Changes the Univariate implementations to use the UnivariateStatistic package. Slims down StatUtils by removing some of the higher moments. Reimplmenets ListUnivariate to work with NumberTransformers, turning into a Mixed Object List Univariate.

git-svn-id: https://svn.apache.org/repos/asf/jakarta/commons/proper/math/trunk@140983 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Mark R. Diggory 2003-07-09 21:46:33 +00:00
parent 59f46d6a64
commit 7c808d9071
16 changed files with 968 additions and 900 deletions

View File

@ -52,267 +52,70 @@
* <http://www.apache.org/>.
*/
package org.apache.commons.math.stat;
import java.util.Arrays;
import org.apache.commons.math.stat.univariate.rank.Percentile;
/**
* Provides univariate measures for an array of doubles.
*
* @author <a href="mailto:tobrien@apache.org">Tim O'Brien</a>
* Provides univariate measures for an array of doubles.
* @version $Revision: 1.9 $ $Date: 2003/07/09 21:45:23 $
*/
public abstract class AbstractStoreUnivariate implements StoreUnivariate {
public abstract class AbstractStoreUnivariate
extends AbstractUnivariate
implements StoreUnivariate {
/** Percentile */
protected Percentile percentile = new Percentile(50);
/**
* Returns the skewness of this collection of values
* @see org.apache.commons.math.stat.StoreUnivariate#getSkewness()
* Create an AbstractStoreUnivariate
*/
public double getSkewness() {
// Initialize the skewness
double skewness = Double.NaN;
// Get the mean and the standard deviation
double mean = getMean();
double stdDev = getStandardDeviation();
// Sum the cubes of the distance from the mean divided by the
// standard deviation
double accum = 0.0;
for (int i = 0; i < getN(); i++) {
accum += Math.pow((getElement(i) - mean) / stdDev, 3.0);
}
// Get N
double n = getN();
// Calculate skewness
skewness = (n / ((n - 1) * (n - 2))) * accum;
return skewness;
public AbstractStoreUnivariate() {
super();
}
/**
* Returns the kurtosis for this collection of values
* @see org.apache.commons.math.stat.StoreUnivariate#getKurtosis()
* Create an AbstractStoreUnivariate with a specific Window
* @param window WindowSIze for stat calculation
*/
public double getKurtosis() {
// Initialize the kurtosis
double kurtosis = Double.NaN;
// Get the mean and the standard deviation
double mean = getMean();
double stdDev = getStandardDeviation();
// Sum the ^4 of the distance from the mean divided by the
// standard deviation
double accum = 0.0;
for (int i = 0; i < getN(); i++) {
accum += Math.pow((getElement(i) - mean) / stdDev, 4.0);
}
// Get N
double n = getN();
double coefficientOne = (n * (n + 1)) / ((n - 1) * (n - 2) * (n - 3));
double termTwo = ((3 * Math.pow(n - 1, 2.0)) / ((n - 2) * (n - 3)));
// Calculate kurtosis
kurtosis = (coefficientOne * accum) - termTwo;
return kurtosis;
public AbstractStoreUnivariate(int window) {
super(window);
}
/**
* Returns the type or class of kurtosis that this collection of
* values exhibits
* @see org.apache.commons.math.stat.StoreUnivariate#getKurtosisClass()
*/
public int getKurtosisClass() {
int kClass = StoreUnivariate.MESOKURTIC;
double kurtosis = getKurtosis();
if (kurtosis > 0) {
kClass = StoreUnivariate.LEPTOKURTIC;
} else if (kurtosis < 0) {
kClass = StoreUnivariate.PLATYKURTIC;
}
return (kClass);
}
/**
* Returns the mean for this collection of values
* @see org.apache.commons.math.stat.Univariate#getMean()
*/
public double getMean() {
double arithMean = getSum() / getN();
return arithMean;
}
/**
* Returns the geometric mean for this collection of values
* @see org.apache.commons.math.stat.Univariate#getGeometricMean()
*/
public double getGeometricMean() {
double gMean = Double.NaN;
if (getN() > 0) {
double sumLog = 0.0;
for (int i = 0; i < getN(); i++) {
sumLog += Math.log(getElement(i));
}
gMean = Math.exp(sumLog / (double)getN() );
}
return gMean;
}
/**
* Returns the variance for this collection of values
* @see org.apache.commons.math.stat.Univariate#getVariance()
*/
public double getVariance() {
// Initialize variance
double variance = Double.NaN;
if (getN() == 1) {
// If this is a single value
variance = 0;
} else if (getN() > 1) {
// Get the mean
double mean = getMean();
// Calculate the sum of the squares of the distance between each
// value and the mean
double accum = 0.0;
for (int i = 0; i < getN(); i++) {
accum += Math.pow((getElement(i) - mean), 2.0);
}
// Divide the accumulator by N - Hmmm... unbiased or biased?
variance = accum / (getN() - 1);
}
return variance;
}
/**
* Returns the standard deviation for this collection of values
* @see org.apache.commons.math.stat.Univariate#getStandardDeviation()
*/
public double getStandardDeviation() {
double stdDev = Double.NaN;
if (getN() != 0) {
stdDev = Math.sqrt(getVariance());
}
return (stdDev);
}
/**
* Returns the maximum value contained herein.
* @see org.apache.commons.math.stat.Univariate#getMax()
*/
public double getMax() {
// Initialize maximum to NaN
double max = Double.NaN;
for (int i = 0; i < getN(); i++) {
if (i == 0) {
max = getElement(i);
} else {
if (getElement(i) > max) {
max = getElement(i);
}
}
}
return max;
}
/**
* Returns the minimum value contained herein
* @see org.apache.commons.math.stat.Univariate#getMin()
*/
public double getMin() {
// Initialize minimum to NaN
double min = Double.NaN;
for (int i = 0; i < getN(); i++) {
if (i == 0) {
min = getElement(i);
} else {
if (getElement(i) < min) {
min = getElement(i);
}
}
}
return min;
}
/**
* Returns the sum of all values contained herein
* @see org.apache.commons.math.stat.Univariate#getSum()
*/
public double getSum() {
double accum = 0.0;
for (int i = 0; i < getN(); i++) {
accum += getElement(i);
}
return accum;
}
/**
* Returns the sun of the squares of all values contained herein
* @see org.apache.commons.math.stat.Univariate#getSumsq()
*/
public double getSumsq() {
double accum = 0.0;
for (int i = 0; i < getN(); i++) {
accum += Math.pow(getElement(i), 2.0);
}
return accum;
}
/**
* @see org.apache.commons.math.stat.StoreUnivariate#getSortedValues()
*
*/
public double[] getSortedValues() {
double[] values = getValues();
Arrays.sort(values);
return values;
}
/**
* Returns an estimate for the pth percentile of the stored values
* @see org.apache.commons.math.stat.StoreUnivariate#getPercentile(double)
*/
public double getPercentile(double p) {
if ((p > 100) || (p <= 0)) {
throw new IllegalArgumentException("invalid percentile value");
}
double n = (double) getN();
if (n == 0) {
return Double.NaN;
}
if (n == 1) {
return getElement(0); // always return single value for n = 1
}
double pos = p * (n + 1) / 100;
double fpos = Math.floor(pos);
int intPos = (int) fpos;
double d = pos - fpos;
double[] sorted = getSortedValues();
if (pos < 1) {
return sorted[0];
}
if (pos > n) {
return sorted[getN() - 1];
}
double lower = sorted[intPos - 1];
double upper = sorted[intPos];
return lower + d * (upper - lower);
percentile.setPercentile(p);
return percentile.evaluate(this.getValues(), this.start(), this.size());
}
/**
* @see org.apache.commons.math.stat2.AbstractStoreUnivariate#getSortedValues()
*/
public double[] getSortedValues() {
double[] sort = getValues();
Arrays.sort(sort);
return sort;
}
/**
* @see org.apache.commons.math.stat.Univariate#addValue(double)
*/
public abstract void addValue(double value);
/**
* @see org.apache.commons.math.stat.StoreUnivariate#getValues()
*/
public abstract double[] getValues();
/**
* @see org.apache.commons.math.stat.StoreUnivariate#getElement(int)
*/
public abstract double getElement(int index);
}

