Changes the Univariate implementations to use the UnivariateStatistic package. Slims down StatUtils by removing some of the higher moments. Reimplmenets ListUnivariate to work with NumberTransformers, turning into a Mixed Object List Univariate.
git-svn-id: https://svn.apache.org/repos/asf/jakarta/commons/proper/math/trunk@140983 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
59f46d6a64
commit
7c808d9071
|
@ -52,267 +52,70 @@
|
|||
* <http://www.apache.org/>.
|
||||
*/
|
||||
package org.apache.commons.math.stat;
|
||||
|
||||
import java.util.Arrays;
|
||||
|
||||
import org.apache.commons.math.stat.univariate.rank.Percentile;
|
||||
|
||||
/**
|
||||
* Provides univariate measures for an array of doubles.
|
||||
*
|
||||
* @author <a href="mailto:tobrien@apache.org">Tim O'Brien</a>
|
||||
* Provides univariate measures for an array of doubles.
|
||||
* @version $Revision: 1.9 $ $Date: 2003/07/09 21:45:23 $
|
||||
*/
|
||||
public abstract class AbstractStoreUnivariate implements StoreUnivariate {
|
||||
public abstract class AbstractStoreUnivariate
|
||||
extends AbstractUnivariate
|
||||
implements StoreUnivariate {
|
||||
|
||||
/** Percentile */
|
||||
protected Percentile percentile = new Percentile(50);
|
||||
|
||||
/**
|
||||
* Returns the skewness of this collection of values
|
||||
* @see org.apache.commons.math.stat.StoreUnivariate#getSkewness()
|
||||
* Create an AbstractStoreUnivariate
|
||||
*/
|
||||
public double getSkewness() {
|
||||
// Initialize the skewness
|
||||
double skewness = Double.NaN;
|
||||
|
||||
// Get the mean and the standard deviation
|
||||
double mean = getMean();
|
||||
double stdDev = getStandardDeviation();
|
||||
|
||||
// Sum the cubes of the distance from the mean divided by the
|
||||
// standard deviation
|
||||
double accum = 0.0;
|
||||
for (int i = 0; i < getN(); i++) {
|
||||
accum += Math.pow((getElement(i) - mean) / stdDev, 3.0);
|
||||
}
|
||||
|
||||
// Get N
|
||||
double n = getN();
|
||||
|
||||
// Calculate skewness
|
||||
skewness = (n / ((n - 1) * (n - 2))) * accum;
|
||||
|
||||
return skewness;
|
||||
public AbstractStoreUnivariate() {
|
||||
super();
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the kurtosis for this collection of values
|
||||
* @see org.apache.commons.math.stat.StoreUnivariate#getKurtosis()
|
||||
* Create an AbstractStoreUnivariate with a specific Window
|
||||
* @param window WindowSIze for stat calculation
|
||||
*/
|
||||
public double getKurtosis() {
|
||||
// Initialize the kurtosis
|
||||
double kurtosis = Double.NaN;
|
||||
|
||||
// Get the mean and the standard deviation
|
||||
double mean = getMean();
|
||||
double stdDev = getStandardDeviation();
|
||||
|
||||
// Sum the ^4 of the distance from the mean divided by the
|
||||
// standard deviation
|
||||
double accum = 0.0;
|
||||
for (int i = 0; i < getN(); i++) {
|
||||
accum += Math.pow((getElement(i) - mean) / stdDev, 4.0);
|
||||
}
|
||||
|
||||
// Get N
|
||||
double n = getN();
|
||||
|
||||
double coefficientOne = (n * (n + 1)) / ((n - 1) * (n - 2) * (n - 3));
|
||||
double termTwo = ((3 * Math.pow(n - 1, 2.0)) / ((n - 2) * (n - 3)));
|
||||
// Calculate kurtosis
|
||||
kurtosis = (coefficientOne * accum) - termTwo;
|
||||
|
||||
return kurtosis;
|
||||
public AbstractStoreUnivariate(int window) {
|
||||
super(window);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the type or class of kurtosis that this collection of
|
||||
* values exhibits
|
||||
* @see org.apache.commons.math.stat.StoreUnivariate#getKurtosisClass()
|
||||
*/
|
||||
public int getKurtosisClass() {
|
||||
|
||||
int kClass = StoreUnivariate.MESOKURTIC;
|
||||
|
||||
double kurtosis = getKurtosis();
|
||||
if (kurtosis > 0) {
|
||||
kClass = StoreUnivariate.LEPTOKURTIC;
|
||||
} else if (kurtosis < 0) {
|
||||
kClass = StoreUnivariate.PLATYKURTIC;
|
||||
}
|
||||
|
||||
return (kClass);
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the mean for this collection of values
|
||||
* @see org.apache.commons.math.stat.Univariate#getMean()
|
||||
*/
|
||||
public double getMean() {
|
||||
double arithMean = getSum() / getN();
|
||||
return arithMean;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the geometric mean for this collection of values
|
||||
* @see org.apache.commons.math.stat.Univariate#getGeometricMean()
|
||||
*/
|
||||
public double getGeometricMean() {
|
||||
double gMean = Double.NaN;
|
||||
|
||||
if (getN() > 0) {
|
||||
double sumLog = 0.0;
|
||||
for (int i = 0; i < getN(); i++) {
|
||||
sumLog += Math.log(getElement(i));
|
||||
}
|
||||
gMean = Math.exp(sumLog / (double)getN() );
|
||||
}
|
||||
|
||||
return gMean;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the variance for this collection of values
|
||||
* @see org.apache.commons.math.stat.Univariate#getVariance()
|
||||
*/
|
||||
public double getVariance() {
|
||||
// Initialize variance
|
||||
double variance = Double.NaN;
|
||||
|
||||
if (getN() == 1) {
|
||||
// If this is a single value
|
||||
variance = 0;
|
||||
} else if (getN() > 1) {
|
||||
// Get the mean
|
||||
double mean = getMean();
|
||||
|
||||
// Calculate the sum of the squares of the distance between each
|
||||
// value and the mean
|
||||
double accum = 0.0;
|
||||
for (int i = 0; i < getN(); i++) {
|
||||
accum += Math.pow((getElement(i) - mean), 2.0);
|
||||
}
|
||||
|
||||
// Divide the accumulator by N - Hmmm... unbiased or biased?
|
||||
variance = accum / (getN() - 1);
|
||||
}
|
||||
|
||||
return variance;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the standard deviation for this collection of values
|
||||
* @see org.apache.commons.math.stat.Univariate#getStandardDeviation()
|
||||
*/
|
||||
public double getStandardDeviation() {
|
||||
double stdDev = Double.NaN;
|
||||
if (getN() != 0) {
|
||||
stdDev = Math.sqrt(getVariance());
|
||||
}
|
||||
return (stdDev);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the maximum value contained herein.
|
||||
* @see org.apache.commons.math.stat.Univariate#getMax()
|
||||
*/
|
||||
public double getMax() {
|
||||
|
||||
// Initialize maximum to NaN
|
||||
double max = Double.NaN;
|
||||
|
||||
for (int i = 0; i < getN(); i++) {
|
||||
if (i == 0) {
|
||||
max = getElement(i);
|
||||
} else {
|
||||
if (getElement(i) > max) {
|
||||
max = getElement(i);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return max;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the minimum value contained herein
|
||||
* @see org.apache.commons.math.stat.Univariate#getMin()
|
||||
*/
|
||||
public double getMin() {
|
||||
// Initialize minimum to NaN
|
||||
double min = Double.NaN;
|
||||
|
||||
for (int i = 0; i < getN(); i++) {
|
||||
if (i == 0) {
|
||||
min = getElement(i);
|
||||
} else {
|
||||
if (getElement(i) < min) {
|
||||
min = getElement(i);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return min;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the sum of all values contained herein
|
||||
* @see org.apache.commons.math.stat.Univariate#getSum()
|
||||
*/
|
||||
public double getSum() {
|
||||
double accum = 0.0;
|
||||
for (int i = 0; i < getN(); i++) {
|
||||
accum += getElement(i);
|
||||
}
|
||||
return accum;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the sun of the squares of all values contained herein
|
||||
* @see org.apache.commons.math.stat.Univariate#getSumsq()
|
||||
*/
|
||||
public double getSumsq() {
|
||||
double accum = 0.0;
|
||||
for (int i = 0; i < getN(); i++) {
|
||||
accum += Math.pow(getElement(i), 2.0);
|
||||
}
|
||||
return accum;
|
||||
}
|
||||
|
||||
/**
|
||||
* @see org.apache.commons.math.stat.StoreUnivariate#getSortedValues()
|
||||
*
|
||||
*/
|
||||
public double[] getSortedValues() {
|
||||
double[] values = getValues();
|
||||
Arrays.sort(values);
|
||||
return values;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns an estimate for the pth percentile of the stored values
|
||||
* @see org.apache.commons.math.stat.StoreUnivariate#getPercentile(double)
|
||||
*/
|
||||
public double getPercentile(double p) {
|
||||
if ((p > 100) || (p <= 0)) {
|
||||
throw new IllegalArgumentException("invalid percentile value");
|
||||
}
|
||||
double n = (double) getN();
|
||||
if (n == 0) {
|
||||
return Double.NaN;
|
||||
}
|
||||
if (n == 1) {
|
||||
return getElement(0); // always return single value for n = 1
|
||||
}
|
||||
double pos = p * (n + 1) / 100;
|
||||
double fpos = Math.floor(pos);
|
||||
int intPos = (int) fpos;
|
||||
double d = pos - fpos;
|
||||
double[] sorted = getSortedValues();
|
||||
if (pos < 1) {
|
||||
return sorted[0];
|
||||
}
|
||||
if (pos > n) {
|
||||
return sorted[getN() - 1];
|
||||
}
|
||||
double lower = sorted[intPos - 1];
|
||||
double upper = sorted[intPos];
|
||||
return lower + d * (upper - lower);
|
||||
percentile.setPercentile(p);
|
||||
return percentile.evaluate(this.getValues(), this.start(), this.size());
|
||||
}
|
||||
|
||||
/**
|
||||
* @see org.apache.commons.math.stat2.AbstractStoreUnivariate#getSortedValues()
|
||||
*/
|
||||
public double[] getSortedValues() {
|
||||
double[] sort = getValues();
|
||||
Arrays.sort(sort);
|
||||
return sort;
|
||||
}
|
||||
|
||||
/**
|
||||
* @see org.apache.commons.math.stat.Univariate#addValue(double)
|
||||
*/
|
||||
public abstract void addValue(double value);
|
||||
|
||||
/**
|
||||
* @see org.apache.commons.math.stat.StoreUnivariate#getValues()
|
||||
*/
|
||||
public abstract double[] getValues();
|
||||
|
||||
|
||||
/**
|
||||
* @see org.apache.commons.math.stat.StoreUnivariate#getElement(int)
|
||||
*/
|
||||
public abstract double getElement(int index);
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
|
|
@ -0,0 +1,389 @@
|
|||
/* ====================================================================
|
||||
* The Apache Software License, Version 1.1
|
||||
*
|
||||
* Copyright (c) 2003 The Apache Software Foundation. All rights
|
||||
* reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
*
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in
|
||||
* the documentation and/or other materials provided with the
|
||||
* distribution.
