diff --git a/src/main/java/org/apache/commons/math3/exception/TooManyIterationsException.java b/src/main/java/org/apache/commons/math3/exception/TooManyIterationsException.java new file mode 100644 index 000000000..dee58997f --- /dev/null +++ b/src/main/java/org/apache/commons/math3/exception/TooManyIterationsException.java @@ -0,0 +1,40 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.exception; + +import org.apache.commons.math3.exception.util.LocalizedFormats; + +/** + * Exception to be thrown when the maximal number of iterations is exceeded. + * + * @since 3.1 + * @version $Id$ + */ +public class TooManyIterationsException extends MaxCountExceededException { + /** Serializable version Id. */ + private static final long serialVersionUID = 20121211L; + + /** + * Construct the exception. + * + * @param max Maximum number of evaluations. + */ + public TooManyIterationsException(Number max) { + super(max); + getContext().addMessage(LocalizedFormats.ITERATIONS); + } +} diff --git a/src/main/java/org/apache/commons/math3/exception/util/LocalizedFormats.java b/src/main/java/org/apache/commons/math3/exception/util/LocalizedFormats.java index 93c57e616..a9428f6c1 100644 --- a/src/main/java/org/apache/commons/math3/exception/util/LocalizedFormats.java +++ b/src/main/java/org/apache/commons/math3/exception/util/LocalizedFormats.java @@ -148,6 +148,7 @@ public enum LocalizedFormats implements Localizable { INVALID_REGRESSION_OBSERVATION("length of regressor array = {0} does not match the number of variables = {1} in the model"), INVALID_ROUNDING_METHOD("invalid rounding method {0}, valid methods: {1} ({2}), {3} ({4}), {5} ({6}), {7} ({8}), {9} ({10}), {11} ({12}), {13} ({14}), {15} ({16})"), ITERATOR_EXHAUSTED("iterator exhausted"), + ITERATIONS("iterations"), /* keep */ LCM_OVERFLOW_32_BITS("overflow: lcm({0}, {1}) is 2^31"), LCM_OVERFLOW_64_BITS("overflow: lcm({0}, {1}) is 2^63"), LIST_OF_CHROMOSOMES_BIGGER_THAN_POPULATION_SIZE("list of chromosomes bigger than maxPopulationSize"), diff --git a/src/main/java/org/apache/commons/math3/fitting/CurveFitter.java b/src/main/java/org/apache/commons/math3/fitting/CurveFitter.java new file mode 100644 index 000000000..e5c202473 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/fitting/CurveFitter.java @@ -0,0 +1,230 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.fitting; + +import java.util.ArrayList; +import java.util.List; +import org.apache.commons.math3.analysis.MultivariateVectorFunction; +import org.apache.commons.math3.analysis.MultivariateMatrixFunction; +import org.apache.commons.math3.analysis.ParametricUnivariateFunction; +import org.apache.commons.math3.optim.MaxEval; +import org.apache.commons.math3.optim.InitialGuess; +import org.apache.commons.math3.optim.PointVectorValuePair; +import org.apache.commons.math3.optim.nonlinear.vector.MultivariateVectorOptimizer; +import org.apache.commons.math3.optim.nonlinear.vector.ModelFunction; +import org.apache.commons.math3.optim.nonlinear.vector.ModelFunctionJacobian; +import org.apache.commons.math3.optim.nonlinear.vector.Target; +import org.apache.commons.math3.optim.nonlinear.vector.Weight; + +/** + * Fitter for parametric univariate real functions y = f(x). + *
+ * When a univariate real function y = f(x) does depend on some + * unknown parameters p0, p1 ... pn-1, + * this class can be used to find these parameters. It does this + * by fitting the curve so it remains very close to a set of + * observed points (x0, y0), (x1, + * y1) ... (xk-1, yk-1). This fitting + * is done by finding the parameters values that minimizes the objective + * function ∑(yi-f(xi))2. This is + * really a least squares problem. + * + * @param Function to use for the fit. + * + * @version $Id: CurveFitter.java 1416643 2012-12-03 19:37:14Z tn $ + * @since 2.0 + */ +public class CurveFitter { + /** Optimizer to use for the fitting. */ + private final MultivariateVectorOptimizer optimizer; + /** Observed points. */ + private final List observations; + + /** + * Simple constructor. + * + * @param optimizer Optimizer to use for the fitting. + * @since 3.1 + */ + public CurveFitter(final MultivariateVectorOptimizer optimizer) { + this.optimizer = optimizer; + observations = new ArrayList(); + } + + /** Add an observed (x,y) point to the sample with unit weight. + *

Calling this method is equivalent to call + * {@code addObservedPoint(1.0, x, y)}.