View File

@ -0,0 +1,389 @@
/* ====================================================================
* The Apache Software License, Version 1.1
*
* Copyright (c) 2003 The Apache Software Foundation. All rights
* reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. The end-user documentation included with the redistribution, if
* any, must include the following acknowlegement:
* "This product includes software developed by the
* Apache Software Foundation (http://www.apache.org/)."
* Alternately, this acknowlegement may appear in the software itself,
* if and wherever such third-party acknowlegements normally appear.
*
* 4. The names "The Jakarta Project", "Commons", and "Apache Software
* Foundation" must not be used to endorse or promote products derived
* from this software without prior written permission. For written
* permission, please contact apache@apache.org.
*
* 5. Products derived from this software may not be called "Apache"
* nor may "Apache" appear in their names without prior written
* permission of the Apache Software Foundation.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
* ====================================================================
*
* This software consists of voluntary contributions made by many
* individuals on behalf of the Apache Software Foundation. For more
* information on the Apache Software Foundation, please see
* <http://www.apache.org/>.
*/
package org.apache.commons.math.stat;
import org.apache.commons.math.stat.univariate.moment.FourthMoment;
import org.apache.commons.math.stat.univariate.moment.GeometricMean;
import org.apache.commons.math.stat.univariate.moment.Kurtosis;
import org.apache.commons.math.stat.univariate.moment.Mean;
import org.apache.commons.math.stat.univariate.moment.Skewness;
import org.apache.commons.math.stat.univariate.moment.Variance;
import org.apache.commons.math.stat.univariate.rank.Max;
import org.apache.commons.math.stat.univariate.rank.Min;
import org.apache.commons.math.stat.univariate.summary.Sum;
import org.apache.commons.math.stat.univariate.summary.SumOfLogs;
import org.apache.commons.math.stat.univariate.summary.SumOfSquares;
/**
* Provides univariate measures for an array of doubles.
* @version $Revision: 1.1 $ $Date: 2003/07/09 21:45:23 $
*/
public abstract class AbstractUnivariate implements Univariate {
/** hold the window size **/
protected int windowSize = Univariate.INFINITE_WINDOW;
/** count of values that have been added */
protected int n = 0;
/** FourthMoment is used in calculating mean, variance,skew and kurtosis */
protected FourthMoment moment = null;
/** sum of values that have been added */
protected Sum sum = null;
/** sum of the square of each value that has been added */
protected SumOfSquares sumsq = null;
/** min of values that have been added */
protected Min min = null;
/** max of values that have been added */
protected Max max = null;
/** sumLog of values that have been added */
protected SumOfLogs sumLog = null;
/** geoMean of values that have been added */
protected GeometricMean geoMean = null;
/** mean of values that have been added */
protected Mean mean = null;
/** variance of values that have been added */
protected Variance variance = null;
/** skewness of values that have been added */
protected Skewness skewness = null;
/** kurtosis of values that have been added */
protected Kurtosis kurtosis = null;
/**
* Construct an AbstractUnivariate
*/
public AbstractUnivariate() {
super();
sum = new Sum();
sumsq = new SumOfSquares();
min = new Min();
max = new Max();
sumLog = new SumOfLogs();
geoMean = new GeometricMean();
moment = new FourthMoment();
mean = new Mean(moment);
variance = new Variance(moment);
skewness = new Skewness(moment);
kurtosis = new Kurtosis(moment);
}
/**
* Construct an AbstractUnivariate with a window
* @param window The Window Size
*/
public AbstractUnivariate(int window) {
this();
setWindowSize(window);
}
/**
* Returns the internalValues array.
* @return the array
*/
protected abstract double[] internalValues();
/**
* Returns the start index of the array
* @return start index
*/
protected abstract int start();
/**
* Returns the size of the array appropriate for doing calculations.
* @return Usually this is just numElements.
*/
protected abstract int size();
/**
* If windowSize is set to Infinite,
* statistics are calculated using the following
* <a href="http://www.spss.com/tech/stat/Algorithms/11.5/descriptives.pdf">
* recursive strategy
* </a>.
* @see org.apache.commons.math.stat.Univariate#addValue(double)
*/
public abstract void addValue(double value);
/**
* @see org.apache.commons.math.stat.Univariate#getN()
*/
public int getN() {
return n;
}
/**
* @see org.apache.commons.math.stat.Univariate#getSum()
*/
public double getSum() {
double[] v = internalValues();
if (v != null) {
return sum.evaluate(v, this.start(), this.size());
}
return sum.getResult();
}
/**
* @see org.apache.commons.math.stat.Univariate#getSumsq()
*/
public double getSumsq() {
double[] v = internalValues();
if (v != null) {
return sumsq.evaluate(v, this.start(), this.size());
}
return sumsq.getResult();
}
/**
* @see org.apache.commons.math.stat.Univariate#getMean()
*/
public double getMean() {
double[] v = internalValues();
if (v != null) {
return mean.evaluate(v, this.start(), this.size());
}
return mean.getResult();
}
/**
* Returns the standard deviation for this collection of values
* @see org.apache.commons.math.stat.Univariate#getStandardDeviation()
*/
public double getStandardDeviation() {
double stdDev = Double.NaN;
if (getN() > 0) {
if (getN() > 1) {
stdDev = Math.sqrt(getVariance());
} else {
stdDev = 0.0;
}
}
return (stdDev);
}
/**
* Returns the variance of the values that have been added via West's
* algorithm as described by
* <a href="http://doi.acm.org/10.1145/359146.359152">Chan, T. F. and
* J. G. Lewis 1979, <i>Communications of the ACM</i>,
* vol. 22 no. 9, pp. 526-531.</a>.
*
* @return The variance of a set of values.
* Double.NaN is returned for an empty
* set of values and 0.0 is returned for
* a &lt;= 1 value set.
*/
public double getVariance() {
double[] v = internalValues();
if (v != null) {
return variance.evaluate(v, this.start(), this.size());
}
return variance.getResult();
}
/**
* Returns the skewness of the values that have been added as described by
* <a href="http://mathworld.wolfram.com/k-Statistic.html">
* Equation (6) for k-Statistics</a>.
* @return The skew of a set of values. Double.NaN is returned for
* an empty set of values and 0.0 is returned for a
* &lt;= 2 value set.
*/
public double getSkewness() {
double[] v = internalValues();
if (v != null) {
return skewness.evaluate(v, this.start(), this.size());
}
return skewness.getResult();
}
/**
* Returns the kurtosis of the values that have been added as described by
* <a href="http://mathworld.wolfram.com/k-Statistic.html">
* Equation (7) for k-Statistics</a>.
*
* @return The kurtosis of a set of values. Double.NaN is returned for
* an empty set of values and 0.0 is returned for a &lt;= 3
* value set.
*/
public double getKurtosis() {
double[] v = internalValues();
if (v != null) {
return kurtosis.evaluate(v, this.start(), this.size());
}
return kurtosis.getResult();
}
/**
* @see org.apache.commons.math.stat.StoreUnivariate#getKurtosisClass()
*/
public int getKurtosisClass() {
int kClass = Univariate.MESOKURTIC;
double kurtosis = getKurtosis();
if (kurtosis > 0) {
kClass = Univariate.LEPTOKURTIC;
} else if (kurtosis < 0) {
kClass = Univariate.PLATYKURTIC;
}
return (kClass);
}
/**
* @see org.apache.commons.math.stat.Univariate#getMax()
*/
public double getMax() {
double[] v = internalValues();
if (v != null) {
return max.evaluate(v, this.start(), this.size());
}
return max.getResult();
}
/**
* @see org.apache.commons.math.stat.Univariate#getMin()
*/
public double getMin() {
double[] v = internalValues();
if (v != null) {
return min.evaluate(v, this.start(), this.size());
}
return min.getResult();
}
/**
* @see org.apache.commons.math.stat.Univariate#getGeometricMean()
*/
public double getGeometricMean() {
double[] v = internalValues();
if (v != null) {
return geoMean.evaluate(v, this.start(), this.size());
}
return geoMean.getResult();
}
/**
* Generates a text report displaying
* univariate statistics from values that
* have been added.
* @return String with line feeds displaying statistics
*/
public String toString() {
StringBuffer outBuffer = new StringBuffer();
outBuffer.append("UnivariateImpl:\n");
outBuffer.append("n: " + n + "\n");
outBuffer.append("min: " + min + "\n");
outBuffer.append("max: " + max + "\n");
outBuffer.append("mean: " + getMean() + "\n");
outBuffer.append("std dev: " + getStandardDeviation() + "\n");
outBuffer.append("skewness: " + getSkewness() + "\n");
outBuffer.append("kurtosis: " + getKurtosis() + "\n");
return outBuffer.toString();
}
/**
* @see org.apache.commons.math.Univariate#clear()
*/
public void clear() {
this.n = 0;
min.clear();
max.clear();
sum.clear();
sumLog.clear();
sumsq.clear();
geoMean.clear();
moment.clear();
mean.clear();
variance.clear();
skewness.clear();
kurtosis.clear();
}
/**
* @see org.apache.commons.math.Univariate#getWindowSize()
*/
public int getWindowSize() {
return windowSize;
}
/**
* @see org.apache.commons.math.Univariate#setWindowSize(int)
*/
public void setWindowSize(int windowSize) {
clear();
this.windowSize = windowSize;
}
}

