diff --git a/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/stat/inference/BinomialTest.java b/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/stat/inference/BinomialTest.java index a7deb3187..9a601bb38 100644 --- a/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/stat/inference/BinomialTest.java +++ b/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/stat/inference/BinomialTest.java @@ -122,7 +122,7 @@ public class BinomialTest { final BinomialDistribution distribution = BinomialDistribution.of(numberOfTrials, probability); switch (alternativeHypothesis) { case GREATER_THAN: - return 1 - distribution.cumulativeProbability(numberOfSuccesses - 1); + return distribution.survivalProbability(numberOfSuccesses - 1); case LESS_THAN: return distribution.cumulativeProbability(numberOfSuccesses); case TWO_SIDED: diff --git a/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/stat/inference/ChiSquareTest.java b/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/stat/inference/ChiSquareTest.java index eef09933f..3cf36875d 100644 --- a/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/stat/inference/ChiSquareTest.java +++ b/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/stat/inference/ChiSquareTest.java @@ -157,7 +157,7 @@ public class ChiSquareTest { // pass a null rng to avoid unneeded overhead as we will not sample from this distribution final ChiSquaredDistribution distribution = ChiSquaredDistribution.of(expected.length - 1.0); - return 1.0 - distribution.cumulativeProbability(chiSquare(expected, observed)); + return distribution.survivalProbability(chiSquare(expected, observed)); } /** @@ -330,7 +330,7 @@ public class ChiSquareTest { double df = ((double) counts.length -1) * ((double) counts[0].length - 1); // pass a null rng to avoid unneeded overhead as we will not sample from this distribution final ChiSquaredDistribution distribution = ChiSquaredDistribution.of(df); - return 1 - distribution.cumulativeProbability(chiSquare(counts)); + return distribution.survivalProbability(chiSquare(counts)); } /** @@ -532,7 +532,7 @@ public class ChiSquareTest { // pass a null rng to avoid unneeded overhead as we will not sample from this distribution final ChiSquaredDistribution distribution = ChiSquaredDistribution.of((double) observed1.length - 1); - return 1 - distribution.cumulativeProbability( + return distribution.survivalProbability( chiSquareDataSetsComparison(observed1, observed2)); } diff --git a/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/stat/inference/GTest.java b/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/stat/inference/GTest.java index 42273e625..3b82b74a7 100644 --- a/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/stat/inference/GTest.java +++ b/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/stat/inference/GTest.java @@ -155,7 +155,7 @@ public class GTest { // pass a null rng to avoid unneeded overhead as we will not sample from this distribution final ChiSquaredDistribution distribution = ChiSquaredDistribution.of(expected.length - 1.0); - return 1.0 - distribution.cumulativeProbability(g(expected, observed)); + return distribution.survivalProbability(g(expected, observed)); } /** @@ -186,7 +186,7 @@ public class GTest { // pass a null rng to avoid unneeded overhead as we will not sample from this distribution final ChiSquaredDistribution distribution = ChiSquaredDistribution.of(expected.length - 2.0); - return 1.0 - distribution.cumulativeProbability(g(expected, observed)); + return distribution.survivalProbability(g(expected, observed)); } /** @@ -476,7 +476,7 @@ public class GTest { // pass a null rng to avoid unneeded overhead as we will not sample from this distribution final ChiSquaredDistribution distribution = ChiSquaredDistribution.of((double) observed1.length - 1); - return 1 - distribution.cumulativeProbability( + return distribution.survivalProbability( gDataSetsComparison(observed1, observed2)); } diff --git a/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/stat/inference/OneWayAnova.java b/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/stat/inference/OneWayAnova.java index 2643270e0..8b93f1775 100644 --- a/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/stat/inference/OneWayAnova.java +++ b/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/stat/inference/OneWayAnova.java @@ -104,9 +104,9 @@ public class OneWayAnova { * {@link org.apache.commons.statistics.distribution.FDistribution * commons-math F Distribution implementation} to estimate the exact * p-value, using the formula
-     *   p = 1 - cumulativeProbability(F)