|
||||
*
|
||||
* 3. The end-user documentation included with the redistribution, if
|
||||
* any, must include the following acknowlegement:
|
||||
* "This product includes software developed by the
|
||||
* Apache Software Foundation (http://www.apache.org/)."
|
||||
* Alternately, this acknowlegement may appear in the software itself,
|
||||
* if and wherever such third-party acknowlegements normally appear.
|
||||
*
|
||||
* 4. The names "The Jakarta Project", "Commons", and "Apache Software
|
||||
* Foundation" must not be used to endorse or promote products derived
|
||||
* from this software without prior written permission. For written
|
||||
* permission, please contact apache@apache.org.
|
||||
*
|
||||
* 5. Products derived from this software may not be called "Apache"
|
||||
* nor may "Apache" appear in their names without prior written
|
||||
* permission of the Apache Software Foundation.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
|
||||
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||||
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
* DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
|
||||
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
|
||||
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
||||
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
|
||||
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
* ====================================================================
|
||||
*
|
||||
* This software consists of voluntary contributions made by many
|
||||
* individuals on behalf of the Apache Software Foundation. For more
|
||||
* information on the Apache Software Foundation, please see
|
||||
* <http://www.apache.org/>.
|
||||
*/
|
||||
package org.apache.commons.math.stat;
|
||||
|
||||
import org.apache.commons.math.stat.univariate.moment.FourthMoment;
|
||||
import org.apache.commons.math.stat.univariate.moment.GeometricMean;
|
||||
import org.apache.commons.math.stat.univariate.moment.Kurtosis;
|
||||
import org.apache.commons.math.stat.univariate.moment.Mean;
|
||||
import org.apache.commons.math.stat.univariate.moment.Skewness;
|
||||
import org.apache.commons.math.stat.univariate.moment.Variance;
|
||||
import org.apache.commons.math.stat.univariate.rank.Max;
|
||||
import org.apache.commons.math.stat.univariate.rank.Min;
|
||||
import org.apache.commons.math.stat.univariate.summary.Sum;
|
||||
import org.apache.commons.math.stat.univariate.summary.SumOfLogs;
|
||||
import org.apache.commons.math.stat.univariate.summary.SumOfSquares;
|
||||
|
||||
/**
|
||||
* Provides univariate measures for an array of doubles.
|
||||
* @version $Revision: 1.1 $ $Date: 2003/07/09 21:45:23 $
|
||||
*/
|
||||
public abstract class AbstractUnivariate implements Univariate {
|
||||
|
||||
/** hold the window size **/
|
||||
protected int windowSize = Univariate.INFINITE_WINDOW;
|
||||
|
||||
/** count of values that have been added */
|
||||
protected int n = 0;
|
||||
|
||||
/** FourthMoment is used in calculating mean, variance,skew and kurtosis */
|
||||
protected FourthMoment moment = null;
|
||||
|
||||
/** sum of values that have been added */
|
||||
protected Sum sum = null;
|
||||
|
||||
/** sum of the square of each value that has been added */
|
||||
protected SumOfSquares sumsq = null;
|
||||
|
||||
/** min of values that have been added */
|
||||
protected Min min = null;
|
||||
|
||||
/** max of values that have been added */
|
||||
protected Max max = null;
|
||||
|
||||
/** sumLog of values that have been added */
|
||||
protected SumOfLogs sumLog = null;
|
||||
|
||||
/** geoMean of values that have been added */
|
||||
protected GeometricMean geoMean = null;
|
||||
|
||||
/** mean of values that have been added */
|
||||
protected Mean mean = null;
|
||||
|
||||
/** variance of values that have been added */
|
||||
protected Variance variance = null;
|
||||
|
||||
/** skewness of values that have been added */
|
||||
protected Skewness skewness = null;
|
||||
|
||||
/** kurtosis of values that have been added */
|
||||
protected Kurtosis kurtosis = null;
|
||||
|
||||
/**
|
||||
* Construct an AbstractUnivariate
|
||||
*/
|
||||
public AbstractUnivariate() {
|
||||
super();
|
||||
|
||||
sum = new Sum();
|
||||
sumsq = new SumOfSquares();
|
||||
min = new Min();
|
||||
max = new Max();
|
||||
sumLog = new SumOfLogs();
|
||||
geoMean = new GeometricMean();
|
||||
|
||||
moment = new FourthMoment();
|
||||
mean = new Mean(moment);
|
||||
variance = new Variance(moment);
|
||||
skewness = new Skewness(moment);
|
||||
kurtosis = new Kurtosis(moment);
|
||||
}
|
||||
|
||||
/**
|
||||
* Construct an AbstractUnivariate with a window
|
||||
* @param window The Window Size
|
||||
*/
|
||||
public AbstractUnivariate(int window) {
|
||||
this();
|
||||
setWindowSize(window);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the internalValues array.
|
||||
* @return the array
|
||||
*/
|
||||
protected abstract double[] internalValues();
|
||||
|
||||
/**
|
||||
* Returns the start index of the array
|
||||
* @return start index
|
||||
*/
|
||||
protected abstract int start();
|
||||
|
||||
/**
|
||||
* Returns the size of the array appropriate for doing calculations.
|
||||
* @return Usually this is just numElements.
|
||||
*/
|
||||
protected abstract int size();
|
||||
|
||||
/**
|
||||
* If windowSize is set to Infinite,
|
||||
* statistics are calculated using the following
|
||||
* <a href="http://www.spss.com/tech/stat/Algorithms/11.5/descriptives.pdf">
|
||||
* recursive strategy
|
||||
* </a>.
|
||||
* @see org.apache.commons.math.stat.Univariate#addValue(double)
|
||||
*/
|
||||
public abstract void addValue(double value);
|
||||
|
||||
/**
|
||||
* @see org.apache.commons.math.stat.Univariate#getN()
|
||||
*/
|
||||
public int getN() {
|
||||
return n;
|
||||
}
|
||||
|
||||
/**
|
||||
* @see org.apache.commons.math.stat.Univariate#getSum()
|
||||
*/
|
||||
public double getSum() {
|
||||
double[] v = internalValues();
|
||||
if (v != null) {
|
||||
return sum.evaluate(v, this.start(), this.size());
|
||||
}
|
||||
|
||||
return sum.getResult();
|
||||
}
|
||||
|
||||
/**
|
||||
* @see org.apache.commons.math.stat.Univariate#getSumsq()
|
||||
*/
|
||||
public double getSumsq() {
|
||||
double[] v = internalValues();
|
||||
if (v != null) {
|
||||
return sumsq.evaluate(v, this.start(), this.size());
|
||||
}
|
||||
|
||||
return sumsq.getResult();
|
||||
}
|
||||
|
||||
/**
|
||||
* @see org.apache.commons.math.stat.Univariate#getMean()
|
||||
*/
|
||||
public double getMean() {
|
||||
double[] v = internalValues();
|
||||
if (v != null) {
|
||||
return mean.evaluate(v, this.start(), this.size());
|
||||
}
|
||||
|
||||
return mean.getResult();
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the standard deviation for this collection of values
|
||||
* @see org.apache.commons.math.stat.Univariate#getStandardDeviation()
|
||||
*/
|
||||
public double getStandardDeviation() {
|
||||
double stdDev = Double.NaN;
|
||||
if (getN() > 0) {
|
||||
if (getN() > 1) {
|
||||
stdDev = Math.sqrt(getVariance());
|
||||
} else {
|
||||
stdDev = 0.0;
|
||||
}
|
||||
}
|
||||
return (stdDev);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the variance of the values that have been added via West's
|
||||
* algorithm as described by
|
||||
* <a href="http://doi.acm.org/10.1145/359146.359152">Chan, T. F. and
|
||||
* J. G. Lewis 1979, <i>Communications of the ACM</i>,
|
||||
* vol. 22 no. 9, pp. 526-531.</a>.
|
||||
*
|
||||
* @return The variance of a set of values.
|
||||
* Double.NaN is returned for an empty
|
||||
* set of values and 0.0 is returned for
|
||||
* a <= 1 value set.
|
||||
*/
|
||||
public double getVariance() {
|
||||
double[] v = internalValues();
|
||||
if (v != null) {
|
||||
return variance.evaluate(v, this.start(), this.size());
|
||||
}
|
||||
|
||||
return variance.getResult();
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the skewness of the values that have been added as described by
|
||||
* <a href="http://mathworld.wolfram.com/k-Statistic.html">
|
||||
* Equation (6) for k-Statistics</a>.
|
||||
* @return The skew of a set of values. Double.NaN is returned for
|
||||
* an empty set of values and 0.0 is returned for a
|
||||
* <= 2 value set.
|
||||
*/
|
||||
public double getSkewness() {
|
||||
double[] v = internalValues();
|
||||
if (v != null) {
|
||||
return skewness.evaluate(v, this.start(), this.size());
|
||||
}
|
||||
|
||||
return skewness.getResult();
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the kurtosis of the values that have been added as described by
|
||||
* <a href="http://mathworld.wolfram.com/k-Statistic.html">
|
||||
* Equation (7) for k-Statistics</a>.
|
||||
*
|
||||
* @return The kurtosis of a set of values. Double.NaN is returned for
|
||||
* an empty set of values and 0.0 is returned for a <= 3
|
||||
* value set.
|
||||
*/
|
||||
public double getKurtosis() {
|
||||
double[] v = internalValues();
|
||||
if (v != null) {
|
||||
return kurtosis.evaluate(v, this.start(), this.size());
|
||||
}
|
||||
|
||||
return kurtosis.getResult();
|
||||
}
|
||||
|
||||
/**
|
||||
* @see org.apache.commons.math.stat.StoreUnivariate#getKurtosisClass()
|
||||
*/
|
||||
public int getKurtosisClass() {
|
||||
int kClass = Univariate.MESOKURTIC;
|
||||
|
||||
double kurtosis = getKurtosis();
|
||||
if (kurtosis > 0) {
|
||||
kClass = Univariate.LEPTOKURTIC;
|
||||
} else if (kurtosis < 0) {
|
||||
kClass = Univariate.PLATYKURTIC;
|
||||
}
|
||||
return (kClass);
|
||||
}
|
||||
|
||||
/**
|
||||
* @see org.apache.commons.math.stat.Univariate#getMax()
|
||||
*/
|
||||
public double getMax() {
|
||||
double[] v = internalValues();
|
||||
if (v != null) {
|
||||
return max.evaluate(v, this.start(), this.size());
|
||||
}
|
||||
|
||||
return max.getResult();
|
||||
}
|
||||
|
||||
/**
|
||||
* @see org.apache.commons.math.stat.Univariate#getMin()
|
||||
*/
|
||||
public double getMin() {
|
||||
double[] v = internalValues();
|
||||
if (v != null) {
|
||||
return min.evaluate(v, this.start(), this.size());
|
||||
}
|
||||
|
||||
return min.getResult();
|
||||
}
|
||||
|
||||
/**
|
||||
* @see org.apache.commons.math.stat.Univariate#getGeometricMean()
|
||||
*/
|
||||
public double getGeometricMean() {
|
||||
double[] v = internalValues();
|
||||
if (v != null) {
|
||||
return geoMean.evaluate(v, this.start(), this.size());
|
||||
}
|
||||
|
||||
return geoMean.getResult();
|
||||
}
|
||||
|
||||
/**
|
||||
* Generates a text report displaying
|
||||
* univariate statistics from values that
|
||||
* have been added.