+ * @param x abscissa of the point + * @param y observed value of the point at x, after fitting we should + * have f(x) as close as possible to this value + * @see #addObservedPoint(double, double, double) + * @see #addObservedPoint(WeightedObservedPoint) + * @see #getObservations() + */ + public void addObservedPoint(double x, double y) { + addObservedPoint(1.0, x, y); + } + + /** Add an observed weighted (x,y) point to the sample. + * @param weight weight of the observed point in the fit + * @param x abscissa of the point + * @param y observed value of the point at x, after fitting we should + * have f(x) as close as possible to this value + * @see #addObservedPoint(double, double) + * @see #addObservedPoint(WeightedObservedPoint) + * @see #getObservations() + */ + public void addObservedPoint(double weight, double x, double y) { + observations.add(new WeightedObservedPoint(weight, x, y)); + } + + /** Add an observed weighted (x,y) point to the sample. + * @param observed observed point to add + * @see #addObservedPoint(double, double) + * @see #addObservedPoint(double, double, double) + * @see #getObservations() + */ + public void addObservedPoint(WeightedObservedPoint observed) { + observations.add(observed); + } + + /** Get the observed points. + * @return observed points + * @see #addObservedPoint(double, double) + * @see #addObservedPoint(double, double, double) + * @see #addObservedPoint(WeightedObservedPoint) + */ + public WeightedObservedPoint[] getObservations() { + return observations.toArray(new WeightedObservedPoint[observations.size()]); + } + + /** + * Remove all observations. + */ + public void clearObservations() { + observations.clear(); + } + + /** + * Fit a curve. + * This method compute the coefficients of the curve that best + * fit the sample of observed points previously given through calls + * to the {@link #addObservedPoint(WeightedObservedPoint) + * addObservedPoint} method. + * + * @param f parametric function to fit. + * @param initialGuess first guess of the function parameters. + * @return the fitted parameters. + * @throws org.apache.commons.math3.exception.DimensionMismatchException + * if the start point dimension is wrong. + */ + public double[] fit(T f, final double[] initialGuess) { + return fit(Integer.MAX_VALUE, f, initialGuess); + } + + /** + * Fit a curve. + * This method compute the coefficients of the curve that best + * fit the sample of observed points previously given through calls + * to the {@link #addObservedPoint(WeightedObservedPoint) + * addObservedPoint} method. + * + * @param f parametric function to fit. + * @param initialGuess first guess of the function parameters. + * @param maxEval Maximum number of function evaluations. + * @return the fitted parameters. + * @throws org.apache.commons.math3.exception.TooManyEvaluationsException + * if the number of allowed evaluations is exceeded. + * @throws org.apache.commons.math3.exception.DimensionMismatchException + * if the start point dimension is wrong. + * @since 3.0 + */ + public double[] fit(int maxEval, T f, + final double[] initialGuess) { + // Prepare least squares problem. + double[] target = new double[observations.size()]; + double[] weights = new double[observations.size()]; + int i = 0; + for (WeightedObservedPoint point : observations) { + target[i] = point.getY(); + weights[i] = point.getWeight(); + ++i; + } + + // Input to the optimizer: the model and its Jacobian. + final TheoreticalValuesFunction model = new TheoreticalValuesFunction(f); + + // Perform the fit. + final PointVectorValuePair optimum + = optimizer.optimize(new MaxEval(maxEval), + model.getModelFunction(), + model.getModelFunctionJacobian(), + new Target(target), + new Weight(weights), + new InitialGuess(initialGuess)); + // Extract the coefficients. + return optimum.getPointRef(); + } + + /** Vectorial function computing function theoretical values. */ + private class TheoreticalValuesFunction { + /** Function to fit. */ + private final ParametricUnivariateFunction f; + + /** + * @param f function to fit. + */ + public TheoreticalValuesFunction(final ParametricUnivariateFunction f) { + this.f = f; + } + + /** + * @return the model function values. + */ + public ModelFunction getModelFunction() { + return new ModelFunction(new MultivariateVectorFunction() { + /** {@inheritDoc} */ + public double[] value(double[] point) { + // compute the residuals + final double[] values = new double[observations.size()]; + int i = 0; + for (WeightedObservedPoint observed : observations) { + values[i++] = f.value(observed.getX(), point); + } + + return values; + } + }); + } + + /** + * @return the model function Jacobian. + */ + public ModelFunctionJacobian getModelFunctionJacobian() { + return new ModelFunctionJacobian(new MultivariateMatrixFunction() { + public double[][] value(double[] point) { + final double[][] jacobian = new double[observations.size()][]; + int i = 0; + for (WeightedObservedPoint observed : observations) { + jacobian[i++] = f.gradient(observed.getX(), point); + } + return jacobian; + } + }); + } + } +} diff --git a/src/main/java/org/apache/commons/math3/fitting/GaussianFitter.java b/src/main/java/org/apache/commons/math3/fitting/GaussianFitter.java new file mode 100644 index 000000000..f7c132668 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/fitting/GaussianFitter.java @@ -0,0 +1,362 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.fitting; + +import java.util.Arrays; +import java.util.Comparator; +import org.apache.commons.math3.analysis.function.Gaussian; +import org.apache.commons.math3.exception.NullArgumentException; +import org.apache.commons.math3.exception.NumberIsTooSmallException; +import org.apache.commons.math3.exception.OutOfRangeException; +import org.apache.commons.math3.exception.ZeroException; +import org.apache.commons.math3.exception.NotStrictlyPositiveException; +import org.apache.commons.math3.exception.util.LocalizedFormats; +import org.apache.commons.math3.optim.nonlinear.vector.MultivariateVectorOptimizer; +import org.apache.commons.math3.util.FastMath; + +/** + * Fits points to a {@link + * org.apache.commons.math3.analysis.function.Gaussian.Parametric Gaussian} function. + *