View File

@ -54,49 +54,71 @@
package org.apache.commons.math.stat;
import java.util.List;
import org.apache.commons.beanutils.PropertyUtils;
import org.apache.commons.math.util.BeanTransformer;
/**
* This implementation of StoreUnivariate uses commons-beanutils to gather
* univariate statistics for a List of Java Beans by property. This
* implementation uses beanutils' PropertyUtils to get a simple, nested,
* indexed, mapped, or combined property from an element of a List.
*
* @author <a href="mailto:tobrien@apache.org">Tim O'Brien</a>
* @version $Revision: 1.3 $ $Date: 2003/07/09 21:45:23 $
*/
public class BeanListUnivariateImpl extends ListUnivariateImpl {
/**
* propertyName of the property to get from the bean
*/
private String propertyName;
/**
* Construct a BeanListUnivariate with specified
* backing list
* @param list Backing List
*/
public BeanListUnivariateImpl(List list) {
super( list );
super(list);
}
/**
* Construct a BeanListUnivariate with specified
* backing list and propertyName
* @param list Backing List
* @param propertyName Bean propertyName
*/
public BeanListUnivariateImpl(List list, String propertyName) {
super( list );
setPropertyName( propertyName );
super(list);
setPropertyName(propertyName);
this.transformer = new BeanTransformer(propertyName);
}
/**
* @return propertyName
*/
public String getPropertyName() {
return propertyName;
}
/**
* @param propertyName Name of Property
*/
public void setPropertyName(String propertyName) {
System.out.println( "Set prop name; " + propertyName );
System.out.println("Set prop name; " + propertyName);
this.propertyName = propertyName;
this.transformer = new BeanTransformer(propertyName);
}
/* (non-Javadoc)
/**
* @see org.apache.commons.math.Univariate#addValue(double)
*/
public void addValue(double v) {
String msg = "The BeanListUnivariateImpl does not accept values " +
"through the addValue method. Because elements of this list " +
"are JavaBeans, one must be sure to set the 'propertyName' " +
"property and add new Beans to the underlying list via the " +
"addBean(Object bean) method";
throw new UnsupportedOperationException( msg );
String msg =
"The BeanListUnivariateImpl does not accept values "
+ "through the addValue method. Because elements of this list "
+ "are JavaBeans, one must be sure to set the 'propertyName' "
+ "property and add new Beans to the underlying list via the "
+ "addBean(Object bean) method";
throw new UnsupportedOperationException(msg);
}
/**
@ -108,30 +130,4 @@ public class BeanListUnivariateImpl extends ListUnivariateImpl {
list.add(bean);
}
/**
* Reads the property of an element in the list.
*
* @param index The location of the value in the internal List
* @return A Number object representing the value at a given
* index
*/
protected Number getInternalIndex(int index) {
try {
Number n = (Number) PropertyUtils.getProperty( list.get( index ),
propertyName );
return n;
} catch( Exception e ) {
// TODO: We could use a better strategy for error handling
// here.
// This is a somewhat foolish design decision, but until
// we figure out what needs to be done, let's return NaN
return new Double(Double.NaN);
}
}
}

View File

@ -62,7 +62,8 @@ import org.apache.commons.collections.HashBag;
* Maintains a frequency distribution. <br>
* Accepts int, long or string values, converting
* all to Strings and maintaining frequency counts.
*
*
* @version $Revision: 1.4 $ $Date: 2003/07/09 21:45:23 $
*/
public class Frequency {
/** name for this frequency distribution. */