|
||||
* @return String with line feeds displaying statistics
|
||||
*/
|
||||
public String toString() {
|
||||
StringBuffer outBuffer = new StringBuffer();
|
||||
outBuffer.append("UnivariateImpl:\n");
|
||||
outBuffer.append("n: " + n + "\n");
|
||||
outBuffer.append("min: " + min + "\n");
|
||||
outBuffer.append("max: " + max + "\n");
|
||||
outBuffer.append("mean: " + getMean() + "\n");
|
||||
outBuffer.append("std dev: " + getStandardDeviation() + "\n");
|
||||
outBuffer.append("skewness: " + getSkewness() + "\n");
|
||||
outBuffer.append("kurtosis: " + getKurtosis() + "\n");
|
||||
return outBuffer.toString();
|
||||
}
|
||||
|
||||
/**
|
||||
* @see org.apache.commons.math.Univariate#clear()
|
||||
*/
|
||||
public void clear() {
|
||||
this.n = 0;
|
||||
min.clear();
|
||||
max.clear();
|
||||
sum.clear();
|
||||
sumLog.clear();
|
||||
sumsq.clear();
|
||||
geoMean.clear();
|
||||
|
||||
moment.clear();
|
||||
mean.clear();
|
||||
variance.clear();
|
||||
skewness.clear();
|
||||
kurtosis.clear();
|
||||
}
|
||||
|
||||
/**
|
||||
* @see org.apache.commons.math.Univariate#getWindowSize()
|
||||
*/
|
||||
public int getWindowSize() {
|
||||
return windowSize;
|
||||
}
|
||||
|
||||
/**
|
||||
* @see org.apache.commons.math.Univariate#setWindowSize(int)
|
||||
*/
|
||||
public void setWindowSize(int windowSize) {
|
||||
clear();
|
||||
this.windowSize = windowSize;
|
||||
}
|
||||
|
||||
}
|
|
@ -54,49 +54,71 @@
|
|||
package org.apache.commons.math.stat;
|
||||
|
||||
import java.util.List;
|
||||
import org.apache.commons.beanutils.PropertyUtils;
|
||||
|
||||
import org.apache.commons.math.util.BeanTransformer;
|
||||
|
||||
/**
|
||||
* This implementation of StoreUnivariate uses commons-beanutils to gather
|
||||
* univariate statistics for a List of Java Beans by property. This
|
||||
* implementation uses beanutils' PropertyUtils to get a simple, nested,
|
||||
* indexed, mapped, or combined property from an element of a List.
|
||||
*
|
||||
* @author <a href="mailto:tobrien@apache.org">Tim O'Brien</a>
|
||||
* @version $Revision: 1.3 $ $Date: 2003/07/09 21:45:23 $
|
||||
*/
|
||||
public class BeanListUnivariateImpl extends ListUnivariateImpl {
|
||||
|
||||
/**
|
||||
* propertyName of the property to get from the bean
|
||||
*/
|
||||
private String propertyName;
|
||||
|
||||
/**
|
||||
* Construct a BeanListUnivariate with specified
|
||||
* backing list
|
||||
* @param list Backing List
|
||||
*/
|
||||
public BeanListUnivariateImpl(List list) {
|
||||
super( list );
|
||||
super(list);
|
||||
}
|
||||
|
||||
/**
|
||||
* Construct a BeanListUnivariate with specified
|
||||
* backing list and propertyName
|
||||
* @param list Backing List
|
||||
* @param propertyName Bean propertyName
|
||||
*/
|
||||
public BeanListUnivariateImpl(List list, String propertyName) {
|
||||
super( list );
|
||||
setPropertyName( propertyName );
|
||||
super(list);
|
||||
setPropertyName(propertyName);
|
||||
this.transformer = new BeanTransformer(propertyName);
|
||||
}
|
||||
|
||||
/**
|
||||
* @return propertyName
|
||||
*/
|
||||
public String getPropertyName() {
|
||||
return propertyName;
|
||||
}
|
||||
|
||||
/**
|
||||
* @param propertyName Name of Property
|
||||
*/
|
||||
public void setPropertyName(String propertyName) {
|
||||
System.out.println( "Set prop name; " + propertyName );
|
||||
System.out.println("Set prop name; " + propertyName);
|
||||
this.propertyName = propertyName;
|
||||
this.transformer = new BeanTransformer(propertyName);
|
||||
}
|
||||
|
||||
|
||||
/* (non-Javadoc)
|
||||
/**
|
||||
* @see org.apache.commons.math.Univariate#addValue(double)
|
||||
*/
|
||||
public void addValue(double v) {
|
||||
String msg = "The BeanListUnivariateImpl does not accept values " +
|
||||
"through the addValue method. Because elements of this list " +
|
||||
"are JavaBeans, one must be sure to set the 'propertyName' " +
|
||||
"property and add new Beans to the underlying list via the " +
|
||||
"addBean(Object bean) method";
|
||||
throw new UnsupportedOperationException( msg );
|
||||
String msg =
|
||||
"The BeanListUnivariateImpl does not accept values "
|
||||
+ "through the addValue method. Because elements of this list "
|
||||
+ "are JavaBeans, one must be sure to set the 'propertyName' "
|
||||
+ "property and add new Beans to the underlying list via the "
|
||||
+ "addBean(Object bean) method";
|
||||
throw new UnsupportedOperationException(msg);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -108,30 +130,4 @@ public class BeanListUnivariateImpl extends ListUnivariateImpl {
|
|||
list.add(bean);
|
||||
}
|
||||
|
||||
/**
|
||||
* Reads the property of an element in the list.
|
||||
*
|
||||
* @param index The location of the value in the internal List
|
||||
* @return A Number object representing the value at a given
|
||||
* index
|
||||
*/
|
||||
protected Number getInternalIndex(int index) {
|
||||
|
||||
try {
|
||||
Number n = (Number) PropertyUtils.getProperty( list.get( index ),
|
||||
propertyName );
|
||||
|
||||
return n;
|
||||
} catch( Exception e ) {
|
||||
// TODO: We could use a better strategy for error handling
|
||||
// here.
|
||||
|
||||
// This is a somewhat foolish design decision, but until
|
||||
// we figure out what needs to be done, let's return NaN
|
||||
return new Double(Double.NaN);
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -62,7 +62,8 @@ import org.apache.commons.collections.HashBag;
|
|||
* Maintains a frequency distribution. <br>
|
||||
* Accepts int, long or string values, converting
|
||||
* all to Strings and maintaining frequency counts.
|
||||
*
|
||||
*
|
||||
* @version $Revision: 1.4 $ $Date: 2003/07/09 21:45:23 $
|
||||
*/
|
||||
public class Frequency {
|
||||
/** name for this frequency distribution. */
|
||||
|
|
|
@ -54,132 +54,167 @@
|
|||
package org.apache.commons.math.stat;
|
||||
|
||||
import java.util.List;
|
||||
import org.apache.commons.math.util.DefaultTransformer;
|
||||
import org.apache.commons.math.util.NumberTransformer;
|
||||
|
||||
/**
|
||||
* @author <a href="mailto:tobrien@apache.org">Tim O'Brien</a>
|
||||
* @version $Revision: 1.3 $ $Date: 2003/07/09 21:45:23 $
|
||||
*/
|
||||
public class ListUnivariateImpl extends AbstractStoreUnivariate {
|
||||
public class ListUnivariateImpl
|
||||
extends AbstractStoreUnivariate
|
||||
implements StoreUnivariate {
|
||||
|
||||
// Holds the value of the windowSize, initial windowSize is the constant
|
||||
// Univariate.INFINITE_WINDOW
|
||||
private int windowSize = Univariate.INFINITE_WINDOW;
|
||||
/**
|
||||
* Holds a reference to a list - GENERICs are going to make
|
||||
* out lives easier here as we could only accept List<Number>
|
||||
*/
|
||||
protected List list;
|
||||
|
||||
// Holds a reference to a list - GENERICs are going to make
|
||||
// out lives easier here as we could only accept List<Number>
|
||||
List list;
|
||||
/** Number Transformer maps Objects to Number for us. */
|
||||
protected NumberTransformer transformer;
|
||||
|
||||
/**
|
||||
* Construct a ListUnivariate with a specific List.
|
||||
* @param list The list that will back this Univariate
|
||||
*/
|
||||
public ListUnivariateImpl(List list) {
|
||||
super();
|
||||
this.list = list;
|
||||
transformer = new DefaultTransformer();
|
||||
}
|
||||
|
||||
/**
|
||||
* Construct a ListUnivariate with a specific List.