+ * Usage example: + *

+ *   GaussianFitter fitter = new GaussianFitter(
+ *     new LevenbergMarquardtOptimizer());
+ *   fitter.addObservedPoint(4.0254623,  531026.0);
+ *   fitter.addObservedPoint(4.03128248, 984167.0);
+ *   fitter.addObservedPoint(4.03839603, 1887233.0);
+ *   fitter.addObservedPoint(4.04421621, 2687152.0);
+ *   fitter.addObservedPoint(4.05132976, 3461228.0);
+ *   fitter.addObservedPoint(4.05326982, 3580526.0);
+ *   fitter.addObservedPoint(4.05779662, 3439750.0);
+ *   fitter.addObservedPoint(4.0636168,  2877648.0);
+ *   fitter.addObservedPoint(4.06943698, 2175960.0);
+ *   fitter.addObservedPoint(4.07525716, 1447024.0);
+ *   fitter.addObservedPoint(4.08237071, 717104.0);
+ *   fitter.addObservedPoint(4.08366408, 620014.0);
+ *   double[] parameters = fitter.fit();
+ * 
+ * + * @since 2.2 + * @version $Id: GaussianFitter.java 1416643 2012-12-03 19:37:14Z tn $ + */ +public class GaussianFitter extends CurveFitter { + /** + * Constructs an instance using the specified optimizer. + * + * @param optimizer Optimizer to use for the fitting. + */ + public GaussianFitter(MultivariateVectorOptimizer optimizer) { + super(optimizer); + } + + /** + * Fits a Gaussian function to the observed points. + * + * @param initialGuess First guess values in the following order: + *
    + *
  • Norm
  • + *
  • Mean
  • + *
  • Sigma
  • + *
+ * @return the parameters of the Gaussian function that best fits the + * observed points (in the same order as above). + * @since 3.0 + */ + public double[] fit(double[] initialGuess) { + final Gaussian.Parametric f = new Gaussian.Parametric() { + @Override + public double value(double x, double ... p) { + double v = Double.POSITIVE_INFINITY; + try { + v = super.value(x, p); + } catch (NotStrictlyPositiveException e) { + // Do nothing. + } + return v; + } + + @Override + public double[] gradient(double x, double ... p) { + double[] v = { Double.POSITIVE_INFINITY, + Double.POSITIVE_INFINITY, + Double.POSITIVE_INFINITY }; + try { + v = super.gradient(x, p); + } catch (NotStrictlyPositiveException e) { + // Do nothing. + } + return v; + } + }; + + return fit(f, initialGuess); + } + + /** + * Fits a Gaussian function to the observed points. + * + * @return the parameters of the Gaussian function that best fits the + * observed points (in the same order as above). + */ + public double[] fit() { + final double[] guess = (new ParameterGuesser(getObservations())).guess(); + return fit(guess); + } + + /** + * Guesses the parameters {@code norm}, {@code mean}, and {@code sigma} + * of a {@link org.apache.commons.math3.analysis.function.Gaussian.Parametric} + * based on the specified observed points. + */ + public static class ParameterGuesser { + /** Normalization factor. */ + private final double norm; + /** Mean. */ + private final double mean; + /** Standard deviation. */ + private final double sigma; + + /** + * Constructs instance with the specified observed points. + * + * @param observations Observed points from which to guess the + * parameters of the Gaussian. + * @throws NullArgumentException if {@code observations} is + * {@code null}. + * @throws NumberIsTooSmallException if there are less than 3 + * observations. + */ + public ParameterGuesser(WeightedObservedPoint[] observations) { + if (observations == null) { + throw new NullArgumentException(LocalizedFormats.INPUT_ARRAY); + } + if (observations.length < 3) { + throw new NumberIsTooSmallException(observations.length, 3, true); + } + + final WeightedObservedPoint[] sorted = sortObservations(observations); + final double[] params = basicGuess(sorted); + + norm = params[0]; + mean = params[1]; + sigma = params[2]; + } + + /** + * Gets an estimation of the parameters. + * + * @return the guessed parameters, in the following order: + *
    + *
  • Normalization factor
  • + *
  • Mean
  • + *
  • Standard deviation
  • + *
+ */ + public double[] guess() { + return new double[] { norm, mean, sigma }; + } + + /** + * Sort the observations. + * + * @param unsorted Input observations. + * @return the input observations, sorted. + */ + private WeightedObservedPoint[] sortObservations(WeightedObservedPoint[] unsorted) { + final WeightedObservedPoint[] observations = unsorted.clone(); + final Comparator cmp + = new Comparator() { + public int compare(WeightedObservedPoint p1, + WeightedObservedPoint p2) { + if (p1 == null && p2 == null) { + return 0; + } + if (p1 == null) { + return -1; + } + if (p2 == null) { + return 1; + } + if (p1.getX() < p2.getX()) { + return -1; + } + if (p1.getX() > p2.getX()) { + return 1; + } + if (p1.getY() < p2.getY()) { + return -1; + } + if (p1.getY() > p2.getY()) { + return 1; + } + if (p1.getWeight() < p2.getWeight()) { + return -1; + } + if (p1.getWeight() > p2.getWeight()) { + return 1; + } + return 0; + } + }; + + Arrays.sort(observations, cmp); + return observations; + } + + /** + * Guesses the parameters based on the specified observed points. + * + * @param points Observed points, sorted. + * @return the guessed parameters (normalization factor, mean and + * sigma). + */ + private double[] basicGuess(WeightedObservedPoint[] points) { + final int maxYIdx = findMaxY(points); + final double n = points[maxYIdx].getY(); + final double m = points[maxYIdx].getX(); + + double fwhmApprox; + try { + final double halfY = n + ((m - n) / 2); + final double fwhmX1 = interpolateXAtY(points, maxYIdx, -1, halfY); + final double fwhmX2 = interpolateXAtY(points, maxYIdx, 1, halfY); + fwhmApprox = fwhmX2 - fwhmX1; + } catch (OutOfRangeException e) { + // TODO: Exceptions should not be used for flow control. + fwhmApprox = points[points.length - 1].getX() - points[0].getX(); + } + final double s = fwhmApprox / (2 * FastMath.sqrt(2 * FastMath.log(2))); + + return new double[] { n, m, s }; + } + + /** + * Finds index of point in specified points with the largest Y. + * + * @param points Points to search. + * @return the index in specified points array. + */ + private int findMaxY(WeightedObservedPoint[] points) { + int maxYIdx = 0; + for (int i = 1; i < points.length; i++) { + if (points[i].getY() > points[maxYIdx].getY()) { + maxYIdx = i; + } + } + return maxYIdx; + } + + /** + * Interpolates using the specified points to determine X at the + * specified Y. + * + * @param points Points to use for interpolation. + * @param startIdx Index within points from which to start the search for + * interpolation bounds points. + * @param idxStep Index step for searching interpolation bounds points. + * @param y Y value for which X should be determined. + * @return the value of X for the specified Y. + * @throws ZeroException if {@code idxStep} is 0. + * @throws OutOfRangeException if specified {@code y} is not within the + * range of the specified {@code points}. + */ + private double interpolateXAtY(WeightedObservedPoint[] points, + int startIdx, + int idxStep, + double y) + throws OutOfRangeException { + if (idxStep == 0) { + throw new ZeroException(); + } + final WeightedObservedPoint[] twoPoints + = getInterpolationPointsForY(points, startIdx, idxStep, y); + final WeightedObservedPoint p1 = twoPoints[0]; + final WeightedObservedPoint p2 = twoPoints[1]; + if (p1.getY() == y) { + return p1.getX(); + } + if (p2.getY() == y) { + return p2.getX(); + } + return p1.getX() + (((y - p1.getY()) * (p2.getX() - p1.getX())) / + (p2.getY() - p1.getY())); + } + + /** + * Gets the two bounding interpolation points from the specified points + * suitable for determining X at the specified Y. + * + * @param points Points to use for interpolation. + * @param startIdx Index within points from which to start search for + * interpolation bounds points. + * @param idxStep Index step for search for interpolation bounds points. + * @param y Y value for which X should be determined. + * @return the array containing two points suitable for determining X at + * the specified Y. + * @throws ZeroException if {@code idxStep} is 0. + * @throws OutOfRangeException if specified {@code y} is not within the + * range of the specified {@code points}. + */ + private WeightedObservedPoint[] getInterpolationPointsForY(WeightedObservedPoint[] points, + int startIdx, + int idxStep, + double y) + throws OutOfRangeException { + if (idxStep == 0) { + throw new ZeroException(); + } + for (int i = startIdx; + idxStep < 0 ? i + idxStep >= 0 : i + idxStep < points.length; + i += idxStep) { + final WeightedObservedPoint p1 = points[i]; + final WeightedObservedPoint p2 = points[i + idxStep]; + if (isBetween(y, p1.getY(), p2.getY())) { + if (idxStep < 0) { + return new WeightedObservedPoint[] { p2, p1 }; + } else { + return new WeightedObservedPoint[] { p1, p2 }; + } + } + } + + // Boundaries are replaced by dummy values because the raised + // exception is caught and the message never displayed. + // TODO: Exceptions should not be used for flow control. + throw new OutOfRangeException(y, + Double.NEGATIVE_INFINITY, + Double.POSITIVE_INFINITY); + } + + /** + * Determines whether a value is between two other values. + * + * @param value Value to test whether it is between {@code boundary1} + * and {@code boundary2}. + * @param boundary1 One end of the range. + * @param boundary2 Other end of the range. + * @return {@code true} if {@code value} is between {@code boundary1} and + * {@code boundary2} (inclusive), {@code false} otherwise. + */ + private boolean isBetween(double value, + double boundary1, + double boundary2) { + return (value >= boundary1 && value <= boundary2) || + (value >= boundary2 && value <= boundary1); + } + } +} diff --git a/src/main/java/org/apache/commons/math3/fitting/HarmonicFitter.java b/src/main/java/org/apache/commons/math3/fitting/HarmonicFitter.java new file mode 100644 index 000000000..12badd2b1 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/fitting/HarmonicFitter.java @@ -0,0 +1,382 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.fitting; + +import org.apache.commons.math3.optim.nonlinear.vector.MultivariateVectorOptimizer; +import org.apache.commons.math3.analysis.function.HarmonicOscillator; +import org.apache.commons.math3.exception.ZeroException; +import org.apache.commons.math3.exception.NumberIsTooSmallException; +import org.apache.commons.math3.exception.MathIllegalStateException; +import org.apache.commons.math3.exception.util.LocalizedFormats; +import org.apache.commons.math3.util.FastMath; + +/** + * Class that implements a curve fitting specialized for sinusoids. + * + * Harmonic fitting is a very simple case of curve fitting. The + * estimated coefficients are the amplitude a, the pulsation ω and + * the phase φ: f (t) = a cos (ω t + φ). They are + * searched by a least square estimator initialized with a rough guess + * based on integrals. + * + * @version $Id: HarmonicFitter.java 1416643 2012-12-03 19:37:14Z tn $ + * @since 2.0 + */ +public class HarmonicFitter extends CurveFitter { + /** + * Simple constructor. + * @param optimizer Optimizer to use for the fitting. + */ + public HarmonicFitter(final MultivariateVectorOptimizer optimizer) { + super(optimizer); + } + + /** + * Fit an harmonic function to the observed points. + * + * @param initialGuess First guess values in the following order: + *
    + *
  • Amplitude
  • + *
  • Angular frequency
  • + *
  • Phase
  • + *
+ * @return the parameters of the harmonic function that best fits the + * observed points (in the same order as above). + */ + public double[] fit(double[] initialGuess) { + return fit(new HarmonicOscillator.Parametric(), initialGuess); + } + + /** + * Fit an harmonic function to the observed points. + * An initial guess will be automatically computed. + * + * @return the parameters of the harmonic function that best fits the + * observed points (see the other {@link #fit(double[]) fit} method. + * @throws NumberIsTooSmallException if the sample is too short for the + * the first guess to be computed. + * @throws ZeroException if the first guess cannot be computed because + * the abscissa range is zero. + */ + public double[] fit() { + return fit((new ParameterGuesser(getObservations())).guess()); + } + + /** + * This class guesses harmonic coefficients from a sample. + *