View File

@ -54,132 +54,167 @@
package org.apache.commons.math.stat;
import java.util.List;
import org.apache.commons.math.util.DefaultTransformer;
import org.apache.commons.math.util.NumberTransformer;
/**
* @author <a href="mailto:tobrien@apache.org">Tim O'Brien</a>
* @version $Revision: 1.3 $ $Date: 2003/07/09 21:45:23 $
*/
public class ListUnivariateImpl extends AbstractStoreUnivariate {
public class ListUnivariateImpl
extends AbstractStoreUnivariate
implements StoreUnivariate {
// Holds the value of the windowSize, initial windowSize is the constant
// Univariate.INFINITE_WINDOW
private int windowSize = Univariate.INFINITE_WINDOW;
/**
* Holds a reference to a list - GENERICs are going to make
* out lives easier here as we could only accept List<Number>
*/
protected List list;
// Holds a reference to a list - GENERICs are going to make
// out lives easier here as we could only accept List<Number>
List list;
/** Number Transformer maps Objects to Number for us. */
protected NumberTransformer transformer;
/**
* Construct a ListUnivariate with a specific List.
* @param list The list that will back this Univariate
*/
public ListUnivariateImpl(List list) {
super();
this.list = list;
transformer = new DefaultTransformer();
}
/**
* Construct a ListUnivariate with a specific List.
* @param list The list that will back this Univariate
*/
public ListUnivariateImpl(List list, NumberTransformer transformer) {
super();
this.list = list;
this.transformer = transformer;
}
/* (non-Javadoc)
/**
* @see org.apache.commons.math.StoreUnivariate#getValues()
*/
public double[] getValues() {
int startIndex = 0;
int endIndex = list.size() - 1;
int length = list.size();
// If the window size is not INFINITE_WINDOW AND
// the current list is larger that the window size, we need to
// take into account only the last n elements of the list
// as definied by windowSize
if (windowSize != Univariate.INFINITE_WINDOW &&
windowSize < list.size()) {
startIndex = (list.size() - 1) - windowSize;
if (windowSize != Univariate.INFINITE_WINDOW
&& windowSize < list.size()) {
length = list.size() - Math.max(0, list.size() - windowSize);
}
// Create an array to hold all values
double[] copiedArray = new double[list.size() - startIndex];
double[] copiedArray = new double[length];
for( int i = startIndex; i <= endIndex; i++ ) {
Number n = (Number) getInternalIndex( i );
copiedArray[i] = n.doubleValue();
i++;
for (int i = 0; i < copiedArray.length; i++) {
copiedArray[i] = getElement(i);
}
return copiedArray;
}
/* (non-Javadoc)
/**
* @see org.apache.commons.math.StoreUnivariate#getElement(int)
*/
public double getElement(int index) {
double value = Double.NaN;
if (windowSize != Univariate.INFINITE_WINDOW &&
windowSize < list.size()) {
int calcIndex = (list.size() - windowSize) + index;
int calcIndex = index;
Number n = (Number) getInternalIndex(calcIndex);
value = n.doubleValue();
} else {
Number n = (Number) getInternalIndex(index);
value = n.doubleValue();
if (windowSize != Univariate.INFINITE_WINDOW
&& windowSize < list.size()) {
calcIndex = (list.size() - windowSize) + index;
}
try {
value = transformer.transform(list.get(calcIndex));
} catch (Exception e) {
e.printStackTrace();
}
return value;
}
/* (non-Javadoc)
/**
* @see org.apache.commons.math.Univariate#getN()
*/
public int getN() {
int N = 0;
int n = 0;
if (windowSize != Univariate.INFINITE_WINDOW) {
if (list.size() > windowSize) {
N = windowSize;
n = windowSize;
} else {
N = list.size();
n = list.size();
}
} else {
N = list.size();
n = list.size();
}
return N;
return n;
}
/* (non-Javadoc)
/**
* @see org.apache.commons.math.Univariate#addValue(double)
*/
public void addValue(double v) {
list.add(new Double(v));
}
/* (non-Javadoc)
* @see org.apache.commons.math.Univariate#clear()
/**
* Adds an object to this list.
* @param o Object to add to the list
*/
public void clear() {
list.clear();
}
/* (non-Javadoc)
* @see org.apache.commons.math.Univariate#getWindowSize()
*/
public int getWindowSize() {
return windowSize;
}
/* (non-Javadoc)
* @see org.apache.commons.math.Univariate#setWindowSize(int)
*/
public void setWindowSize(int windowSize) {
this.windowSize = windowSize;
public void addObject(Object o) {
list.add(o);
}
/**
* This function exists to support the function of classes which
* extend the ListUnivariateImpl.
*
* @param index The location of the value in the internal List
* @return A Number object representing the value at a given
* index
* @see org.apache.commons.math.Univariate#clear()
*/
protected Number getInternalIndex(int index) {
Number n = (Number) list.get( index );
return n;
public void clear() {
super.clear();
list.clear();
}
}
/**
* @see org.apache.commons.math.stat.AbstractUnivariate#internalValues()
*/
protected double[] internalValues() {
return getValues();
}
/**
* @see org.apache.commons.math.stat.AbstractUnivariate#start()
*/
protected int start() {
return 0;
}
/**
* @see org.apache.commons.math.stat.AbstractUnivariate#size()
*/
protected int size() {
return getN();
}
/**
* @return
*/
public NumberTransformer getTransformer() {
return transformer;
}
/**
* @param transformer
*/
public void setTransformer(NumberTransformer transformer) {
this.transformer = transformer;
}
}

View File

@ -57,6 +57,7 @@ package org.apache.commons.math.stat;
* StatUtils provides easy static implementations of common double[] based
* statistical methods. These return a single result value or in some cases, as
* identified in the javadoc for each method, Double.NaN.
* @version $Revision: 1.14 $ $Date: 2003/07/09 21:45:23 $
*/
public class StatUtils {
@ -160,29 +161,6 @@ public class StatUtils {
return sumLog;
}
/**
* Returns the geometric mean for this collection of values
* @param values Is a double[] containing the values
* @return the geometric mean or Double.NaN if the array is empty or
* any of the values are &lt;= 0.
*/
public static double geometricMean(double[] values) {
return geometricMean(values, 0, values.length);
}
/**
* Returns the geometric mean for this collection of values
* @param values Is a double[] containing the values
* @param begin processing at this point in the array
* @param length processing at this point in the array
* @return the geometric mean or Double.NaN if the array is empty or
* any of the values are &lt;= 0.
*/
public static double geometricMean(double[] values, int begin, int length) {
testInput(values, begin, length);
return Math.exp(sumLog(values, begin, length) / (double) length );
}
/**
* Returns the <a href=http://www.xycoon.com/arithmetic_mean.htm>
* arithmetic mean </a> of the available values
@ -206,36 +184,6 @@ public class StatUtils {
return sum(values, begin, length) / ((double) length);
}
/**
*
* @param values Is a double[] containing the values
* @return the result, Double.NaN if no values for an empty array
* or 0.0 for a single value set.
*/
public static double standardDeviation(double[] values) {
return standardDeviation(values, 0, values.length);
}
/**
*
* @param values Is a double[] containing the values
* @param begin processing at this point in the array
* @param length processing at this point in the array
* @return the result, Double.NaN if no values for an empty array
* or 0.0 for a single value set.
*/
public static double standardDeviation(
double[] values,
int begin,
int length) {
testInput(values, begin, length);
double stdDev = Double.NaN;
if (values.length != 0) {
stdDev = Math.sqrt(variance(values, begin, length));
}
return (stdDev);
}
/**
* Returns the variance of the available values. This uses a corrected
* two pass algorithm of the following
@ -289,122 +237,6 @@ public class StatUtils {
return variance;
}
/**
* Returns the skewness of a collection of values. Skewness is a
* measure of the assymetry of a given distribution.
* @param values Is a double[] containing the values
* @return the skewness of the values or Double.NaN if the array is empty
*/
public static double skewness(double[] values) {
return skewness(values, 0, values.length);
}
/**
* Returns the skewness of a collection of values. Skewness is a
* measure of the assymetry of a given distribution.
* @param values Is a double[] containing the values
* @param begin processing at this point in the array
* @param length processing at this point in the array
* @return the skewness of the values or Double.NaN if the array is empty
*/
public static double skewness(double[] values, int begin, int length) {
testInput(values, begin, length);
// Initialize the skewness
double skewness = Double.NaN;
// Get the mean and the standard deviation
double mean = mean(values, begin, length);
// Calc the std, this is implemented here instead of using the
// standardDeviation method eliminate a duplicate pass to get the mean
double accum = 0.0;
double accum2 = 0.0;
for (int i = begin; i < begin + length; i++) {
accum += Math.pow((values[i] - mean), 2.0);
accum2 += (values[i] - mean);
}
double stdDev =
Math.sqrt(
(accum - (Math.pow(accum2, 2) / ((double) length)))
/ (double) (length - 1));
// Calculate the skew as the sum the cubes of the distance
// from the mean divided by the standard deviation.
double accum3 = 0.0;
for (int i = begin; i < begin + length; i++) {
accum3 += Math.pow((values[i] - mean) / stdDev, 3.0);
}
// Get N
double n = length;
// Calculate skewness
skewness = (n / ((n - 1) * (n - 2))) * accum3;
return skewness;
}
/**
* Returns the kurtosis for this collection of values. Kurtosis is a
* measure of the "peakedness" of a distribution.
* @param values Is a double[] containing the values
* @return the kurtosis of the values or Double.NaN if the array is empty
*/
public static double kurtosis(double[] values) {
return kurtosis(values, 0, values.length);
}
/**
* Returns the kurtosis for this collection of values. Kurtosis is a
* measure of the "peakedness" of a distribution.
* @param values Is a double[] containing the values
* @param begin processing at this point in the array
* @param length processing at this point in the array
* @return the kurtosis of the values or Double.NaN if the array is empty
*/
public static double kurtosis(double[] values, int begin, int length) {
testInput(values, begin, length);
// Initialize the kurtosis
double kurtosis = Double.NaN;
// Get the mean and the standard deviation
double mean = mean(values, begin, length);
// Calc the std, this is implemented here instead of using the
// standardDeviation method eliminate a duplicate pass to get the mean
double accum = 0.0;
double accum2 = 0.0;
for (int i = begin; i < begin + length; i++) {
accum += Math.pow((values[i] - mean), 2.0);
accum2 += (values[i] - mean);
}
double stdDev =
Math.sqrt(
(accum - (Math.pow(accum2, 2) / ((double) length)))
/ (double) (length - 1));
// Sum the ^4 of the distance from the mean divided by the
// standard deviation
double accum3 = 0.0;
for (int i = begin; i < begin + length; i++) {
accum3 += Math.pow((values[i] - mean) / stdDev, 4.0);
}
// Get N
double n = length;
double coefficientOne = (n * (n + 1)) / ((n - 1) * (n - 2) * (n - 3));
double termTwo = ((3 * Math.pow(n - 1, 2.0)) / ((n - 2) * (n - 3)));
// Calculate kurtosis
kurtosis = (coefficientOne * accum3) - termTwo;
return kurtosis;
}
/**
* Returns the maximum of the available values
* @param values Is a double[] containing the values