|
||||
* @param list The list that will back this Univariate
|
||||
*/
|
||||
public ListUnivariateImpl(List list, NumberTransformer transformer) {
|
||||
super();
|
||||
this.list = list;
|
||||
this.transformer = transformer;
|
||||
}
|
||||
|
||||
/* (non-Javadoc)
|
||||
/**
|
||||
* @see org.apache.commons.math.StoreUnivariate#getValues()
|
||||
*/
|
||||
public double[] getValues() {
|
||||
|
||||
int startIndex = 0;
|
||||
int endIndex = list.size() - 1;
|
||||
|
||||
int length = list.size();
|
||||
|
||||
// If the window size is not INFINITE_WINDOW AND
|
||||
// the current list is larger that the window size, we need to
|
||||
// take into account only the last n elements of the list
|
||||
// as definied by windowSize
|
||||
if (windowSize != Univariate.INFINITE_WINDOW &&
|
||||
windowSize < list.size()) {
|
||||
startIndex = (list.size() - 1) - windowSize;
|
||||
|
||||
if (windowSize != Univariate.INFINITE_WINDOW
|
||||
&& windowSize < list.size()) {
|
||||
length = list.size() - Math.max(0, list.size() - windowSize);
|
||||
}
|
||||
|
||||
// Create an array to hold all values
|
||||
double[] copiedArray = new double[list.size() - startIndex];
|
||||
double[] copiedArray = new double[length];
|
||||
|
||||
for( int i = startIndex; i <= endIndex; i++ ) {
|
||||
Number n = (Number) getInternalIndex( i );
|
||||
copiedArray[i] = n.doubleValue();
|
||||
i++;
|
||||
for (int i = 0; i < copiedArray.length; i++) {
|
||||
copiedArray[i] = getElement(i);
|
||||
}
|
||||
|
||||
return copiedArray;
|
||||
}
|
||||
|
||||
/* (non-Javadoc)
|
||||
/**
|
||||
* @see org.apache.commons.math.StoreUnivariate#getElement(int)
|
||||
*/
|
||||
public double getElement(int index) {
|
||||
|
||||
double value = Double.NaN;
|
||||
if (windowSize != Univariate.INFINITE_WINDOW &&
|
||||
windowSize < list.size()) {
|
||||
|
||||
int calcIndex = (list.size() - windowSize) + index;
|
||||
int calcIndex = index;
|
||||
|
||||
Number n = (Number) getInternalIndex(calcIndex);
|
||||
value = n.doubleValue();
|
||||
} else {
|
||||
Number n = (Number) getInternalIndex(index);
|
||||
value = n.doubleValue();
|
||||
if (windowSize != Univariate.INFINITE_WINDOW
|
||||
&& windowSize < list.size()) {
|
||||
calcIndex = (list.size() - windowSize) + index;
|
||||
}
|
||||
|
||||
try {
|
||||
value = transformer.transform(list.get(calcIndex));
|
||||
} catch (Exception e) {
|
||||
e.printStackTrace();
|
||||
}
|
||||
|
||||
return value;
|
||||
}
|
||||
|
||||
/* (non-Javadoc)
|
||||
/**
|
||||
* @see org.apache.commons.math.Univariate#getN()
|
||||
*/
|
||||
public int getN() {
|
||||
int N = 0;
|
||||
int n = 0;
|
||||
|
||||
if (windowSize != Univariate.INFINITE_WINDOW) {
|
||||
if (list.size() > windowSize) {
|
||||
N = windowSize;
|
||||
n = windowSize;
|
||||
} else {
|
||||
N = list.size();
|
||||
n = list.size();
|
||||
}
|
||||
} else {
|
||||
N = list.size();
|
||||
n = list.size();
|
||||
}
|
||||
return N;
|
||||
return n;
|
||||
}
|
||||
|
||||
/* (non-Javadoc)
|
||||
/**
|
||||
* @see org.apache.commons.math.Univariate#addValue(double)
|
||||
*/
|
||||
public void addValue(double v) {
|
||||
list.add(new Double(v));
|
||||
}
|
||||
|
||||
/* (non-Javadoc)
|
||||
* @see org.apache.commons.math.Univariate#clear()
|
||||
|
||||
/**
|
||||
* Adds an object to this list.
|
||||
* @param o Object to add to the list
|
||||
*/
|
||||
public void clear() {
|
||||
list.clear();
|
||||
}
|
||||
|
||||
/* (non-Javadoc)
|
||||
* @see org.apache.commons.math.Univariate#getWindowSize()
|
||||
*/
|
||||
public int getWindowSize() {
|
||||
return windowSize;
|
||||
}
|
||||
|
||||
/* (non-Javadoc)
|
||||
* @see org.apache.commons.math.Univariate#setWindowSize(int)
|
||||
*/
|
||||
public void setWindowSize(int windowSize) {
|
||||
this.windowSize = windowSize;
|
||||
public void addObject(Object o) {
|
||||
list.add(o);
|
||||
}
|
||||
|
||||
/**
|
||||
* This function exists to support the function of classes which
|
||||
* extend the ListUnivariateImpl.
|
||||
*
|
||||
* @param index The location of the value in the internal List
|
||||
* @return A Number object representing the value at a given
|
||||
* index
|
||||
* @see org.apache.commons.math.Univariate#clear()
|
||||
*/
|
||||
protected Number getInternalIndex(int index) {
|
||||
|
||||
Number n = (Number) list.get( index );
|
||||
return n;
|
||||
|
||||
public void clear() {
|
||||
super.clear();
|
||||
list.clear();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @see org.apache.commons.math.stat.AbstractUnivariate#internalValues()
|
||||
*/
|
||||
protected double[] internalValues() {
|
||||
return getValues();
|
||||
}
|
||||
|
||||
/**
|
||||
* @see org.apache.commons.math.stat.AbstractUnivariate#start()
|
||||
*/
|
||||
protected int start() {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* @see org.apache.commons.math.stat.AbstractUnivariate#size()
|
||||
*/
|
||||
protected int size() {
|
||||
return getN();
|
||||
}
|
||||
/**
|
||||
* @return
|
||||
*/
|
||||
public NumberTransformer getTransformer() {
|
||||
return transformer;
|
||||
}
|
||||
|
||||
/**
|
||||
* @param transformer
|
||||
*/
|
||||
public void setTransformer(NumberTransformer transformer) {
|
||||
this.transformer = transformer;
|
||||
}
|
||||
|
||||
}
|
|
@ -57,6 +57,7 @@ package org.apache.commons.math.stat;
|
|||
* StatUtils provides easy static implementations of common double[] based
|
||||
* statistical methods. These return a single result value or in some cases, as
|
||||
* identified in the javadoc for each method, Double.NaN.
|
||||
* @version $Revision: 1.14 $ $Date: 2003/07/09 21:45:23 $
|
||||
*/
|
||||
public class StatUtils {
|
||||
|
||||
|
@ -160,29 +161,6 @@ public class StatUtils {
|
|||
return sumLog;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the geometric mean for this collection of values
|
||||
* @param values Is a double[] containing the values
|
||||
* @return the geometric mean or Double.NaN if the array is empty or
|
||||
* any of the values are <= 0.
|
||||
*/
|
||||
public static double geometricMean(double[] values) {
|
||||
return geometricMean(values, 0, values.length);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the geometric mean for this collection of values
|
||||
* @param values Is a double[] containing the values
|
||||
* @param begin processing at this point in the array
|
||||
* @param length processing at this point in the array
|
||||
* @return the geometric mean or Double.NaN if the array is empty or
|
||||
* any of the values are <= 0.
|
||||
*/
|
||||
public static double geometricMean(double[] values, int begin, int length) {
|
||||
testInput(values, begin, length);
|
||||
return Math.exp(sumLog(values, begin, length) / (double) length );
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the <a href=http://www.xycoon.com/arithmetic_mean.htm>
|
||||
* arithmetic mean </a> of the available values
|
||||
|
@ -206,36 +184,6 @@ public class StatUtils {
|
|||
return sum(values, begin, length) / ((double) length);
|
||||
}
|
||||
|
||||
/**
|
||||
*
|
||||
* @param values Is a double[] containing the values
|
||||
* @return the result, Double.NaN if no values for an empty array
|
||||
* or 0.0 for a single value set.
|
||||
*/
|
||||
public static double standardDeviation(double[] values) {
|
||||
return standardDeviation(values, 0, values.length);
|
||||
}
|
||||
|
||||
/**
|
||||
*
|
||||
* @param values Is a double[] containing the values
|
||||
* @param begin processing at this point in the array
|
||||
* @param length processing at this point in the array
|
||||
* @return the result, Double.NaN if no values for an empty array
|
||||
* or 0.0 for a single value set.
|
||||
*/
|
||||
public static double standardDeviation(
|
||||
double[] values,
|
||||
int begin,
|
||||
int length) {
|
||||
testInput(values, begin, length);
|
||||
double stdDev = Double.NaN;
|
||||
if (values.length != 0) {
|
||||
stdDev = Math.sqrt(variance(values, begin, length));
|
||||
}
|
||||
return (stdDev);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the variance of the available values. This uses a corrected
|
||||
* two pass algorithm of the following
|
||||
|
@ -289,122 +237,6 @@ public class StatUtils {
|
|||
return variance;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the skewness of a collection of values. Skewness is a
|
||||
* measure of the assymetry of a given distribution.
|
||||
* @param values Is a double[] containing the values
|
||||
* @return the skewness of the values or Double.NaN if the array is empty
|
||||
*/
|
||||
public static double skewness(double[] values) {
|
||||
return skewness(values, 0, values.length);
|
||||
}
|
||||
/**
|
||||
* Returns the skewness of a collection of values. Skewness is a
|
||||
* measure of the assymetry of a given distribution.
|
||||
* @param values Is a double[] containing the values
|
||||
* @param begin processing at this point in the array
|
||||
* @param length processing at this point in the array
|
||||
* @return the skewness of the values or Double.NaN if the array is empty
|
||||
*/
|
||||
public static double skewness(double[] values, int begin, int length) {
|
||||
|
||||
testInput(values, begin, length);
|
||||
|
||||
// Initialize the skewness
|
||||
double skewness = Double.NaN;
|
||||
|
||||
// Get the mean and the standard deviation
|
||||
double mean = mean(values, begin, length);
|
||||
|
||||
// Calc the std, this is implemented here instead of using the
|
||||
// standardDeviation method eliminate a duplicate pass to get the mean
|
||||
double accum = 0.0;
|
||||
double accum2 = 0.0;
|
||||
for (int i = begin; i < begin + length; i++) {
|
||||
accum += Math.pow((values[i] - mean), 2.0);
|
||||
accum2 += (values[i] - mean);
|
||||
}
|
||||
double stdDev =
|
||||
Math.sqrt(
|
||||
(accum - (Math.pow(accum2, 2) / ((double) length)))
|
||||
/ (double) (length - 1));
|
||||
|
||||
// Calculate the skew as the sum the cubes of the distance
|
||||
// from the mean divided by the standard deviation.
|
||||
double accum3 = 0.0;
|
||||
for (int i = begin; i < begin + length; i++) {
|
||||
accum3 += Math.pow((values[i] - mean) / stdDev, 3.0);
|
||||
}
|
||||
|
||||
// Get N
|
||||
double n = length;
|
||||
|
||||
// Calculate skewness
|
||||
skewness = (n / ((n - 1) * (n - 2))) * accum3;
|
||||
|
||||
return skewness;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the kurtosis for this collection of values. Kurtosis is a
|
||||
* measure of the "peakedness" of a distribution.
|
||||
* @param values Is a double[] containing the values
|
||||
* @return the kurtosis of the values or Double.NaN if the array is empty
|
||||
*/
|
||||
public static double kurtosis(double[] values) {
|
||||
return kurtosis(values, 0, values.length);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the kurtosis for this collection of values. Kurtosis is a
|
||||
* measure of the "peakedness" of a distribution.