The algorithm used to guess the coefficients is as follows:

+ * + *

We know f (t) at some sampling points ti and want to find a, + * ω and φ such that f (t) = a cos (ω t + φ). + *

+ * + *

From the analytical expression, we can compute two primitives : + *

+     *     If2  (t) = ∫ f2  = a2 × [t + S (t)] / 2
+     *     If'2 (t) = ∫ f'2 = a2 ω2 × [t - S (t)] / 2
+     *     where S (t) = sin (2 (ω t + φ)) / (2 ω)
+     * 
+ *

+ * + *

We can remove S between these expressions : + *

+     *     If'2 (t) = a2 ω2 t - ω2 If2 (t)
+     * 
+ *

+ * + *

The preceding expression shows that If'2 (t) is a linear + * combination of both t and If2 (t): If'2 (t) = A × t + B × If2 (t) + *

+ * + *

From the primitive, we can deduce the same form for definite + * integrals between t1 and ti for each ti : + *

+     *   If2 (ti) - If2 (t1) = A × (ti - t1) + B × (If2 (ti) - If2 (t1))
+     * 
+ *

+ * + *

We can find the coefficients A and B that best fit the sample + * to this linear expression by computing the definite integrals for + * each sample points. + *

+ * + *

For a bilinear expression z (xi, yi) = A × xi + B × yi, the + * coefficients A and B that minimize a least square criterion + * ∑ (zi - z (xi, yi))2 are given by these expressions:

+ *
+     *
+     *         ∑yiyi ∑xizi - ∑xiyi ∑yizi
+     *     A = ------------------------
+     *         ∑xixi ∑yiyi - ∑xiyi ∑xiyi
+     *
+     *         ∑xixi ∑yizi - ∑xiyi ∑xizi
+     *     B = ------------------------
+     *         ∑xixi ∑yiyi - ∑xiyi ∑xiyi
+     * 
+ *

+ * + * + *

In fact, we can assume both a and ω are positive and + * compute them directly, knowing that A = a2 ω2 and that + * B = - ω2. The complete algorithm is therefore:

+ *
+     *
+     * for each ti from t1 to tn-1, compute:
+     *   f  (ti)
+     *   f' (ti) = (f (ti+1) - f(ti-1)) / (ti+1 - ti-1)
+     *   xi = ti - t1
+     *   yi = ∫ f2 from t1 to ti
+     *   zi = ∫ f'2 from t1 to ti
+     *   update the sums ∑xixi, ∑yiyi, ∑xiyi, ∑xizi and ∑yizi
+     * end for
+     *
+     *            |--------------------------
+     *         \  | ∑yiyi ∑xizi - ∑xiyi ∑yizi
+     * a     =  \ | ------------------------
+     *           \| ∑xiyi ∑xizi - ∑xixi ∑yizi
+     *
+     *
+     *            |--------------------------
+     *         \  | ∑xiyi ∑xizi - ∑xixi ∑yizi
+     * ω     =  \ | ------------------------
+     *           \| ∑xixi ∑yiyi - ∑xiyi ∑xiyi
+     *
+     * 
+ *

+ * + *

Once we know ω, we can compute: + *

+     *    fc = ω f (t) cos (ω t) - f' (t) sin (ω t)
+     *    fs = ω f (t) sin (ω t) + f' (t) cos (ω t)
+     * 
+ *

+ * + *

It appears that fc = a ω cos (φ) and + * fs = -a ω sin (φ), so we can use these + * expressions to compute φ. The best estimate over the sample is + * given by averaging these expressions. + *

+ * + *

Since integrals and means are involved in the preceding + * estimations, these operations run in O(n) time, where n is the + * number of measurements.