View File

@ -60,52 +60,10 @@ package org.apache.commons.math.stat;
* Univariate provides additional percentile functionality
* such as. This additional functionality comes with
* a price of increased storage costs.
*
* @author <a href="mailto:tobrien@apache.org">Tim O'Brien</a>
* @version $Revision: 1.7 $ $Date: 2003/07/09 21:45:23 $
*/
public interface StoreUnivariate extends Univariate {
/**
* A LEPTOKURTIC set has a positive kurtosis (a high peak)
*/
public static int LEPTOKURTIC = 1;
/**
* A MESOKURTIC set has a kurtosis of 0 - it is a normal distribution
*/
public static int MESOKURTIC = 0;
/**
* A PLATYKURTIC set has a negative kurtosis (a flat "peak")
*/
public static int PLATYKURTIC = -1;
/**
* Returns the skewness of a given distribution. Skewness is a
* measure of the assymetry of a given distribution.
*
* @return The skewness of this distribution
*/
double getSkewness();
/**
* Kurtosis is a measure of the "peakedness" of a distribution
*
* @return the mode
*/
double getKurtosis();
/**
* Returns the Kurtosis "classification" a distribution can be
* leptokurtic (high peak), platykurtic (flat peak),
* or mesokurtic (zero kurtosis).
*
* @return A static constant defined in this interface,
* StoredDeviation.LEPTOKURITC, StoredDeviation.PLATYKURTIC, or
* StoredDeviation.MESOKURTIC
*/
int getKurtosisClass();
/**
* Returns the current set of values in an array of double primitives.
* The order of addition is preserved. The returned array is a fresh

View File

@ -56,81 +56,80 @@ package org.apache.commons.math.stat;
import org.apache.commons.math.util.ContractableDoubleArray;
/**
* @author <a href="mailto:tobrien@apache.org">Tim O'Brien</a>
* @version $Revision: 1.4 $ $Date: 2003/07/09 21:45:23 $
*/
public class StoreUnivariateImpl extends AbstractStoreUnivariate {
// Use an internal double array
ContractableDoubleArray eDA;
// Store the windowSize
private int windowSize = Univariate.INFINITE_WINDOW;
/** A contractable double array is used. memory is reclaimed when
* the storage of the array becomes too empty.
*/
protected ContractableDoubleArray eDA;
/**
* Construct a StoreUnivariateImpl
*/
public StoreUnivariateImpl() {
// A contractable double array is used. memory is reclaimed when
// the storage of the array becomes too empty.
eDA = new ContractableDoubleArray();
}
/* (non-Javadoc)
/**
* @see org.apache.commons.math.StoreUnivariate#getValues()
*/
public double[] getValues() {
double[] copiedArray = new double[ eDA.getNumElements() ];
System.arraycopy( eDA.getElements(), 0,
copiedArray, 0, eDA.getNumElements());
double[] copiedArray = new double[eDA.getNumElements()];
System.arraycopy(
eDA.getElements(),
0,
copiedArray,
0,
eDA.getNumElements());
return copiedArray;
}
/* (non-Javadoc)
/**
* @see org.apache.commons.math.StoreUnivariate#getElement(int)
*/
public double getElement(int index) {
return eDA.getElement(index);
}
/* (non-Javadoc)
/**
* @see org.apache.commons.math.Univariate#getN()
*/
public int getN() {
return eDA.getNumElements();
}
/* (non-Javadoc)
/**
* @see org.apache.commons.math.Univariate#addValue(double)
*/
public synchronized void addValue(double v) {
if( windowSize != Univariate.INFINITE_WINDOW ) {
if( getN() == windowSize ) {
eDA.addElementRolling( v );
} else if( getN() < windowSize ) {
if (windowSize != Univariate.INFINITE_WINDOW) {
if (getN() == windowSize) {
eDA.addElementRolling(v);
} else if (getN() < windowSize) {
eDA.addElement(v);
} else {
String msg = "A window Univariate had more element than " +
"the windowSize. This is an inconsistent state.";
throw new RuntimeException( msg );
String msg =
"A window Univariate had more element than "
+ "the windowSize. This is an inconsistent state.";
throw new RuntimeException(msg);
}
} else {
eDA.addElement(v);
}
}
/* (non-Javadoc)
/**
* @see org.apache.commons.math.Univariate#clear()
*/
public synchronized void clear() {
super.clear();
eDA.clear();
}
/* (non-Javadoc)
* @see org.apache.commons.math.Univariate#getWindowSize()
*/
public int getWindowSize() {
return windowSize;
}
/* (non-Javadoc)
/**
* @see org.apache.commons.math.Univariate#setWindowSize(int)
*/
public synchronized void setWindowSize(int windowSize) {
@ -139,8 +138,29 @@ public class StoreUnivariateImpl extends AbstractStoreUnivariate {
// We need to check to see if we need to discard elements
// from the front of the array. If the windowSize is less than
// the current number of elements.
if( windowSize < eDA.getNumElements() ) {
eDA.discardFrontElements( eDA.getNumElements() - windowSize);
if (windowSize < eDA.getNumElements()) {
eDA.discardFrontElements(eDA.getNumElements() - windowSize);
}
}
}
/**
* @see org.apache.commons.math.stat.AbstractUnivariate#internalValues()
*/
protected double[] internalValues() {
return eDA.getValues();
}
/**
* @see org.apache.commons.math.stat.AbstractUnivariate#start()
*/
protected int start() {
return eDA.start();
}
/**
* @see org.apache.commons.math.stat.AbstractUnivariate#size()
*/
protected int size() {
return eDA.getNumElements();
}
}

View File

@ -55,8 +55,7 @@ package org.apache.commons.math.stat;
/**
* A collection of commonly used test statistics and statistical tests.
*
* @version $Revision: 1.3 $ $Date: 2003/07/07 23:19:20 $
*
* @version $Revision: 1.4 $ $Date: 2003/07/09 21:45:23 $
*/
public interface TestStatistic {

View File

@ -61,8 +61,7 @@ import org.apache.commons.math.stat.distribution.ChiSquaredDistribution;
/**
* Implements test statistics defined in the TestStatistic interface.
*
* @version $Revision: 1.3 $ $Date: 2003/07/07 23:19:20 $
*
* @version $Revision: 1.4 $ $Date: 2003/07/09 21:45:23 $
*/
public class TestStatisticImpl implements TestStatistic {