|
||||
* @param values Is a double[] containing the values
|
||||
* @param begin processing at this point in the array
|
||||
* @param length processing at this point in the array
|
||||
* @return the kurtosis of the values or Double.NaN if the array is empty
|
||||
*/
|
||||
public static double kurtosis(double[] values, int begin, int length) {
|
||||
testInput(values, begin, length);
|
||||
|
||||
// Initialize the kurtosis
|
||||
double kurtosis = Double.NaN;
|
||||
|
||||
// Get the mean and the standard deviation
|
||||
double mean = mean(values, begin, length);
|
||||
|
||||
// Calc the std, this is implemented here instead of using the
|
||||
// standardDeviation method eliminate a duplicate pass to get the mean
|
||||
double accum = 0.0;
|
||||
double accum2 = 0.0;
|
||||
for (int i = begin; i < begin + length; i++) {
|
||||
accum += Math.pow((values[i] - mean), 2.0);
|
||||
accum2 += (values[i] - mean);
|
||||
}
|
||||
|
||||
double stdDev =
|
||||
Math.sqrt(
|
||||
(accum - (Math.pow(accum2, 2) / ((double) length)))
|
||||
/ (double) (length - 1));
|
||||
|
||||
// Sum the ^4 of the distance from the mean divided by the
|
||||
// standard deviation
|
||||
double accum3 = 0.0;
|
||||
for (int i = begin; i < begin + length; i++) {
|
||||
accum3 += Math.pow((values[i] - mean) / stdDev, 4.0);
|
||||
}
|
||||
|
||||
// Get N
|
||||
double n = length;
|
||||
|
||||
double coefficientOne = (n * (n + 1)) / ((n - 1) * (n - 2) * (n - 3));
|
||||
double termTwo = ((3 * Math.pow(n - 1, 2.0)) / ((n - 2) * (n - 3)));
|
||||
|
||||
// Calculate kurtosis
|
||||
kurtosis = (coefficientOne * accum3) - termTwo;
|
||||
|
||||
return kurtosis;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the maximum of the available values
|
||||
* @param values Is a double[] containing the values
|
||||
|
|
|
@ -60,52 +60,10 @@ package org.apache.commons.math.stat;
|
|||
* Univariate provides additional percentile functionality
|
||||
* such as. This additional functionality comes with
|
||||
* a price of increased storage costs.
|
||||
*
|
||||
* @author <a href="mailto:tobrien@apache.org">Tim O'Brien</a>
|
||||
* @version $Revision: 1.7 $ $Date: 2003/07/09 21:45:23 $
|
||||
*/
|
||||
public interface StoreUnivariate extends Univariate {
|
||||
|
||||
/**
|
||||
* A LEPTOKURTIC set has a positive kurtosis (a high peak)
|
||||
*/
|
||||
public static int LEPTOKURTIC = 1;
|
||||
|
||||
/**
|
||||
* A MESOKURTIC set has a kurtosis of 0 - it is a normal distribution
|
||||
*/
|
||||
public static int MESOKURTIC = 0;
|
||||
|
||||
/**
|
||||
* A PLATYKURTIC set has a negative kurtosis (a flat "peak")
|
||||
*/
|
||||
public static int PLATYKURTIC = -1;
|
||||
|
||||
/**
|
||||
* Returns the skewness of a given distribution. Skewness is a
|
||||
* measure of the assymetry of a given distribution.
|
||||
*
|
||||
* @return The skewness of this distribution
|
||||
*/
|
||||
double getSkewness();
|
||||
|
||||
/**
|
||||
* Kurtosis is a measure of the "peakedness" of a distribution
|
||||
*
|
||||
* @return the mode
|
||||
*/
|
||||
double getKurtosis();
|
||||
|
||||
/**
|
||||
* Returns the Kurtosis "classification" a distribution can be
|
||||
* leptokurtic (high peak), platykurtic (flat peak),
|
||||
* or mesokurtic (zero kurtosis).
|
||||
*
|
||||
* @return A static constant defined in this interface,
|
||||
* StoredDeviation.LEPTOKURITC, StoredDeviation.PLATYKURTIC, or
|
||||
* StoredDeviation.MESOKURTIC
|
||||
*/
|
||||
int getKurtosisClass();
|
||||
|
||||
/**
|
||||
* Returns the current set of values in an array of double primitives.
|
||||
* The order of addition is preserved. The returned array is a fresh
|
||||
|
|
|
@ -56,81 +56,80 @@ package org.apache.commons.math.stat;
|
|||
import org.apache.commons.math.util.ContractableDoubleArray;
|
||||
|
||||
/**
|
||||
* @author <a href="mailto:tobrien@apache.org">Tim O'Brien</a>
|
||||
* @version $Revision: 1.4 $ $Date: 2003/07/09 21:45:23 $
|
||||
*/
|
||||
public class StoreUnivariateImpl extends AbstractStoreUnivariate {
|
||||
|
||||
// Use an internal double array
|
||||
ContractableDoubleArray eDA;
|
||||
|
||||
// Store the windowSize
|
||||
private int windowSize = Univariate.INFINITE_WINDOW;
|
||||
/** A contractable double array is used. memory is reclaimed when
|
||||
* the storage of the array becomes too empty.
|
||||
*/
|
||||
protected ContractableDoubleArray eDA;
|
||||
|
||||
/**
|
||||
* Construct a StoreUnivariateImpl
|
||||
*/
|
||||
public StoreUnivariateImpl() {
|
||||
// A contractable double array is used. memory is reclaimed when
|
||||
// the storage of the array becomes too empty.
|
||||
eDA = new ContractableDoubleArray();
|
||||
}
|
||||
|
||||
/* (non-Javadoc)
|
||||
/**
|
||||
* @see org.apache.commons.math.StoreUnivariate#getValues()
|
||||
*/
|
||||
public double[] getValues() {
|
||||
|
||||
double[] copiedArray = new double[ eDA.getNumElements() ];
|
||||
System.arraycopy( eDA.getElements(), 0,
|
||||
copiedArray, 0, eDA.getNumElements());
|
||||
double[] copiedArray = new double[eDA.getNumElements()];
|
||||
System.arraycopy(
|
||||
eDA.getElements(),
|
||||
0,
|
||||
copiedArray,
|
||||
0,
|
||||
eDA.getNumElements());
|
||||
return copiedArray;
|
||||
}
|
||||
|
||||
/* (non-Javadoc)
|
||||
/**
|
||||
* @see org.apache.commons.math.StoreUnivariate#getElement(int)
|
||||
*/
|
||||
public double getElement(int index) {
|
||||
return eDA.getElement(index);
|
||||
}
|
||||
|
||||
/* (non-Javadoc)
|
||||
/**
|
||||
* @see org.apache.commons.math.Univariate#getN()
|
||||
*/
|
||||
public int getN() {
|
||||
return eDA.getNumElements();
|
||||
}
|
||||
|
||||
/* (non-Javadoc)
|
||||
/**
|
||||
* @see org.apache.commons.math.Univariate#addValue(double)
|
||||
*/
|
||||
public synchronized void addValue(double v) {
|
||||
if( windowSize != Univariate.INFINITE_WINDOW ) {
|
||||
if( getN() == windowSize ) {
|
||||
eDA.addElementRolling( v );
|
||||
} else if( getN() < windowSize ) {
|
||||
if (windowSize != Univariate.INFINITE_WINDOW) {
|
||||
if (getN() == windowSize) {
|
||||
eDA.addElementRolling(v);
|
||||
} else if (getN() < windowSize) {
|
||||
eDA.addElement(v);
|
||||
} else {
|
||||
String msg = "A window Univariate had more element than " +
|
||||
"the windowSize. This is an inconsistent state.";
|
||||
throw new RuntimeException( msg );
|
||||
String msg =
|
||||
"A window Univariate had more element than "
|
||||
+ "the windowSize. This is an inconsistent state.";
|
||||
throw new RuntimeException(msg);
|
||||
}
|
||||
} else {
|
||||
eDA.addElement(v);
|
||||
}
|
||||
}
|
||||
|
||||
/* (non-Javadoc)
|
||||
/**
|
||||
* @see org.apache.commons.math.Univariate#clear()
|
||||
*/
|
||||
public synchronized void clear() {
|
||||
super.clear();
|
||||
eDA.clear();
|
||||
}
|
||||
|
||||
/* (non-Javadoc)
|
||||
* @see org.apache.commons.math.Univariate#getWindowSize()
|
||||
*/
|
||||
public int getWindowSize() {
|
||||
return windowSize;
|
||||
}
|
||||
|
||||
/* (non-Javadoc)
|
||||
/**
|
||||
* @see org.apache.commons.math.Univariate#setWindowSize(int)
|
||||
*/
|
||||
public synchronized void setWindowSize(int windowSize) {
|
||||
|
@ -139,8 +138,29 @@ public class StoreUnivariateImpl extends AbstractStoreUnivariate {
|
|||
// We need to check to see if we need to discard elements
|
||||
// from the front of the array. If the windowSize is less than
|
||||
// the current number of elements.
|
||||
if( windowSize < eDA.getNumElements() ) {
|
||||
eDA.discardFrontElements( eDA.getNumElements() - windowSize);
|
||||
if (windowSize < eDA.getNumElements()) {
|
||||
eDA.discardFrontElements(eDA.getNumElements() - windowSize);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @see org.apache.commons.math.stat.AbstractUnivariate#internalValues()
|
||||
*/
|
||||
protected double[] internalValues() {
|
||||
return eDA.getValues();
|
||||
}
|
||||
|
||||
/**
|
||||
* @see org.apache.commons.math.stat.AbstractUnivariate#start()
|
||||
*/
|
||||
protected int start() {
|
||||
return eDA.start();
|
||||
}
|
||||
|
||||
/**
|
||||
* @see org.apache.commons.math.stat.AbstractUnivariate#size()
|
||||
*/
|
||||
protected int size() {
|
||||
return eDA.getNumElements();
|
||||
}
|
||||
}
|
|
@ -55,8 +55,7 @@ package org.apache.commons.math.stat;
|
|||
/**
|
||||
* A collection of commonly used test statistics and statistical tests.
|
||||
*
|
||||
* @version $Revision: 1.3 $ $Date: 2003/07/07 23:19:20 $
|
||||
*
|
||||
* @version $Revision: 1.4 $ $Date: 2003/07/09 21:45:23 $
|
||||
*/
|
||||
public interface TestStatistic {
|
||||
|
||||
|
|
|
@ -61,8 +61,7 @@ import org.apache.commons.math.stat.distribution.ChiSquaredDistribution;
|
|||
/**
|
||||
* Implements test statistics defined in the TestStatistic interface.
|
||||
*
|
||||
* @version $Revision: 1.3 $ $Date: 2003/07/07 23:19:20 $
|
||||
*
|
||||
* @version $Revision: 1.4 $ $Date: 2003/07/09 21:45:23 $
|
||||
*/
|
||||
public class TestStatisticImpl implements TestStatistic {
|
||||
|
||||
|
|
|
@ -69,12 +69,21 @@ package org.apache.commons.math.stat;
|
|||
* reported statistics will be based on these values<p>
|
||||
* The default windowSize is "infinite" -- i.e., all values added are included
|
||||
* in all computations.