+ */ + public static class ParameterGuesser { + /** Amplitude. */ + private final double a; + /** Angular frequency. */ + private final double omega; + /** Phase. */ + private final double phi; + + /** + * Simple constructor. + * + * @param observations Sampled observations. + * @throws NumberIsTooSmallException if the sample is too short. + * @throws ZeroException if the abscissa range is zero. + * @throws MathIllegalStateException when the guessing procedure cannot + * produce sensible results. + */ + public ParameterGuesser(WeightedObservedPoint[] observations) { + if (observations.length < 4) { + throw new NumberIsTooSmallException(LocalizedFormats.INSUFFICIENT_OBSERVED_POINTS_IN_SAMPLE, + observations.length, 4, true); + } + + final WeightedObservedPoint[] sorted = sortObservations(observations); + + final double aOmega[] = guessAOmega(sorted); + a = aOmega[0]; + omega = aOmega[1]; + + phi = guessPhi(sorted); + } + + /** + * Gets an estimation of the parameters. + * + * @return the guessed parameters, in the following order: + *
    + *
  • Amplitude
  • + *
  • Angular frequency
  • + *
  • Phase
  • + *
+ */ + public double[] guess() { + return new double[] { a, omega, phi }; + } + + /** + * Sort the observations with respect to the abscissa. + * + * @param unsorted Input observations. + * @return the input observations, sorted. + */ + private WeightedObservedPoint[] sortObservations(WeightedObservedPoint[] unsorted) { + final WeightedObservedPoint[] observations = unsorted.clone(); + + // Since the samples are almost always already sorted, this + // method is implemented as an insertion sort that reorders the + // elements in place. Insertion sort is very efficient in this case. + WeightedObservedPoint curr = observations[0]; + for (int j = 1; j < observations.length; ++j) { + WeightedObservedPoint prec = curr; + curr = observations[j]; + if (curr.getX() < prec.getX()) { + // the current element should be inserted closer to the beginning + int i = j - 1; + WeightedObservedPoint mI = observations[i]; + while ((i >= 0) && (curr.getX() < mI.getX())) { + observations[i + 1] = mI; + if (i-- != 0) { + mI = observations[i]; + } + } + observations[i + 1] = curr; + curr = observations[j]; + } + } + + return observations; + } + + /** + * Estimate a first guess of the amplitude and angular frequency. + * This method assumes that the {@link #sortObservations()} method + * has been called previously. + * + * @param observations Observations, sorted w.r.t. abscissa. + * @throws ZeroException if the abscissa range is zero. + * @throws MathIllegalStateException when the guessing procedure cannot + * produce sensible results. + * @return the guessed amplitude (at index 0) and circular frequency + * (at index 1). + */ + private double[] guessAOmega(WeightedObservedPoint[] observations) { + final double[] aOmega = new double[2]; + + // initialize the sums for the linear model between the two integrals + double sx2 = 0; + double sy2 = 0; + double sxy = 0; + double sxz = 0; + double syz = 0; + + double currentX = observations[0].getX(); + double currentY = observations[0].getY(); + double f2Integral = 0; + double fPrime2Integral = 0; + final double startX = currentX; + for (int i = 1; i < observations.length; ++i) { + // one step forward + final double previousX = currentX; + final double previousY = currentY; + currentX = observations[i].getX(); + currentY = observations[i].getY(); + + // update the integrals of f2 and f'2 + // considering a linear model for f (and therefore constant f') + final double dx = currentX - previousX; + final double dy = currentY - previousY; + final double f2StepIntegral = + dx * (previousY * previousY + previousY * currentY + currentY * currentY) / 3; + final double fPrime2StepIntegral = dy * dy / dx; + + final double x = currentX - startX; + f2Integral += f2StepIntegral; + fPrime2Integral += fPrime2StepIntegral; + + sx2 += x * x; + sy2 += f2Integral * f2Integral; + sxy += x * f2Integral; + sxz += x * fPrime2Integral; + syz += f2Integral * fPrime2Integral; + } + + // compute the amplitude and pulsation coefficients + double c1 = sy2 * sxz - sxy * syz; + double c2 = sxy * sxz - sx2 * syz; + double c3 = sx2 * sy2 - sxy * sxy; + if ((c1 / c2 < 0) || (c2 / c3 < 0)) { + final int last = observations.length - 1; + // Range of the observations, assuming that the + // observations are sorted. + final double xRange = observations[last].getX() - observations[0].getX(); + if (xRange == 0) { + throw new ZeroException(); + } + aOmega[1] = 2 * Math.PI / xRange; + + double yMin = Double.POSITIVE_INFINITY; + double yMax = Double.NEGATIVE_INFINITY; + for (int i = 1; i < observations.length; ++i) { + final double y = observations[i].getY(); + if (y < yMin) { + yMin = y; + } + if (y > yMax) { + yMax = y; + } + } + aOmega[0] = 0.5 * (yMax - yMin); + } else { + if (c2 == 0) { + // In some ill-conditioned cases (cf. MATH-844), the guesser + // procedure cannot produce sensible results. + throw new MathIllegalStateException(LocalizedFormats.ZERO_DENOMINATOR); + } + + aOmega[0] = FastMath.sqrt(c1 / c2); + aOmega[1] = FastMath.sqrt(c2 / c3); + } + + return aOmega; + } + + /** + * Estimate a first guess of the phase. + * + * @param observations Observations, sorted w.r.t. abscissa. + * @return the guessed phase. + */ + private double guessPhi(WeightedObservedPoint[] observations) { + // initialize the means + double fcMean = 0; + double fsMean = 0; + + double currentX = observations[0].getX(); + double currentY = observations[0].getY(); + for (int i = 1; i < observations.length; ++i) { + // one step forward + final double previousX = currentX; + final double previousY = currentY; + currentX = observations[i].getX(); + currentY = observations[i].getY(); + final double currentYPrime = (currentY - previousY) / (currentX - previousX); + + double omegaX = omega * currentX; + double cosine = FastMath.cos(omegaX); + double sine = FastMath.sin(omegaX); + fcMean += omega * currentY * cosine - currentYPrime * sine; + fsMean += omega * currentY * sine + currentYPrime * cosine; + } + + return FastMath.atan2(-fsMean, fcMean); + } + } +} diff --git a/src/main/java/org/apache/commons/math3/fitting/PolynomialFitter.java b/src/main/java/org/apache/commons/math3/fitting/PolynomialFitter.java new file mode 100644 index 000000000..4767ea84f --- /dev/null +++ b/src/main/java/org/apache/commons/math3/fitting/PolynomialFitter.java @@ -0,0 +1,70 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.fitting; + +import org.apache.commons.math3.analysis.polynomials.PolynomialFunction; +import org.apache.commons.math3.optim.nonlinear.vector.MultivariateVectorOptimizer; + +/** + * Polynomial fitting is a very simple case of {@link CurveFitter curve fitting}. + * The estimated coefficients are the polynomial coefficients (see the + * {@link #fit(double[]) fit} method). + * + * @version $Id: PolynomialFitter.java 1416643 2012-12-03 19:37:14Z tn $ + * @since 2.0 + */ +public class PolynomialFitter extends CurveFitter { + /** + * Simple constructor. + * + * @param optimizer Optimizer to use for the fitting. + */ + public PolynomialFitter(MultivariateVectorOptimizer optimizer) { + super(optimizer); + } + + /** + * Get the coefficients of the polynomial fitting the weighted data points. + * The degree of the fitting polynomial is {@code guess.length - 1}. + * + * @param guess First guess for the coefficients. They must be sorted in + * increasing order of the polynomial's degree. + * @param maxEval Maximum number of evaluations of the polynomial. + * @return the coefficients of the polynomial that best fits the observed points. + * @throws org.apache.commons.math3.exception.TooManyEvaluationsException if + * the number of evaluations exceeds {@code maxEval}. + * @throws org.apache.commons.math3.exception.ConvergenceException + * if the algorithm failed to converge. + */ + public double[] fit(int maxEval, double[] guess) { + return fit(maxEval, new PolynomialFunction.Parametric(), guess); + } + + /** + * Get the coefficients of the polynomial fitting the weighted data points. + * The degree of the fitting polynomial is {@code guess.length - 1}. + * + * @param guess First guess for the coefficients. They must be sorted in + * increasing order of the polynomial's degree. + * @return the coefficients of the polynomial that best fits the observed points. + * @throws org.apache.commons.math3.exception.ConvergenceException + * if the algorithm failed to converge. + */ + public double[] fit(double[] guess) { + return fit(new PolynomialFunction.Parametric(), guess); + } +} diff --git a/src/main/java/org/apache/commons/math3/fitting/WeightedObservedPoint.java b/src/main/java/org/apache/commons/math3/fitting/WeightedObservedPoint.java new file mode 100644 index 000000000..e4bca3468 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/fitting/WeightedObservedPoint.java @@ -0,0 +1,79 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.fitting; + +import java.io.Serializable; + +/** + * This class is a simple container for weighted observed point in + * {@link CurveFitter curve fitting}. + *