View File

@ -69,12 +69,21 @@ package org.apache.commons.math.stat;
* reported statistics will be based on these values<p>
* The default windowSize is "infinite" -- i.e., all values added are included
* in all computations.
*
* @author <a href="mailto:tobrien@apache.org">Tim O'Brien</a>
* @version $Revision: 1.7 $ $Date: 2003/07/07 23:25:13 $
*
* @version $Revision: 1.8 $ $Date: 2003/07/09 21:45:23 $
*/
public interface Univariate {
/**
* A LEPTOKURTIC set has a positive kurtosis (a high peak)
*/
public static int LEPTOKURTIC = 1;
/**
* A MESOKURTIC set has a kurtosis of 0 - it is a normal distribution
*/
public static int MESOKURTIC = 0;
/**
* A PLATYKURTIC set has a negative kurtosis (a flat "peak")
*/
public static int PLATYKURTIC = -1;
/**
* Adds the value to the set of numbers
@ -83,14 +92,14 @@ public interface Univariate {
void addValue(double v);
/**
* Returns the <a href=http://www.xycoon.com/arithmetic_mean.htm>
* Returns the <a href="http://www.xycoon.com/arithmetic_mean.htm">
* arithmetic mean </a> of the available values
* @return The mean or Double.NaN if no values have been added.
*/
double getMean();
/**
* Returns the <a href=http://www.xycoon.com/geometric_mean.htm>
* Returns the <a href="http://www.xycoon.com/geometric_mean.htm">
* geometric mean </a> of the available values
* @return The geometricMean, Double.NaN if no values have been added,
* or if the productof the available values is less than or equal to 0.
@ -127,6 +136,17 @@ public interface Univariate {
*/
double getKurtosis();
/**
* Returns the Kurtosis "classification" a distribution can be
* leptokurtic (high peak), platykurtic (flat peak),
* or mesokurtic (zero kurtosis).
*
* @return A static constant defined in this interface,
* StoredDeviation.LEPTOKURITC, StoredDeviation.PLATYKURTIC, or
* StoredDeviation.MESOKURTIC
*/
int getKurtosisClass();
/**
* Returns the maximum of the available values
* @return The max or Double.NaN if no values have been added.

View File

@ -54,8 +54,6 @@
package org.apache.commons.math.stat;
import java.io.Serializable;
import org.apache.commons.math.util.DoubleArray;
import org.apache.commons.math.util.FixedDoubleArray;
/**
@ -66,203 +64,32 @@ import org.apache.commons.math.util.FixedDoubleArray;
* Integers, floats and longs can be added, but they will be converted
* to doubles by addValue().
*
* @author <a href="mailto:tobrien@apache.org">Tim O'Brien</a>
* @author Brent Worden
* @version $Revision: 1.17 $ $Date: 2003/07/07 23:25:13 $
*
* @version $Revision: 1.18 $ $Date: 2003/07/09 21:45:23 $
*/
public class UnivariateImpl implements Univariate, Serializable {
public class UnivariateImpl
extends AbstractUnivariate
implements Univariate, Serializable {
/** hold the window size **/
private int windowSize = Univariate.INFINITE_WINDOW;
/** Just in case the windowSize is not infinite, we need to
* keep an array to remember values 0 to N
*/
private DoubleArray doubleArray;
/** count of values that have been added */
private int n = 0;
/** sum of values that have been added */
private double sum = Double.NaN;
/** sum of the square of each value that has been added */
private double sumsq = Double.NaN;
/** min of values that have been added */
private double min = Double.NaN;
/** max of values that have been added */
private double max = Double.NaN;
/** sumLog of values that have been added */
private double sumLog = Double.NaN;
/** mean of values that have been added */
private double mean = Double.NaN;
/** second moment of values that have been added */
private double m2 = Double.NaN;
/** third moment of values that have been added */
private double m3 = Double.NaN;
/** fourth moment of values that have been added */
private double m4 = Double.NaN;
/** variance of values that have been added */
private double variance = Double.NaN;
/** skewness of values that have been added */
private double skewness = Double.NaN;
/** kurtosis of values that have been added */
private double kurtosis = Double.NaN;
/** fixed storage */
private FixedDoubleArray storage = null;
/** Creates new univariate with an infinite window */
public UnivariateImpl() {
super();
}
/** Creates a new univariate with a fixed window **/
/**
* Creates a new univariate with a fixed window
* @param window Window Size
*/
public UnivariateImpl(int window) {
setWindowSize(window);
}
/* (non-Javadoc)
* @see org.apache.commons.math.stat.Univariate#getN()
*/
public int getN() {
return n;
}
/* (non-Javadoc)
* @see org.apache.commons.math.stat.Univariate#getSum()
*/
public double getSum() {
if (windowSize != Univariate.INFINITE_WINDOW) {
return StatUtils.sum(doubleArray.getElements());
}
return sum;
}
/* (non-Javadoc)
* @see org.apache.commons.math.stat.Univariate#getSumsq()
*/
public double getSumsq() {
if (windowSize != Univariate.INFINITE_WINDOW) {
return StatUtils.sumSq(doubleArray.getElements());
}
return sumsq;
}
/* (non-Javadoc)
* @see org.apache.commons.math.stat.Univariate#getMean()
*/
public double getMean() {
if (windowSize != Univariate.INFINITE_WINDOW) {
return StatUtils.mean(doubleArray.getElements());
}
return mean;
super(window);
storage = new FixedDoubleArray(window);
}
/**
* Returns the standard deviation for this collection of values
* @see org.apache.commons.math.stat.Univariate#getStandardDeviation()
*/
public double getStandardDeviation() {
double stdDev = Double.NaN;
if (getN() != 0) {
stdDev = Math.sqrt(getVariance());
}
return (stdDev);
}
/**
* Returns the variance of the values that have been added via West's
* algorithm as described by
* <a href="http://doi.acm.org/10.1145/359146.359152">Chan, T. F. and
* J. G. Lewis 1979, <i>Communications of the ACM</i>,
* vol. 22 no. 9, pp. 526-531.</a>.
*
* @return The variance of a set of values. Double.NaN is returned for
* an empty set of values and 0.0 is returned for a &lt;= 1 value set.
*/
public double getVariance() {
if (windowSize != Univariate.INFINITE_WINDOW) {