|
||||
*
|
||||
* @author <a href="mailto:tobrien@apache.org">Tim O'Brien</a>
|
||||
* @version $Revision: 1.7 $ $Date: 2003/07/07 23:25:13 $
|
||||
*
|
||||
* @version $Revision: 1.8 $ $Date: 2003/07/09 21:45:23 $
|
||||
*/
|
||||
public interface Univariate {
|
||||
/**
|
||||
* A LEPTOKURTIC set has a positive kurtosis (a high peak)
|
||||
*/
|
||||
public static int LEPTOKURTIC = 1;
|
||||
/**
|
||||
* A MESOKURTIC set has a kurtosis of 0 - it is a normal distribution
|
||||
*/
|
||||
public static int MESOKURTIC = 0;
|
||||
/**
|
||||
* A PLATYKURTIC set has a negative kurtosis (a flat "peak")
|
||||
*/
|
||||
public static int PLATYKURTIC = -1;
|
||||
|
||||
/**
|
||||
* Adds the value to the set of numbers
|
||||
|
@ -83,14 +92,14 @@ public interface Univariate {
|
|||
void addValue(double v);
|
||||
|
||||
/**
|
||||
* Returns the <a href=http://www.xycoon.com/arithmetic_mean.htm>
|
||||
* Returns the <a href="http://www.xycoon.com/arithmetic_mean.htm">
|
||||
* arithmetic mean </a> of the available values
|
||||
* @return The mean or Double.NaN if no values have been added.
|
||||
*/
|
||||
double getMean();
|
||||
|
||||
/**
|
||||
* Returns the <a href=http://www.xycoon.com/geometric_mean.htm>
|
||||
* Returns the <a href="http://www.xycoon.com/geometric_mean.htm">
|
||||
* geometric mean </a> of the available values
|
||||
* @return The geometricMean, Double.NaN if no values have been added,
|
||||
* or if the productof the available values is less than or equal to 0.
|
||||
|
@ -127,6 +136,17 @@ public interface Univariate {
|
|||
*/
|
||||
double getKurtosis();
|
||||
|
||||
/**
|
||||
* Returns the Kurtosis "classification" a distribution can be
|
||||
* leptokurtic (high peak), platykurtic (flat peak),
|
||||
* or mesokurtic (zero kurtosis).
|
||||
*
|
||||
* @return A static constant defined in this interface,
|
||||
* StoredDeviation.LEPTOKURITC, StoredDeviation.PLATYKURTIC, or
|
||||
* StoredDeviation.MESOKURTIC
|
||||
*/
|
||||
int getKurtosisClass();
|
||||
|
||||
/**
|
||||
* Returns the maximum of the available values
|
||||
* @return The max or Double.NaN if no values have been added.
|
||||
|
|
|
@ -54,8 +54,6 @@
|
|||
package org.apache.commons.math.stat;
|
||||
|
||||
import java.io.Serializable;
|
||||
|
||||
import org.apache.commons.math.util.DoubleArray;
|
||||
import org.apache.commons.math.util.FixedDoubleArray;
|
||||
|
||||
/**
|
||||
|
@ -66,203 +64,32 @@ import org.apache.commons.math.util.FixedDoubleArray;
|
|||
* Integers, floats and longs can be added, but they will be converted
|
||||
* to doubles by addValue().
|
||||
*
|
||||
* @author <a href="mailto:tobrien@apache.org">Tim O'Brien</a>
|
||||
* @author Brent Worden
|
||||
* @version $Revision: 1.17 $ $Date: 2003/07/07 23:25:13 $
|
||||
*
|
||||
* @version $Revision: 1.18 $ $Date: 2003/07/09 21:45:23 $
|
||||
*/
|
||||
public class UnivariateImpl implements Univariate, Serializable {
|
||||
public class UnivariateImpl
|
||||
extends AbstractUnivariate
|
||||
implements Univariate, Serializable {
|
||||
|
||||
/** hold the window size **/
|
||||
private int windowSize = Univariate.INFINITE_WINDOW;
|
||||
|
||||
/** Just in case the windowSize is not infinite, we need to
|
||||
* keep an array to remember values 0 to N
|
||||
*/
|
||||
private DoubleArray doubleArray;
|
||||
|
||||
/** count of values that have been added */
|
||||
private int n = 0;
|
||||
|
||||
/** sum of values that have been added */
|
||||
private double sum = Double.NaN;
|
||||
|
||||
/** sum of the square of each value that has been added */
|
||||
private double sumsq = Double.NaN;
|
||||
|
||||
/** min of values that have been added */
|
||||
private double min = Double.NaN;
|
||||
|
||||
/** max of values that have been added */
|
||||
private double max = Double.NaN;
|
||||
|
||||
/** sumLog of values that have been added */
|
||||
private double sumLog = Double.NaN;
|
||||
|
||||
/** mean of values that have been added */
|
||||
private double mean = Double.NaN;
|
||||
|
||||
/** second moment of values that have been added */
|
||||
private double m2 = Double.NaN;
|
||||
|
||||
/** third moment of values that have been added */
|
||||
private double m3 = Double.NaN;
|
||||
|
||||
/** fourth moment of values that have been added */
|
||||
private double m4 = Double.NaN;
|
||||
|
||||
/** variance of values that have been added */
|
||||
private double variance = Double.NaN;
|
||||
|
||||
/** skewness of values that have been added */
|
||||
private double skewness = Double.NaN;
|
||||
|
||||
/** kurtosis of values that have been added */
|
||||
private double kurtosis = Double.NaN;
|
||||
/** fixed storage */
|
||||
private FixedDoubleArray storage = null;
|
||||
|
||||
/** Creates new univariate with an infinite window */
|
||||
public UnivariateImpl() {
|
||||
super();
|
||||
}
|
||||
|
||||
/** Creates a new univariate with a fixed window **/
|
||||
/**
|
||||
* Creates a new univariate with a fixed window
|
||||
* @param window Window Size
|
||||
*/
|
||||
public UnivariateImpl(int window) {
|
||||
setWindowSize(window);
|
||||
}
|
||||
|
||||
/* (non-Javadoc)
|
||||
* @see org.apache.commons.math.stat.Univariate#getN()
|
||||
*/
|
||||
public int getN() {
|
||||
return n;
|
||||
}
|
||||
|
||||
/* (non-Javadoc)
|
||||
* @see org.apache.commons.math.stat.Univariate#getSum()
|
||||
*/
|
||||
public double getSum() {
|
||||
if (windowSize != Univariate.INFINITE_WINDOW) {
|
||||
return StatUtils.sum(doubleArray.getElements());
|
||||
}
|
||||
|
||||
return sum;
|
||||
}
|
||||
|
||||
/* (non-Javadoc)
|
||||
* @see org.apache.commons.math.stat.Univariate#getSumsq()
|
||||
*/
|
||||
public double getSumsq() {
|
||||
if (windowSize != Univariate.INFINITE_WINDOW) {
|
||||
return StatUtils.sumSq(doubleArray.getElements());
|
||||
}
|
||||
|
||||
return sumsq;
|
||||
}
|
||||
|
||||
/* (non-Javadoc)
|
||||
* @see org.apache.commons.math.stat.Univariate#getMean()
|
||||
*/
|
||||
public double getMean() {
|
||||
if (windowSize != Univariate.INFINITE_WINDOW) {
|
||||
return StatUtils.mean(doubleArray.getElements());
|
||||
}
|
||||
|
||||
return mean;
|
||||
super(window);
|
||||
storage = new FixedDoubleArray(window);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the standard deviation for this collection of values
|
||||
* @see org.apache.commons.math.stat.Univariate#getStandardDeviation()
|
||||
*/
|
||||
public double getStandardDeviation() {
|
||||
double stdDev = Double.NaN;
|
||||
if (getN() != 0) {
|
||||
stdDev = Math.sqrt(getVariance());
|
||||
}
|
||||
return (stdDev);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the variance of the values that have been added via West's
|
||||
* algorithm as described by
|
||||
* <a href="http://doi.acm.org/10.1145/359146.359152">Chan, T. F. and
|
||||
* J. G. Lewis 1979, <i>Communications of the ACM</i>,
|
||||
* vol. 22 no. 9, pp. 526-531.</a>.
|
||||
*
|
||||
* @return The variance of a set of values. Double.NaN is returned for
|
||||
* an empty set of values and 0.0 is returned for a <= 1 value set.
|
||||
*/
|
||||
public double getVariance() {
|
||||
if (windowSize != Univariate.INFINITE_WINDOW) {
|
||||
variance = StatUtils.variance(doubleArray.getElements());
|
||||
}
|
||||
return variance;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the skewness of the values that have been added as described by
|
||||
* <a href="http://mathworld.wolfram.com/k-Statistic.html">Equation (6) for k-Statistics</a>.
|
||||
*
|
||||
* @return The skew of a set of values. Double.NaN is returned for
|
||||
* an empty set of values and 0.0 is returned for a <= 2 value set.
|
||||
*/
|
||||
public double getSkewness() {
|
||||
if (windowSize != Univariate.INFINITE_WINDOW) {
|
||||
return StatUtils.skewness(doubleArray.getElements());
|
||||
}
|
||||
return skewness;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the kurtosis of the values that have been added as described by
|
||||
* <a href="http://mathworld.wolfram.com/k-Statistic.html">Equation (7) for k-Statistics</a>.
|
||||
*
|
||||
* @return The kurtosis of a set of values. Double.NaN is returned for
|
||||
* an empty set of values and 0.0 is returned for a <= 3 value set.
|
||||
*/
|
||||
public double getKurtosis() {
|
||||
if (windowSize != Univariate.INFINITE_WINDOW) {
|
||||
return StatUtils.kurtosis(doubleArray.getElements());
|
||||
}
|
||||
return kurtosis;
|
||||
}
|
||||
|
||||
/* (non-Javadoc)
|
||||
* @see org.apache.commons.math.stat.Univariate#getMax()
|
||||
*/
|
||||
public double getMax() {
|
||||
if (windowSize != Univariate.INFINITE_WINDOW) {
|
||||
return StatUtils.max(doubleArray.getElements());
|
||||
}
|
||||
return max;
|
||||
}
|
||||
|
||||
/* (non-Javadoc)
|
||||
* @see org.apache.commons.math.stat.Univariate#getMin()
|
||||
*/
|
||||
public double getMin() {
|
||||
if (windowSize != Univariate.INFINITE_WINDOW) {
|
||||
return StatUtils.min(doubleArray.getElements());
|
||||
}
|
||||
return min;
|
||||
}
|
||||
|
||||
/* (non-Javadoc)
|
||||
* @see org.apache.commons.math.stat.Univariate#getGeometricMean()
|
||||
*/
|
||||
public double getGeometricMean() {
|
||||
|
||||
if (windowSize != Univariate.INFINITE_WINDOW) {
|
||||
return StatUtils.geometricMean(doubleArray.getElements());
|
||||
}
|
||||
|
||||
if (n == 0) {
|
||||
return Double.NaN;
|
||||
} else {
|
||||
return Math.exp(sumLog / (double) n);
|
||||
}
|
||||
}
|
||||
|
||||
/* If windowSize is set to Infinite, moments are calculated using the following
|
||||
* If windowSize is set to Infinite, moments
|
||||
* are calculated using the following
|
||||
* <a href="http://www.spss.com/tech/stat/Algorithms/11.5/descriptives.pdf">
|
||||
* recursive strategy
|
||||
* </a>.