- * where F is the F value and cumulativeProbability - * is the commons-math implementation of the F distribution. + * p = survivalProbability(F) + * where F is the F value and survivalProbability = 1 - cumulativeProbability + * is the commons-statistics implementation of the F distribution. * * @param categoryData Collection of double[] * arrays each containing data for one category @@ -126,7 +126,7 @@ public class OneWayAnova { // No try-catch or advertised exception because args are valid // pass a null rng to avoid unneeded overhead as we will not sample from this distribution final FDistribution fdist = FDistribution.of(a.dfbg, a.dfwg); - return 1.0 - fdist.cumulativeProbability(a.f); + return fdist.survivalProbability(a.f); } /** @@ -142,9 +142,9 @@ public class OneWayAnova { * {@link org.apache.commons.statistics.distribution.FDistribution * commons-math F Distribution implementation} to estimate the exact * p-value, using the formula
-     *   p = 1 - cumulativeProbability(F)
- * where F is the F value and cumulativeProbability - * is the commons-math implementation of the F distribution. + * p = survivalProbability(F) + * where F is the F value and survivalProbability = 1 - cumulativeProbability + * is the commons-statistics implementation of the F distribution. * * @param categoryData Collection of {@link SummaryStatistics} * each containing data for one category @@ -167,7 +167,7 @@ public class OneWayAnova { final AnovaStats a = anovaStats(categoryData, allowOneElementData); // pass a null rng to avoid unneeded overhead as we will not sample from this distribution final FDistribution fdist = FDistribution.of(a.dfbg, a.dfwg); - return 1.0 - fdist.cumulativeProbability(a.f); + return fdist.survivalProbability(a.f); } /** @@ -221,9 +221,9 @@ public class OneWayAnova { * {@link org.apache.commons.statistics.distribution.FDistribution * commons-math F Distribution implementation} to estimate the exact * p-value, using the formula
-     *   p = 1 - cumulativeProbability(F)
- * where F is the F value and cumulativeProbability - * is the commons-math implementation of the F distribution. + * p = survivalProbability(F) + * where F is the F value and survivalProbability = 1 - cumulativeProbability + * is the commons-statistics implementation of the F distribution. *

True is returned iff the estimated p-value is less than alpha.

* * @param categoryData Collection of double[] diff --git a/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/stat/interval/AgrestiCoullInterval.java b/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/stat/interval/AgrestiCoullInterval.java index 1002abb7e..95d4caea6 100644 --- a/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/stat/interval/AgrestiCoullInterval.java +++ b/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/stat/interval/AgrestiCoullInterval.java @@ -35,7 +35,7 @@ public class AgrestiCoullInterval implements BinomialConfidenceInterval { IntervalUtils.checkParameters(numberOfTrials, numberOfSuccesses, confidenceLevel); final double alpha = (1.0 - confidenceLevel) / 2; final NormalDistribution normalDistribution = NormalDistribution.of(0, 1); - final double z = normalDistribution.inverseCumulativeProbability(1 - alpha); + final double z = normalDistribution.inverseSurvivalProbability(alpha); final double zSquared = JdkMath.pow(z, 2); final double modifiedNumberOfTrials = numberOfTrials + zSquared; final double modifiedSuccessesRatio = (1.0 / modifiedNumberOfTrials) * (numberOfSuccesses + 0.5 * zSquared); diff --git a/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/stat/interval/ClopperPearsonInterval.java b/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/stat/interval/ClopperPearsonInterval.java index a28522cdc..b8b23034e 100644 --- a/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/stat/interval/ClopperPearsonInterval.java +++ b/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/stat/interval/ClopperPearsonInterval.java @@ -42,7 +42,7 @@ public class ClopperPearsonInterval implements BinomialConfidenceInterval { if (numberOfSuccesses > 0) { final FDistribution distributionLowerBound = FDistribution.of(2.0 * (numberOfTrials - numberOfSuccesses + 1), 2.0 * numberOfSuccesses); - final double fValueLowerBound = distributionLowerBound.inverseCumulativeProbability(1 - alpha); + final double fValueLowerBound = distributionLowerBound.inverseSurvivalProbability(alpha); lowerBound = numberOfSuccesses / (numberOfSuccesses + (numberOfTrials - numberOfSuccesses + 1) * fValueLowerBound); } @@ -50,7 +50,7 @@ public class ClopperPearsonInterval implements BinomialConfidenceInterval { if (numberOfSuccesses < numberOfTrials) { final FDistribution distributionUpperBound = FDistribution.of(2.0 * (numberOfSuccesses + 1), 2.0 * (numberOfTrials - numberOfSuccesses)); - final double fValueUpperBound = distributionUpperBound.inverseCumulativeProbability(1 - alpha); + final double fValueUpperBound = distributionUpperBound.inverseSurvivalProbability(alpha); upperBound = (numberOfSuccesses + 1) * fValueUpperBound / (numberOfTrials - numberOfSuccesses + (numberOfSuccesses + 1) * fValueUpperBound); } diff --git a/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/stat/interval/NormalApproximationInterval.java b/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/stat/interval/NormalApproximationInterval.java index fb085432d..8871fcaa3 100644 --- a/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/stat/interval/NormalApproximationInterval.java +++ b/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/stat/interval/NormalApproximationInterval.java @@ -37,7 +37,7 @@ public class NormalApproximationInterval implements BinomialConfidenceInterval { final double mean = (double) numberOfSuccesses / (double) numberOfTrials; final double alpha = (1.0 - confidenceLevel) / 2; final NormalDistribution normalDistribution = NormalDistribution.of(0, 1); - final double difference = normalDistribution.inverseCumulativeProbability(1 - alpha) * + final double difference = normalDistribution.inverseSurvivalProbability(alpha) * JdkMath.sqrt(1.0 / numberOfTrials * mean * (1 - mean)); return new ConfidenceInterval(mean - difference, mean + difference, confidenceLevel); } diff --git a/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/stat/interval/WilsonScoreInterval.java b/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/stat/interval/WilsonScoreInterval.java index e08d58714..c57c122df 100644 --- a/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/stat/interval/WilsonScoreInterval.java +++ b/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/stat/interval/WilsonScoreInterval.java @@ -33,7 +33,7 @@ public class WilsonScoreInterval implements BinomialConfidenceInterval { IntervalUtils.checkParameters(numberOfTrials, numberOfSuccesses, confidenceLevel); final double alpha = (1 - confidenceLevel) / 2; final NormalDistribution normalDistribution = NormalDistribution.of(0, 1); - final double z = normalDistribution.inverseCumulativeProbability(1 - alpha); + final double z = normalDistribution.inverseSurvivalProbability(alpha); final double zSquared = z * z; final double oneOverNumTrials = 1d / numberOfTrials; final double zSquaredOverNumTrials = zSquared * oneOverNumTrials; diff --git a/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/stat/regression/SimpleRegression.java b/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/stat/regression/SimpleRegression.java index ada0c3b2a..44d73219c 100644 --- a/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/stat/regression/SimpleRegression.java +++ b/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/stat/regression/SimpleRegression.java @@ -695,7 +695,7 @@ public class SimpleRegression implements UpdatingMultipleLinearRegression { // No advertised NotStrictlyPositiveException here - will return NaN above TDistribution distribution = TDistribution.of(n - 2d); return getSlopeStdErr() * - distribution.inverseCumulativeProbability(1d - alpha / 2d); + distribution.inverseSurvivalProbability(alpha / 2d); } /** @@ -726,7 +726,7 @@ public class SimpleRegression implements UpdatingMultipleLinearRegression { } // No advertised NotStrictlyPositiveException here - will return NaN above TDistribution distribution = TDistribution.of(n - 2d); - return 2d * (1.0 - distribution.cumulativeProbability( + return 2d * (distribution.survivalProbability( JdkMath.abs(getSlope()) / getSlopeStdErr())); } diff --git a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/stat/correlation/PearsonsCorrelationTest.java b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/stat/correlation/PearsonsCorrelationTest.java index 87f5631f9..cb1d36a6b 100644 --- a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/stat/correlation/PearsonsCorrelationTest.java +++ b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/stat/correlation/PearsonsCorrelationTest.java @@ -237,7 +237,7 @@ public class PearsonsCorrelationTest { for (int i = 0; i < 5; i++) { for (int j = 0; j < i; j++) { double t = JdkMath.abs(rValues.getEntry(i, j)) / stdErrors.getEntry(i, j); - double p = 2 * (1 - tDistribution.cumulativeProbability(t)); + double p = 2 * tDistribution.survivalProbability(t); Assert.assertEquals(p, pValues.getEntry(i, j), 10E-15); } }