variance = StatUtils.variance(doubleArray.getElements());
}
return variance;
}
/**
* Returns the skewness of the values that have been added as described by
* <a href="http://mathworld.wolfram.com/k-Statistic.html">Equation (6) for k-Statistics</a>.
*
* @return The skew of a set of values. Double.NaN is returned for
* an empty set of values and 0.0 is returned for a &lt;= 2 value set.
*/
public double getSkewness() {
if (windowSize != Univariate.INFINITE_WINDOW) {
return StatUtils.skewness(doubleArray.getElements());
}
return skewness;
}
/**
* Returns the kurtosis of the values that have been added as described by
* <a href="http://mathworld.wolfram.com/k-Statistic.html">Equation (7) for k-Statistics</a>.
*
* @return The kurtosis of a set of values. Double.NaN is returned for
* an empty set of values and 0.0 is returned for a &lt;= 3 value set.
*/
public double getKurtosis() {
if (windowSize != Univariate.INFINITE_WINDOW) {
return StatUtils.kurtosis(doubleArray.getElements());
}
return kurtosis;
}
/* (non-Javadoc)
* @see org.apache.commons.math.stat.Univariate#getMax()
*/
public double getMax() {
if (windowSize != Univariate.INFINITE_WINDOW) {
return StatUtils.max(doubleArray.getElements());
}
return max;
}
/* (non-Javadoc)
* @see org.apache.commons.math.stat.Univariate#getMin()
*/
public double getMin() {
if (windowSize != Univariate.INFINITE_WINDOW) {
return StatUtils.min(doubleArray.getElements());
}
return min;
}
/* (non-Javadoc)
* @see org.apache.commons.math.stat.Univariate#getGeometricMean()
*/
public double getGeometricMean() {
if (windowSize != Univariate.INFINITE_WINDOW) {
return StatUtils.geometricMean(doubleArray.getElements());
}
if (n == 0) {
return Double.NaN;
} else {
return Math.exp(sumLog / (double) n);
}
}
/* If windowSize is set to Infinite, moments are calculated using the following
* If windowSize is set to Infinite, moments
* are calculated using the following
* <a href="http://www.spss.com/tech/stat/Algorithms/11.5/descriptives.pdf">
* recursive strategy
* </a>.
@ -271,15 +98,15 @@ public class UnivariateImpl implements Univariate, Serializable {
*/
public void addValue(double value) {
if (windowSize != Univariate.INFINITE_WINDOW) {
if (storage != null) {
/* then all getters deligate to StatUtils
* and this clause simply adds/rolls a value in the storage array
*/
if (windowSize == n) {
doubleArray.addElementRolling(value);
if (getWindowSize() == n) {
storage.addElementRolling(value);
} else {
n++;
doubleArray.addElement(value);
storage.addElement(value);
}
} else {
@ -287,57 +114,18 @@ public class UnivariateImpl implements Univariate, Serializable {
* is no need to discard the influence of any single item.
*/
n++;
if (n <= 1) {
/* if n <= 1, initialize the sumLog, min, max, mean, variance and pre-variance */
sumLog = 0.0;
sum = min = max = mean = value;
sumsq = value * value;
variance = m2 = 0.0;
skewness = kurtosis = 0.0;
m2 = m3 = m4 = 0.0;
} else {
/* otherwise calc these values */
sumLog += Math.log(value);
sum += value;
sumsq += value * value;
min = Math.min(min, value);
max = Math.max(max, value);
double dev = value - mean;
double v = dev / ((double) n);
double v2 = v * v;
double n0 = (double) n;
double n1 = (double) (n - 1);
double n2 = (double) (n - 2);
double n3 = (double) (n - 3);
m4 =
m4
- (4.0 * v * m3)
+ (6.0 * v2 * m2)
+ ((n0 * n0) - 3 * n1) * (v2 * v2 * n1 * n0);
m3 = m3 - (3.0 * v * m2) + (n0 * n1 * n2 * v2 * v);
m2 += n1 * dev * v;
mean += v;
variance = (n <= 1) ? 0.0 : m2 / n1;
skewness =
(n <= 2 || variance < 10E-20)
? 0.0
: (n0 * m3) / (n1 * n2 * Math.sqrt(variance) * variance);
kurtosis =
(n <= 3 || variance < 10E-20)
? 0.0
: (n0 * (n0 + 1) * m4 - 3 * m2 * m2 * n1)
/ (n1 * n2 * n3 * variance * variance);
}
min.increment(value);
max.increment(value);
sum.increment(value);
sumsq.increment(value);
sumLog.increment(value);
geoMean.increment(value);
moment.increment(value);
//mean.increment(value);
//variance.increment(value);
//skewness.increment(value);
//kurtosis.increment(value);
}
}
@ -350,9 +138,9 @@ public class UnivariateImpl implements Univariate, Serializable {
public String toString() {
StringBuffer outBuffer = new StringBuffer();
outBuffer.append("UnivariateImpl:\n");
outBuffer.append("n: " + n + "\n");
outBuffer.append("min: " + min + "\n");
outBuffer.append("max: " + max + "\n");
outBuffer.append("n: " + getN() + "\n");
outBuffer.append("min: " + getMin() + "\n");
outBuffer.append("max: " + getMax() + "\n");
outBuffer.append("mean: " + getMean() + "\n");
outBuffer.append("std dev: " + getStandardDeviation() + "\n");
outBuffer.append("skewness: " + getSkewness() + "\n");
@ -360,33 +148,35 @@ public class UnivariateImpl implements Univariate, Serializable {
return outBuffer.toString();
}
/* (non-Javadoc)
/**
* @see org.apache.commons.math.Univariate#clear()
*/
public void clear() {
this.n = 0;
this.min = this.max = Double.NaN;
this.sumLog = this.mean = Double.NaN;
this.variance = this.skewness = this.kurtosis = Double.NaN;
this.m2 = this.m3 = this.m4 = Double.NaN;
if (doubleArray != null)
doubleArray = new FixedDoubleArray(windowSize);
super.clear();
if (getWindowSize() != INFINITE_WINDOW) {
storage = new FixedDoubleArray(getWindowSize());
}
}
/* (non-Javadoc)
* @see org.apache.commons.math.Univariate#getWindowSize()
/**
* @see org.apache.commons.math.stat.AbstractUnivariate#internalValues()
*/
public int getWindowSize() {
return windowSize;
protected double[] internalValues() {
return storage == null ? null : storage.getValues();
}
/* (non-Javadoc)
* @see org.apache.commons.math.Univariate#setWindowSize(int)
/**
* @see org.apache.commons.math.stat.AbstractUnivariate#start()
*/
public void setWindowSize(int windowSize) {
clear();
this.windowSize = windowSize;
doubleArray = new FixedDoubleArray(windowSize);
protected int start() {
return storage.start();
}
/**
* @see org.apache.commons.math.stat.AbstractUnivariate#size()
*/
protected int size() {
return storage.getNumElements();
}
}