|
||||
|
@ -271,15 +98,15 @@ public class UnivariateImpl implements Univariate, Serializable {
|
|||
*/
|
||||
public void addValue(double value) {
|
||||
|
||||
if (windowSize != Univariate.INFINITE_WINDOW) {
|
||||
if (storage != null) {
|
||||
/* then all getters deligate to StatUtils
|
||||
* and this clause simply adds/rolls a value in the storage array
|
||||
*/
|
||||
if (windowSize == n) {
|
||||
doubleArray.addElementRolling(value);
|
||||
if (getWindowSize() == n) {
|
||||
storage.addElementRolling(value);
|
||||
} else {
|
||||
n++;
|
||||
doubleArray.addElement(value);
|
||||
storage.addElement(value);
|
||||
}
|
||||
|
||||
} else {
|
||||
|
@ -287,57 +114,18 @@ public class UnivariateImpl implements Univariate, Serializable {
|
|||
* is no need to discard the influence of any single item.
|
||||
*/
|
||||
n++;
|
||||
|
||||
if (n <= 1) {
|
||||
/* if n <= 1, initialize the sumLog, min, max, mean, variance and pre-variance */
|
||||
sumLog = 0.0;
|
||||
sum = min = max = mean = value;
|
||||
sumsq = value * value;
|
||||
variance = m2 = 0.0;
|
||||
skewness = kurtosis = 0.0;
|
||||
m2 = m3 = m4 = 0.0;
|
||||
} else {
|
||||
/* otherwise calc these values */
|
||||
sumLog += Math.log(value);
|
||||
sum += value;
|
||||
sumsq += value * value;
|
||||
min = Math.min(min, value);
|
||||
max = Math.max(max, value);
|
||||
|
||||
double dev = value - mean;
|
||||
double v = dev / ((double) n);
|
||||
double v2 = v * v;
|
||||
|
||||
double n0 = (double) n;
|
||||
double n1 = (double) (n - 1);
|
||||
double n2 = (double) (n - 2);
|
||||
double n3 = (double) (n - 3);
|
||||
|
||||
m4 =
|
||||
m4
|
||||
- (4.0 * v * m3)
|
||||
+ (6.0 * v2 * m2)
|
||||
+ ((n0 * n0) - 3 * n1) * (v2 * v2 * n1 * n0);
|
||||
|
||||
m3 = m3 - (3.0 * v * m2) + (n0 * n1 * n2 * v2 * v);
|
||||
|
||||
m2 += n1 * dev * v;
|
||||
|
||||
mean += v;
|
||||
|
||||
variance = (n <= 1) ? 0.0 : m2 / n1;
|
||||
|
||||
skewness =
|
||||
(n <= 2 || variance < 10E-20)
|
||||
? 0.0
|
||||
: (n0 * m3) / (n1 * n2 * Math.sqrt(variance) * variance);
|
||||
|
||||
kurtosis =
|
||||
(n <= 3 || variance < 10E-20)
|
||||
? 0.0
|
||||
: (n0 * (n0 + 1) * m4 - 3 * m2 * m2 * n1)
|
||||
/ (n1 * n2 * n3 * variance * variance);
|
||||
}
|
||||
min.increment(value);
|
||||
max.increment(value);
|
||||
sum.increment(value);
|
||||
sumsq.increment(value);
|
||||
sumLog.increment(value);
|
||||
geoMean.increment(value);
|
||||
|
||||
moment.increment(value);
|
||||
//mean.increment(value);
|
||||
//variance.increment(value);
|
||||
//skewness.increment(value);
|
||||
//kurtosis.increment(value);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -350,9 +138,9 @@ public class UnivariateImpl implements Univariate, Serializable {
|
|||
public String toString() {
|
||||
StringBuffer outBuffer = new StringBuffer();
|
||||
outBuffer.append("UnivariateImpl:\n");
|
||||
outBuffer.append("n: " + n + "\n");
|
||||
outBuffer.append("min: " + min + "\n");
|
||||
outBuffer.append("max: " + max + "\n");
|
||||
outBuffer.append("n: " + getN() + "\n");
|
||||
outBuffer.append("min: " + getMin() + "\n");
|
||||
outBuffer.append("max: " + getMax() + "\n");
|
||||
outBuffer.append("mean: " + getMean() + "\n");
|
||||
outBuffer.append("std dev: " + getStandardDeviation() + "\n");
|
||||
outBuffer.append("skewness: " + getSkewness() + "\n");
|
||||
|
@ -360,33 +148,35 @@ public class UnivariateImpl implements Univariate, Serializable {
|
|||
return outBuffer.toString();
|
||||
}
|
||||
|
||||
/* (non-Javadoc)
|
||||
/**
|
||||
* @see org.apache.commons.math.Univariate#clear()
|
||||
*/
|
||||
public void clear() {
|
||||
this.n = 0;
|
||||
this.min = this.max = Double.NaN;
|
||||
this.sumLog = this.mean = Double.NaN;
|
||||
this.variance = this.skewness = this.kurtosis = Double.NaN;
|
||||
this.m2 = this.m3 = this.m4 = Double.NaN;
|
||||
if (doubleArray != null)
|
||||
doubleArray = new FixedDoubleArray(windowSize);
|
||||
super.clear();
|
||||
if (getWindowSize() != INFINITE_WINDOW) {
|
||||
storage = new FixedDoubleArray(getWindowSize());
|
||||
}
|
||||
}
|
||||
|
||||
/* (non-Javadoc)
|
||||
* @see org.apache.commons.math.Univariate#getWindowSize()
|
||||
/**
|
||||
* @see org.apache.commons.math.stat.AbstractUnivariate#internalValues()
|
||||
*/
|
||||
public int getWindowSize() {
|
||||
return windowSize;
|
||||
protected double[] internalValues() {
|
||||
return storage == null ? null : storage.getValues();
|
||||
}
|
||||
|
||||
/* (non-Javadoc)
|
||||
* @see org.apache.commons.math.Univariate#setWindowSize(int)
|
||||
/**
|
||||
* @see org.apache.commons.math.stat.AbstractUnivariate#start()
|
||||
*/
|
||||
public void setWindowSize(int windowSize) {
|
||||
clear();
|
||||
this.windowSize = windowSize;
|
||||
doubleArray = new FixedDoubleArray(windowSize);
|
||||
protected int start() {
|
||||
return storage.start();
|
||||
}
|
||||
|
||||
/**
|
||||
* @see org.apache.commons.math.stat.AbstractUnivariate#size()
|
||||
*/
|
||||
protected int size() {
|
||||
return storage.getNumElements();
|
||||
}
|
||||
|
||||
}
|
|
@ -0,0 +1,245 @@
|
|||
/* ====================================================================
|
||||
* The Apache Software License, Version 1.1
|
||||
*
|
||||
* Copyright (c) 2003 The Apache Software Foundation. All rights
|
||||
* reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
*
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in
|
||||
* the documentation and/or other materials provided with the
|
||||
* distribution.
|
||||
*
|
||||
* 3. The end-user documentation included with the redistribution, if
|
||||
* any, must include the following acknowlegement:
|
||||
* "This product includes software developed by the
|
||||
* Apache Software Foundation (http://www.apache.org/)."
|
||||
* Alternately, this acknowlegement may appear in the software itself,
|
||||
* if and wherever such third-party acknowlegements normally appear.
|
||||
*
|
||||
* 4. The names "The Jakarta Project", "Commons", and "Apache Software
|
||||
* Foundation" must not be used to endorse or promote products derived
|
||||
* from this software without prior written permission. For written
|
||||
* permission, please contact apache@apache.org.
|
||||
*
|
||||
* 5. Products derived from this software may not be called "Apache"
|
||||
* nor may "Apache" appear in their names without prior written
|
||||
* permission of the Apache Software Foundation.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
|
||||
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||||
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
* DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
|
||||
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
|
||||
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
||||
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
|
||||
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
* ====================================================================
|
||||
*
|
||||
* This software consists of voluntary contributions made by many
|
||||
* individuals on behalf of the Apache Software Foundation. For more
|
||||
* information on the Apache Software Foundation, please see
|
||||
* <http://www.apache.org/>.
|
||||
*/
|
||||
package org.apache.commons.math.stat;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
import org.apache.commons.math.util.NumberTransformer;
|
||||
import org.apache.commons.math.util.TransformerMap;
|
||||
import junit.framework.Test;
|
||||
import junit.framework.TestCase;
|
||||
import junit.framework.TestSuite;
|
||||
|
||||
/**
|
||||
* Test cases for the {@link Univariate} class.