Instances of this class are guaranteed to be immutable.

+ * @version $Id: WeightedObservedPoint.java 1416643 2012-12-03 19:37:14Z tn $ + * @since 2.0 + */ +public class WeightedObservedPoint implements Serializable { + /** Serializable version id. */ + private static final long serialVersionUID = 5306874947404636157L; + /** Weight of the measurement in the fitting process. */ + private final double weight; + /** Abscissa of the point. */ + private final double x; + /** Observed value of the function at x. */ + private final double y; + + /** + * Simple constructor. + * + * @param weight Weight of the measurement in the fitting process. + * @param x Abscissa of the measurement. + * @param y Ordinate of the measurement. + */ + public WeightedObservedPoint(final double weight, final double x, final double y) { + this.weight = weight; + this.x = x; + this.y = y; + } + + /** + * Gets the weight of the measurement in the fitting process. + * + * @return the weight of the measurement in the fitting process. + */ + public double getWeight() { + return weight; + } + + /** + * Gets the abscissa of the point. + * + * @return the abscissa of the point. + */ + public double getX() { + return x; + } + + /** + * Gets the observed value of the function at x. + * + * @return the observed value of the function at x. + */ + public double getY() { + return y; + } + +} + diff --git a/src/main/java/org/apache/commons/math3/fitting/package-info.java b/src/main/java/org/apache/commons/math3/fitting/package-info.java new file mode 100644 index 000000000..f430b85f6 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/fitting/package-info.java @@ -0,0 +1,27 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +/** + * Classes to perform curve fitting. + * + * Curve fitting is a special case of a least squares problem + * were the parameters are the coefficients of a function {@code f} + * whose graph {@code y = f(x)} should pass through sample points, and + * were the objective function is the squared sum of the residuals + * f(xi) - yi for observed points + * (xi, yi). + */ +package org.apache.commons.math3.fitting; diff --git a/src/main/java/org/apache/commons/math3/optim/AbstractConvergenceChecker.java b/src/main/java/org/apache/commons/math3/optim/AbstractConvergenceChecker.java new file mode 100644 index 000000000..7bf24ae80 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/AbstractConvergenceChecker.java @@ -0,0 +1,70 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim; + +/** + * Base class for all convergence checker implementations. + * + * @param Type of (point, value) pair. + * + * @version $Id: AbstractConvergenceChecker.java 1370215 2012-08-07 12:38:59Z sebb $ + * @since 3.0 + */ +public abstract class AbstractConvergenceChecker + implements ConvergenceChecker { + /** + * Relative tolerance threshold. + */ + private final double relativeThreshold; + /** + * Absolute tolerance threshold. + */ + private final double absoluteThreshold; + + /** + * Build an instance with a specified thresholds. + * + * @param relativeThreshold relative tolerance threshold + * @param absoluteThreshold absolute tolerance threshold + */ + public AbstractConvergenceChecker(final double relativeThreshold, + final double absoluteThreshold) { + this.relativeThreshold = relativeThreshold; + this.absoluteThreshold = absoluteThreshold; + } + + /** + * @return the relative threshold. + */ + public double getRelativeThreshold() { + return relativeThreshold; + } + + /** + * @return the absolute threshold. + */ + public double getAbsoluteThreshold() { + return absoluteThreshold; + } + + /** + * {@inheritDoc} + */ + public abstract boolean converged(int iteration, + PAIR previous, + PAIR current); +} diff --git a/src/main/java/org/apache/commons/math3/optim/BaseMultiStartMultivariateOptimizer.java b/src/main/java/org/apache/commons/math3/optim/BaseMultiStartMultivariateOptimizer.java new file mode 100644 index 000000000..ad3b00a36 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/BaseMultiStartMultivariateOptimizer.java @@ -0,0 +1,214 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim; + +import org.apache.commons.math3.exception.MathIllegalStateException; +import org.apache.commons.math3.exception.NotStrictlyPositiveException; +import org.apache.commons.math3.exception.NullArgumentException; +import org.apache.commons.math3.random.RandomVectorGenerator; +import org.apache.commons.math3.optim.InitialGuess; + +/** + * Base class multi-start optimizer for a multivariate function. + *
+ * This class wraps an optimizer in order to use it several times in + * turn with different starting points (trying to avoid being trapped + * in a local extremum when looking for a global one). + * It is not a "user" class. + * + * @param Type of the point/value pair returned by the optimization + * algorithm. + * + * @version $Id$ + * @since 3.0 + */ +public abstract class BaseMultiStartMultivariateOptimizer + extends BaseMultivariateOptimizer { + /** Underlying classical optimizer. */ + private final BaseMultivariateOptimizer optimizer; + /** Number of evaluations already performed for all starts. */ + private int totalEvaluations; + /** Number of starts to go. */ + private int starts; + /** Random generator for multi-start. */ + private RandomVectorGenerator generator; + /** Optimization data. */ + private OptimizationData[] optimData; + /** + * Location in {@link #optimData} where the updated maximum + * number of evaluations will be stored. + */ + private int maxEvalIndex = -1; + /** + * Location in {@link #optimData} where the updated start value + * will be stored. + */ + private int initialGuessIndex = -1; + + /** + * Create a multi-start optimizer from a single-start optimizer. + * + * @param optimizer Single-start optimizer to wrap. + * @param starts Number of starts to perform. If {@code starts == 1}, + * the {@link #optimize(OptimizationData[]) optimize} will return the + * same solution as the given {@code optimizer} would return. + * @param generator Random vector generator to use for restarts. + * @throws NullArgumentException if {@code optimizer} or {@code generator} + * is {@code null}. + * @throws NotStrictlyPositiveException if {@code starts < 1}. + */ + public BaseMultiStartMultivariateOptimizer(final BaseMultivariateOptimizer optimizer, + final int starts, + final RandomVectorGenerator generator) { + super(optimizer.getConvergenceChecker()); + + if (optimizer == null || + generator == null) { + throw new NullArgumentException(); + } + if (starts < 1) { + throw new NotStrictlyPositiveException(starts); + } + + this.optimizer = optimizer; + this.starts = starts; + this.generator = generator; + } + + /** {@inheritDoc} */ + @Override + public int getEvaluations() { + return totalEvaluations; + } + + /** + * Gets all the optima found during the last call to {@code optimize}. + * The optimizer stores all the optima found during a set of + * restarts. The {@code optimize} method returns the best point only. + * This method returns all the points found at the end of each starts, + * including the best one already returned by the {@code optimize} method. + *