View File

@ -0,0 +1,245 @@
/* ====================================================================
* The Apache Software License, Version 1.1
*
* Copyright (c) 2003 The Apache Software Foundation. All rights
* reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. The end-user documentation included with the redistribution, if
* any, must include the following acknowlegement:
* "This product includes software developed by the
* Apache Software Foundation (http://www.apache.org/)."
* Alternately, this acknowlegement may appear in the software itself,
* if and wherever such third-party acknowlegements normally appear.
*
* 4. The names "The Jakarta Project", "Commons", and "Apache Software
* Foundation" must not be used to endorse or promote products derived
* from this software without prior written permission. For written
* permission, please contact apache@apache.org.
*
* 5. Products derived from this software may not be called "Apache"
* nor may "Apache" appear in their names without prior written
* permission of the Apache Software Foundation.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
* ====================================================================
*
* This software consists of voluntary contributions made by many
* individuals on behalf of the Apache Software Foundation. For more
* information on the Apache Software Foundation, please see
* <http://www.apache.org/>.
*/
package org.apache.commons.math.stat;
import java.util.ArrayList;
import java.util.List;
import org.apache.commons.math.util.NumberTransformer;
import org.apache.commons.math.util.TransformerMap;
import junit.framework.Test;
import junit.framework.TestCase;
import junit.framework.TestSuite;
/**
* Test cases for the {@link Univariate} class.
*
* @version $Revision: 1.1 $ $Date: 2003/07/09 21:45:24 $
*/
public final class MixedListUnivariateImplTest extends TestCase {
private double one = 1;
private float two = 2;
private int three = 3;
private double mean = 2;
private double sumSq = 18;
private double sum = 8;
private double var = 0.666666666666666666667;
private double std = Math.sqrt(var);
private double n = 4;
private double min = 1;
private double max = 3;
private double skewness = 0;
private double kurtosis = 0.5;
private int kClass = StoreUnivariate.LEPTOKURTIC;
private double tolerance = 10E-15;
private TransformerMap transformers = new TransformerMap();
public MixedListUnivariateImplTest(String name) {
super(name);
transformers = new TransformerMap();
transformers.putTransformer(Foo.class, new NumberTransformer() {
public double transform(Object o) {
return Double.parseDouble(((Foo) o).heresFoo());
}
});
transformers.putTransformer(Bar.class, new NumberTransformer() {
public double transform(Object o) {
return Double.parseDouble(((Bar) o).heresBar());
}
});
}
public void setUp() {
}
public static Test suite() {
TestSuite suite = new TestSuite(MixedListUnivariateImplTest.class);
suite.setName("Mixed List Tests");
return suite;
}
/** test stats */
public void testStats() {
List externalList = new ArrayList();
StoreUnivariate u = new ListUnivariateImpl(externalList,transformers);
assertEquals("total count", 0, u.getN(), tolerance);
u.addValue(one);
u.addValue(two);
u.addValue(two);
u.addValue(three);
assertEquals("N", n, u.getN(), tolerance);
assertEquals("sum", sum, u.getSum(), tolerance);
assertEquals("sumsq", sumSq, u.getSumsq(), tolerance);
assertEquals("var", var, u.getVariance(), tolerance);
assertEquals("std", std, u.getStandardDeviation(), tolerance);
assertEquals("mean", mean, u.getMean(), tolerance);
assertEquals("min", min, u.getMin(), tolerance);
assertEquals("max", max, u.getMax(), tolerance);
u.clear();
assertEquals("total count", 0, u.getN(), tolerance);
}
public void testN0andN1Conditions() throws Exception {
List list = new ArrayList();
StoreUnivariate u = new ListUnivariateImpl(new ArrayList(),transformers);
assertTrue(
"Mean of n = 0 set should be NaN",
Double.isNaN(u.getMean()));
assertTrue(
"Standard Deviation of n = 0 set should be NaN",
Double.isNaN(u.getStandardDeviation()));
assertTrue(
"Variance of n = 0 set should be NaN",
Double.isNaN(u.getVariance()));
u.addValue(one);
assertTrue(
"Mean of n = 1 set should be value of single item n1, instead it is " + u.getMean() ,
u.getMean() == one);
assertTrue(
"StdDev of n = 1 set should be zero, instead it is: "
+ u.getStandardDeviation(),
u.getStandardDeviation() == 0);
assertTrue(
"Variance of n = 1 set should be zero",
u.getVariance() == 0);
}
public void testSkewAndKurtosis() {
ListUnivariateImpl u =
new ListUnivariateImpl(new ArrayList(), transformers);
u.addObject("12.5");
u.addObject(new Integer(12));
u.addObject("11.8");
u.addObject("14.2");
u.addObject(new Foo());
u.addObject("14.5");
u.addObject(new Long(21));
u.addObject("8.2");
u.addObject("10.3");
u.addObject("11.3");
u.addObject(new Float(14.1));
u.addObject("9.9");
u.addObject("12.2");
u.addObject(new Bar());
u.addObject("12.1");
u.addObject("11");
u.addObject(new Double(19.8));
u.addObject("11");
u.addObject("10");
u.addObject("8.8");
u.addObject("9");
u.addObject("12.3");
assertEquals("mean", 12.40455, u.getMean(), 0.0001);
assertEquals("variance", 10.00236, u.getVariance(), 0.0001);
assertEquals("skewness", 1.437424, u.getSkewness(), 0.0001);
assertEquals("kurtosis", 2.37719, u.getKurtosis(), 0.0001);
}
public void testProductAndGeometricMean() throws Exception {
ListUnivariateImpl u = new ListUnivariateImpl(new ArrayList(),transformers);
u.setWindowSize(10);
u.addValue(1.0);
u.addValue(2.0);
u.addValue(3.0);
u.addValue(4.0);
assertEquals(
"Geometric mean not expected",
2.213364,
u.getGeometricMean(),
0.00001);
// Now test rolling - UnivariateImpl should discount the contribution
// of a discarded element
for (int i = 0; i < 10; i++) {
u.addValue(i + 2);
}
// Values should be (2,3,4,5,6,7,8,9,10,11)
assertEquals(
"Geometric mean not expected",
5.755931,
u.getGeometricMean(),
0.00001);
}
public final class Foo {
public String heresFoo() {
return "14.9";
}
}
public final class Bar {
public String heresBar() {
return "12.0";
}
}
}

View File

@ -59,7 +59,7 @@ import junit.framework.TestSuite;
/**
* Test cases for the {@link StatUtils} class.
* @version $Revision: 1.5 $ $Date: 2003/07/07 23:25:14 $
* @version $Revision: 1.6 $ $Date: 2003/07/09 21:45:24 $
*/
public final class StatUtilsTest extends TestCase {
@ -99,11 +99,6 @@ public final class StatUtilsTest extends TestCase {
assertEquals("sum", sum, StatUtils.sum(values), tolerance);
assertEquals("sumsq", sumSq, StatUtils.sumSq(values), tolerance);
assertEquals("var", var, StatUtils.variance(values), tolerance);
assertEquals(
"std",
std,
StatUtils.standardDeviation(values),
tolerance);
assertEquals("mean", mean, StatUtils.mean(values), tolerance);
assertEquals("min", min, StatUtils.min(values), tolerance);
assertEquals("max", max, StatUtils.max(values), tolerance);
@ -115,9 +110,6 @@ public final class StatUtilsTest extends TestCase {
assertTrue(
"Mean of n = 0 set should be NaN",
Double.isNaN(StatUtils.mean(values)));
assertTrue(
"Standard Deviation of n = 0 set should be NaN",
Double.isNaN(StatUtils.standardDeviation(values)));
assertTrue(
"Variance of n = 0 set should be NaN",
Double.isNaN(StatUtils.variance(values)));
@ -127,10 +119,6 @@ public final class StatUtilsTest extends TestCase {
assertTrue(
"Mean of n = 1 set should be value of single item n1",
StatUtils.mean(values) == one);
assertTrue(
"StdDev of n = 1 set should be zero, instead it is: "
+ StatUtils.standardDeviation(values),
StatUtils.standardDeviation(values) == 0);
assertTrue(
"Variance of n = 1 set should be zero",
StatUtils.variance(values) == 0);
@ -165,8 +153,6 @@ public final class StatUtilsTest extends TestCase {
assertEquals("mean", 12.40455, StatUtils.mean(values), 0.0001);
assertEquals("variance", 10.00236, StatUtils.variance(values), 0.0001);
assertEquals("skewness", 1.437424, StatUtils.skewness(values), 0.0001);
assertEquals("kurtosis", 2.37719, StatUtils.kurtosis(values), 0.0001);
}
public void testProductAndGeometricMean() throws Exception {
@ -177,11 +163,6 @@ public final class StatUtilsTest extends TestCase {
24.0,
StatUtils.product(values),
Double.MIN_VALUE);
assertEquals(
"Geometric mean not expected",
2.213364,
StatUtils.geometricMean(values),
0.00001);
}
public void testArrayIndexConditions() throws Exception {

View File

@ -61,7 +61,7 @@ import junit.framework.TestSuite;
* Test cases for the {@link Univariate} class.
*
* @author Tim Obrien
* @version $Revision: 1.5 $ $Date: 2003/07/07 23:19:19 $
* @version $Revision: 1.6 $ $Date: 2003/07/09 21:45:24 $
*/
public final class UnivariateImplTest extends TestCase {
@ -130,7 +130,7 @@ public final class UnivariateImplTest extends TestCase {
u.addValue(one);
assertTrue("mean should be one (n = 1)",
u.getMean() == one);
assertTrue("geometric should be one (n = 1)",
assertTrue("geometric should be one (n = 1) instead it is " + u.getGeometricMean(),
u.getGeometricMean() == one);
assertTrue("Std should be zero (n = 1)",
u.getStandardDeviation() == 0.0);

View File

@ -119,10 +119,10 @@ public class InteractionTest extends TestCase {
k.increment(testArray[i]);
}
assertEquals(mean,m.getValue(),tolerance);
assertEquals(var,v.getValue(),tolerance);
assertEquals(skew ,s.getValue(),tolerance);
assertEquals(kurt,k.getValue(),tolerance);
assertEquals(mean,m.getResult(),tolerance);
assertEquals(var,v.getResult(),tolerance);
assertEquals(skew ,s.getResult(),tolerance);
assertEquals(kurt,k.getResult(),tolerance);
}