|
||||
*
|
||||
* @version $Revision: 1.1 $ $Date: 2003/07/09 21:45:24 $
|
||||
*/
|
||||
|
||||
public final class MixedListUnivariateImplTest extends TestCase {
|
||||
private double one = 1;
|
||||
private float two = 2;
|
||||
private int three = 3;
|
||||
|
||||
private double mean = 2;
|
||||
private double sumSq = 18;
|
||||
private double sum = 8;
|
||||
private double var = 0.666666666666666666667;
|
||||
private double std = Math.sqrt(var);
|
||||
private double n = 4;
|
||||
private double min = 1;
|
||||
private double max = 3;
|
||||
private double skewness = 0;
|
||||
private double kurtosis = 0.5;
|
||||
private int kClass = StoreUnivariate.LEPTOKURTIC;
|
||||
private double tolerance = 10E-15;
|
||||
|
||||
private TransformerMap transformers = new TransformerMap();
|
||||
|
||||
public MixedListUnivariateImplTest(String name) {
|
||||
super(name);
|
||||
transformers = new TransformerMap();
|
||||
|
||||
transformers.putTransformer(Foo.class, new NumberTransformer() {
|
||||
public double transform(Object o) {
|
||||
return Double.parseDouble(((Foo) o).heresFoo());
|
||||
}
|
||||
});
|
||||
|
||||
transformers.putTransformer(Bar.class, new NumberTransformer() {
|
||||
public double transform(Object o) {
|
||||
return Double.parseDouble(((Bar) o).heresBar());
|
||||
}
|
||||
|
||||
});
|
||||
|
||||
}
|
||||
|
||||
public void setUp() {
|
||||
}
|
||||
|
||||
public static Test suite() {
|
||||
TestSuite suite = new TestSuite(MixedListUnivariateImplTest.class);
|
||||
suite.setName("Mixed List Tests");
|
||||
return suite;
|
||||
}
|
||||
|
||||
/** test stats */
|
||||
public void testStats() {
|
||||
List externalList = new ArrayList();
|
||||
|
||||
StoreUnivariate u = new ListUnivariateImpl(externalList,transformers);
|
||||
|
||||
assertEquals("total count", 0, u.getN(), tolerance);
|
||||
u.addValue(one);
|
||||
u.addValue(two);
|
||||
u.addValue(two);
|
||||
u.addValue(three);
|
||||
assertEquals("N", n, u.getN(), tolerance);
|
||||
assertEquals("sum", sum, u.getSum(), tolerance);
|
||||
assertEquals("sumsq", sumSq, u.getSumsq(), tolerance);
|
||||
assertEquals("var", var, u.getVariance(), tolerance);
|
||||
assertEquals("std", std, u.getStandardDeviation(), tolerance);
|
||||
assertEquals("mean", mean, u.getMean(), tolerance);
|
||||
assertEquals("min", min, u.getMin(), tolerance);
|
||||
assertEquals("max", max, u.getMax(), tolerance);
|
||||
u.clear();
|
||||
assertEquals("total count", 0, u.getN(), tolerance);
|
||||
}
|
||||
|
||||
public void testN0andN1Conditions() throws Exception {
|
||||
List list = new ArrayList();
|
||||
|
||||
StoreUnivariate u = new ListUnivariateImpl(new ArrayList(),transformers);
|
||||
|
||||
assertTrue(
|
||||
"Mean of n = 0 set should be NaN",
|
||||
Double.isNaN(u.getMean()));
|
||||
assertTrue(
|
||||
"Standard Deviation of n = 0 set should be NaN",
|
||||
Double.isNaN(u.getStandardDeviation()));
|
||||
assertTrue(
|
||||
"Variance of n = 0 set should be NaN",
|
||||
Double.isNaN(u.getVariance()));
|
||||
|
||||
u.addValue(one);
|
||||
|
||||
assertTrue(
|
||||
"Mean of n = 1 set should be value of single item n1, instead it is " + u.getMean() ,
|
||||
u.getMean() == one);
|
||||
|
||||
assertTrue(
|
||||
"StdDev of n = 1 set should be zero, instead it is: "
|
||||
+ u.getStandardDeviation(),
|
||||
u.getStandardDeviation() == 0);
|
||||
assertTrue(
|
||||
"Variance of n = 1 set should be zero",
|
||||
u.getVariance() == 0);
|
||||
}
|
||||
|
||||
public void testSkewAndKurtosis() {
|
||||
ListUnivariateImpl u =
|
||||
new ListUnivariateImpl(new ArrayList(), transformers);
|
||||
|
||||
u.addObject("12.5");
|
||||
u.addObject(new Integer(12));
|
||||
u.addObject("11.8");
|
||||
u.addObject("14.2");
|
||||
u.addObject(new Foo());
|
||||
u.addObject("14.5");
|
||||
u.addObject(new Long(21));
|
||||
u.addObject("8.2");
|
||||
u.addObject("10.3");
|
||||
u.addObject("11.3");
|
||||
u.addObject(new Float(14.1));
|
||||
u.addObject("9.9");
|
||||
u.addObject("12.2");
|
||||
u.addObject(new Bar());
|
||||
u.addObject("12.1");
|
||||
u.addObject("11");
|
||||
u.addObject(new Double(19.8));
|
||||
u.addObject("11");
|
||||
u.addObject("10");
|
||||
u.addObject("8.8");
|
||||
u.addObject("9");
|
||||
u.addObject("12.3");
|
||||
|
||||
|
||||
assertEquals("mean", 12.40455, u.getMean(), 0.0001);
|
||||
assertEquals("variance", 10.00236, u.getVariance(), 0.0001);
|
||||
assertEquals("skewness", 1.437424, u.getSkewness(), 0.0001);
|
||||
assertEquals("kurtosis", 2.37719, u.getKurtosis(), 0.0001);
|
||||
}
|
||||
|
||||
public void testProductAndGeometricMean() throws Exception {
|
||||
ListUnivariateImpl u = new ListUnivariateImpl(new ArrayList(),transformers);
|
||||
u.setWindowSize(10);
|
||||
|
||||
u.addValue(1.0);
|
||||
u.addValue(2.0);
|
||||
u.addValue(3.0);
|
||||
u.addValue(4.0);
|
||||
|
||||
assertEquals(
|
||||
"Geometric mean not expected",
|
||||
2.213364,
|
||||
u.getGeometricMean(),
|
||||
0.00001);
|
||||
|
||||
// Now test rolling - UnivariateImpl should discount the contribution
|
||||
// of a discarded element
|
||||
for (int i = 0; i < 10; i++) {
|
||||
u.addValue(i + 2);
|
||||
}
|
||||
// Values should be (2,3,4,5,6,7,8,9,10,11)
|
||||
assertEquals(
|
||||
"Geometric mean not expected",
|
||||
5.755931,
|
||||
u.getGeometricMean(),
|
||||
0.00001);
|
||||
|
||||
}
|
||||
|
||||
public final class Foo {
|
||||
public String heresFoo() {
|
||||
return "14.9";
|
||||
}
|
||||
}
|
||||
|
||||
public final class Bar {
|
||||
public String heresBar() {
|
||||
return "12.0";
|
||||
}
|
||||
}
|
||||
}
|
|
@ -59,7 +59,7 @@ import junit.framework.TestSuite;
|
|||
|
||||
/**
|
||||
* Test cases for the {@link StatUtils} class.
|
||||
* @version $Revision: 1.5 $ $Date: 2003/07/07 23:25:14 $
|
||||
* @version $Revision: 1.6 $ $Date: 2003/07/09 21:45:24 $
|
||||
*/
|
||||
|
||||
public final class StatUtilsTest extends TestCase {
|
||||
|
@ -99,11 +99,6 @@ public final class StatUtilsTest extends TestCase {
|
|||
assertEquals("sum", sum, StatUtils.sum(values), tolerance);
|
||||
assertEquals("sumsq", sumSq, StatUtils.sumSq(values), tolerance);
|
||||
assertEquals("var", var, StatUtils.variance(values), tolerance);
|
||||
assertEquals(
|
||||
"std",
|
||||
std,
|
||||
StatUtils.standardDeviation(values),
|
||||
tolerance);
|
||||
assertEquals("mean", mean, StatUtils.mean(values), tolerance);
|
||||
assertEquals("min", min, StatUtils.min(values), tolerance);
|
||||
assertEquals("max", max, StatUtils.max(values), tolerance);
|
||||
|
@ -115,9 +110,6 @@ public final class StatUtilsTest extends TestCase {
|
|||
assertTrue(
|
||||
"Mean of n = 0 set should be NaN",
|
||||
Double.isNaN(StatUtils.mean(values)));
|
||||
assertTrue(
|
||||
"Standard Deviation of n = 0 set should be NaN",
|
||||
Double.isNaN(StatUtils.standardDeviation(values)));
|
||||
assertTrue(
|
||||
"Variance of n = 0 set should be NaN",
|
||||
Double.isNaN(StatUtils.variance(values)));
|
||||
|
@ -127,10 +119,6 @@ public final class StatUtilsTest extends TestCase {
|
|||
assertTrue(
|
||||
"Mean of n = 1 set should be value of single item n1",
|
||||
StatUtils.mean(values) == one);
|
||||
assertTrue(
|
||||
"StdDev of n = 1 set should be zero, instead it is: "
|
||||
+ StatUtils.standardDeviation(values),
|
||||
StatUtils.standardDeviation(values) == 0);
|
||||
assertTrue(
|
||||
"Variance of n = 1 set should be zero",
|
||||
StatUtils.variance(values) == 0);
|
||||
|
@ -165,8 +153,6 @@ public final class StatUtilsTest extends TestCase {
|
|||
|
||||
assertEquals("mean", 12.40455, StatUtils.mean(values), 0.0001);
|
||||
assertEquals("variance", 10.00236, StatUtils.variance(values), 0.0001);
|
||||
assertEquals("skewness", 1.437424, StatUtils.skewness(values), 0.0001);
|
||||
assertEquals("kurtosis", 2.37719, StatUtils.kurtosis(values), 0.0001);
|
||||
}
|
||||
|
||||
public void testProductAndGeometricMean() throws Exception {
|
||||
|
@ -177,11 +163,6 @@ public final class StatUtilsTest extends TestCase {
|
|||
24.0,
|
||||
StatUtils.product(values),
|
||||
Double.MIN_VALUE);
|
||||
assertEquals(
|
||||
"Geometric mean not expected",
|
||||
2.213364,
|
||||
StatUtils.geometricMean(values),
|
||||
0.00001);
|
||||
}
|
||||
|
||||
public void testArrayIndexConditions() throws Exception {
|
||||
|
|
|
@ -61,7 +61,7 @@ import junit.framework.TestSuite;
|
|||
* Test cases for the {@link Univariate} class.
|
||||
*
|
||||
* @author Tim Obrien
|
||||
* @version $Revision: 1.5 $ $Date: 2003/07/07 23:19:19 $
|
||||
* @version $Revision: 1.6 $ $Date: 2003/07/09 21:45:24 $
|
||||
*/
|
||||
|
||||
public final class UnivariateImplTest extends TestCase {
|
||||
|
@ -130,7 +130,7 @@ public final class UnivariateImplTest extends TestCase {
|
|||
u.addValue(one);
|
||||
assertTrue("mean should be one (n = 1)",
|
||||
u.getMean() == one);
|
||||
assertTrue("geometric should be one (n = 1)",
|
||||
assertTrue("geometric should be one (n = 1) instead it is " + u.getGeometricMean(),
|
||||
u.getGeometricMean() == one);
|
||||
assertTrue("Std should be zero (n = 1)",
|
||||
u.getStandardDeviation() == 0.0);
|
||||
|
|
|
@ -119,10 +119,10 @@ public class InteractionTest extends TestCase {
|
|||
k.increment(testArray[i]);
|
||||
}
|
||||
|
||||
assertEquals(mean,m.getValue(),tolerance);
|
||||
assertEquals(var,v.getValue(),tolerance);
|
||||
assertEquals(skew ,s.getValue(),tolerance);
|
||||
assertEquals(kurt,k.getValue(),tolerance);
|
||||
assertEquals(mean,m.getResult(),tolerance);
|
||||
assertEquals(var,v.getResult(),tolerance);
|
||||
assertEquals(skew ,s.getResult(),tolerance);
|
||||
assertEquals(kurt,k.getResult(),tolerance);
|
||||
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in New Issue