1(), EPS);
+ Assert.assertEquals(0, product.getQ2(), EPS);
+ Assert.assertEquals(0, product.getQ3(), EPS);
+
+ final Quaternion qNul = new Quaternion(0, 0, 0, 0);
+ try {
+ final Quaternion inverseQNul = qNul.getInverse();
+ Assert.fail("expecting ZeroException but got : " + inverseQNul);
+ } catch (ZeroException ex) {
+ // expected
+ }
+ }
+
+ @Test
+ public final void testToString() {
+ final Quaternion q = new Quaternion(1, 2, 3, 4);
+ Assert.assertTrue(q.toString().equals("[1.0 2.0 3.0 4.0]"));
+ }
+}
diff --git a/src/test/java/org/apache/commons/math3/exception/util/LocalizedFormatsTest.java b/src/test/java/org/apache/commons/math3/exception/util/LocalizedFormatsTest.java
index 22a0a5288..8f8928ebe 100644
--- a/src/test/java/org/apache/commons/math3/exception/util/LocalizedFormatsTest.java
+++ b/src/test/java/org/apache/commons/math3/exception/util/LocalizedFormatsTest.java
@@ -36,7 +36,7 @@ public class LocalizedFormatsTest {
@Test
public void testMessageNumber() {
- Assert.assertEquals(310, LocalizedFormats.values().length);
+ Assert.assertEquals(311, LocalizedFormats.values().length);
}
@Test