+ * The returned array as one element for each start as specified + * in the constructor. It is ordered with the results from the + * runs that did converge first, sorted from best to worst + * objective value (i.e in ascending order if minimizing and in + * descending order if maximizing), followed by {@code null} elements + * corresponding to the runs that did not converge. This means all + * elements will be {@code null} if the {@code optimize} method did throw + * an exception. + * This also means that if the first element is not {@code null}, it is + * the best point found across all starts. + *
+ * The behaviour is undefined if this method is called before + * {@code optimize}; it will likely throw {@code NullPointerException}. + * + * @return an array containing the optima sorted from best to worst. + */ + public abstract PAIR[] getOptima(); + + /** + * {@inheritDoc} + * + * @throws MathIllegalStateException if {@code optData} does not contain an + * instance of {@link MaxEval} or {@link InitialGuess}. + */ + @Override + public PAIR optimize(OptimizationData... optData) { + // Store arguments in order to pass them to the internal optimizer. + optimData = optData; + // Set up base class and perform computations. + return super.optimize(optData); + } + + /** {@inheritDoc} */ + @Override + protected PAIR doOptimize() { + // Remove all instances of "MaxEval" and "InitialGuess" from the + // array that will be passed to the internal optimizer. + // The former is to enforce smaller numbers of allowed evaluations + // (according to how many have been used up already), and the latter + // to impose a different start value for each start. + for (int i = 0; i < optimData.length; i++) { + if (optimData[i] instanceof MaxEval) { + optimData[i] = null; + maxEvalIndex = i; + } + if (optimData[i] instanceof InitialGuess) { + optimData[i] = null; + initialGuessIndex = i; + continue; + } + } + if (maxEvalIndex == -1) { + throw new MathIllegalStateException(); + } + if (initialGuessIndex == -1) { + throw new MathIllegalStateException(); + } + + RuntimeException lastException = null; + totalEvaluations = 0; + clear(); + + final int maxEval = getMaxEvaluations(); + final double[] min = getLowerBound(); + final double[] max = getUpperBound(); + final double[] startPoint = getStartPoint(); + + // Multi-start loop. + for (int i = 0; i < starts; i++) { + // CHECKSTYLE: stop IllegalCatch + try { + // Decrease number of allowed evaluations. + optimData[maxEvalIndex] = new MaxEval(maxEval - totalEvaluations); + // New start value. + final double[] s = (i == 0) ? + startPoint : + generator.nextVector(); // XXX This does not enforce bounds! + optimData[initialGuessIndex] = new InitialGuess(s); + // Optimize. + final PAIR result = optimizer.optimize(optimData); + store(result); + } catch (RuntimeException mue) { + lastException = mue; + } + // CHECKSTYLE: resume IllegalCatch + + totalEvaluations += optimizer.getEvaluations(); + } + + final PAIR[] optima = getOptima(); + if (optima.length == 0) { + // All runs failed. + throw lastException; // Cannot be null if starts >= 1. + } + + // Return the best optimum. + return optima[0]; + } + + /** + * Method that will be called in order to store each found optimum. + * + * @param optimum Result of an optimization run. + */ + protected abstract void store(PAIR optimum); + /** + * Method that will called in order to clear all stored optima. + */ + protected abstract void clear(); +} diff --git a/src/main/java/org/apache/commons/math3/optim/BaseMultivariateOptimizer.java b/src/main/java/org/apache/commons/math3/optim/BaseMultivariateOptimizer.java new file mode 100644 index 000000000..48d1efc7d --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/BaseMultivariateOptimizer.java @@ -0,0 +1,157 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim; + +import org.apache.commons.math3.optim.OptimizationData; +import org.apache.commons.math3.optim.InitialGuess; +import org.apache.commons.math3.optim.SimpleBounds; +import org.apache.commons.math3.optim.ConvergenceChecker; +import org.apache.commons.math3.exception.DimensionMismatchException; +import org.apache.commons.math3.exception.NumberIsTooSmallException; +import org.apache.commons.math3.exception.NumberIsTooLargeException; + +/** + * Base class for implementing optimizers for multivariate functions. + * It contains the boiler-plate code for initial guess and bounds + * specifications. + * It is not a "user" class. + * + * @param Type of the point/value pair returned by the optimization + * algorithm. + * + * @version $Id$ + * @since 3.1 + */ +public abstract class BaseMultivariateOptimizer + extends BaseOptimizer { + /** Initial guess. */ + private double[] start; + /** Lower bounds. */ + private double[] lowerBound; + /** Upper bounds. */ + private double[] upperBound; + + /** + * @param checker Convergence checker. + */ + protected BaseMultivariateOptimizer(ConvergenceChecker checker) { + super(checker); + } + + /** + * {@inheritDoc} + * + * @param optData Optimization data. + * The following data will be looked for: + *
    + *
  • {@link MaxEval}
  • + *
  • {@link InitialGuess}
  • + *
  • {@link SimpleBounds}
  • + *
+ * @return {@inheritDoc} + */ + @Override + public PAIR optimize(OptimizationData... optData) { + // Retrieve settings. + parseOptimizationData(optData); + // Check input consistency. + checkParameters(); + // Perform optimization. + return super.optimize(optData); + } + + /** + * Scans the list of (required and optional) optimization data that + * characterize the problem. + * + * @param optData Optimization data. The following data will be looked for: + *
    + *
  • {@link InitialGuess}
  • + *
  • {@link SimpleBounds}
  • + *
+ */ + private void parseOptimizationData(OptimizationData... optData) { + // The existing values (as set by the previous call) are reused if + // not provided in the argument list. + for (OptimizationData data : optData) { + if (data instanceof InitialGuess) { + start = ((InitialGuess) data).getInitialGuess(); + continue; + } + if (data instanceof SimpleBounds) { + final SimpleBounds bounds = (SimpleBounds) data; + lowerBound = bounds.getLower(); + upperBound = bounds.getUpper(); + continue; + } + } + } + + /** + * Gets the initial guess. + * + * @return the initial guess, or {@code null} if not set. + */ + public double[] getStartPoint() { + return start == null ? null : start.clone(); + } + /** + * @return the lower bounds, or {@code null} if not set. + */ + public double[] getLowerBound() { + return lowerBound == null ? null : lowerBound.clone(); + } + /** + * @return the upper bounds, or {@code null} if not set. + */ + public double[] getUpperBound() { + return upperBound == null ? null : upperBound.clone(); + } + + /** + * Check parameters consistency. + */ + private void checkParameters() { + if (start != null) { + final int dim = start.length; + if (lowerBound != null) { + if (lowerBound.length != dim) { + throw new DimensionMismatchException(lowerBound.length, dim); + } + for (int i = 0; i < dim; i++) { + final double v = start[i]; + final double lo = lowerBound[i]; + if (v < lo) { + throw new NumberIsTooSmallException(v, lo, true); + } + } + } + if (upperBound != null) { + if (upperBound.length != dim) { + throw new DimensionMismatchException(upperBound.length, dim); + } + for (int i = 0; i < dim; i++) { + final double v = start[i]; + final double hi = upperBound[i]; + if (v > hi) { + throw new NumberIsTooLargeException(v, hi, true); + } + } + } + } + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/BaseOptimizer.java b/src/main/java/org/apache/commons/math3/optim/BaseOptimizer.java new file mode 100644 index 000000000..48e105d4c --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/BaseOptimizer.java @@ -0,0 +1,218 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim; + +import org.apache.commons.math3.util.Incrementor; +import org.apache.commons.math3.optim.OptimizationData; +import org.apache.commons.math3.optim.ConvergenceChecker; +import org.apache.commons.math3.exception.TooManyEvaluationsException; +import org.apache.commons.math3.exception.TooManyIterationsException; + +/** + * Base class for implementing optimizers. + * It contains the boiler-plate code for counting the number of evaluations + * of the objective function and the number of iterations of the algorithm, + * and storing the convergence checker. + * It is not a "user" class. + * + * @param Type of the point/value pair returned by the optimization + * algorithm. + * + * @version $Id$ + * @since 3.1 + */ +public abstract class BaseOptimizer { + /** Evaluations counter. */ + protected final Incrementor evaluations; + /** Iterations counter. */ + protected final Incrementor iterations; + /** Convergence checker. */ + private ConvergenceChecker checker; + + /** + * @param checker Convergence checker. + */ + protected BaseOptimizer(ConvergenceChecker checker) { + this.checker = checker; + + evaluations = new Incrementor(0, new MaxEvalCallback()); + iterations = new Incrementor(0, new MaxIterCallback()); + } + + /** + * Gets the maximal number of function evaluations. + * + * @return the maximal number of function evaluations. + */ + public int getMaxEvaluations() { + return evaluations.getMaximalCount(); + } + + /** + * Gets the number of evaluations of the objective function. + * The number of evaluations corresponds to the last call to the + * {@code optimize} method. It is 0 if the method has not been + * called yet. + * + * @return the number of evaluations of the objective function. + */ + public int getEvaluations() { + return evaluations.getCount(); + } + + /** + * Gets the maximal number of iterations. + * + * @return the maximal number of iterations. + */ + public int getMaxIterations() { + return iterations.getMaximalCount(); + } + + /** + * Gets the number of iterations performed by the algorithm. + * The number iterations corresponds to the last call to the + * {@code optimize} method. It is 0 if the method has not been + * called yet. + * + * @return the number of evaluations of the objective function. + */ + public int getIterations() { + return iterations.getCount(); + } + + /** + * Gets the convergence checker. + * + * @return the object used to check for convergence. + */ + public ConvergenceChecker getConvergenceChecker() { + return checker; + } + + /** + * Stores data and performs the optimization. + * + * @param optData Optimization data. The following data will be looked for: + *
    + *
  • {@link MaxEval}
  • + *
  • {@link MaxIter}
  • + *
+ * @return a point/value pair that satifies the convergence criteria. + * @throws TooManyEvaluationsException if the maximal number of + * evaluations is exceeded. + * @throws TooManyIterationsException if the maximal number of + * iterations is exceeded. + */ + public PAIR optimize(OptimizationData... optData) + throws TooManyEvaluationsException, + TooManyIterationsException { + // Retrieve settings. + parseOptimizationData(optData); + // Reset counters. + evaluations.resetCount(); + iterations.resetCount(); + // Perform optimization. + return doOptimize(); + } + + /** + * Performs the bulk of the optimization algorithm. + * + * @return the point/value pair giving the optimal value of the + * objective function. + */ + protected abstract PAIR doOptimize(); + + /** + * Increment the evaluation count. + * + * @throws TooManyEvaluationsException if the allowed evaluations + * have been exhausted. + */ + protected void incrementEvaluationCount() + throws TooManyEvaluationsException { + evaluations.incrementCount(); + } + + /** + * Increment the iteration count. + * + * @throws TooManyIterationsException if the allowed iterations + * have been exhausted. + */ + protected void incrementIterationCount() + throws TooManyIterationsException { + iterations.incrementCount(); + } + + /** + * Scans the list of (required and optional) optimization data that + * characterize the problem. + * + * @param optData Optimization data. + * The following data will be looked for: + *
    + *
  • {@link MaxEval}
  • + *
  • {@link MaxIter}
  • + *
+ */ + private void parseOptimizationData(OptimizationData... optData) { + // The existing values (as set by the previous call) are reused if + // not provided in the argument list. + for (OptimizationData data : optData) { + if (data instanceof MaxEval) { + evaluations.setMaximalCount(((MaxEval) data).getMaxEval()); + continue; + } + if (data instanceof MaxIter) { + iterations.setMaximalCount(((MaxIter) data).getMaxIter()); + continue; + } + } + } + + /** + * Defines the action to perform when reaching the maximum number + * of evaluations. + */ + private static class MaxEvalCallback + implements Incrementor.MaxCountExceededCallback { + /** + * {@inheritDoc} + * @throws TooManyEvaluationsException. + */ + public void trigger(int max) { + throw new TooManyEvaluationsException(max); + } + } + + /** + * Defines the action to perform when reaching the maximum number + * of evaluations. + */ + private static class MaxIterCallback + implements Incrementor.MaxCountExceededCallback { + /** + * {@inheritDoc} + * @throws TooManyIterationsException. + */ + public void trigger(int max) { + throw new TooManyIterationsException(max); + } + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/ConvergenceChecker.java b/src/main/java/org/apache/commons/math3/optim/ConvergenceChecker.java new file mode 100644 index 000000000..f49e98bd2 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/ConvergenceChecker.java @@ -0,0 +1,56 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.commons.math3.optim; + +/** + * This interface specifies how to check if an optimization algorithm has + * converged. + *
+ * Deciding if convergence has been reached is a problem-dependent issue. The + * user should provide a class implementing this interface to allow the + * optimization algorithm to stop its search according to the problem at hand. + *
+ * For convenience, three implementations that fit simple needs are already + * provided: {@link SimpleValueChecker}, {@link SimpleVectorValueChecker} and + * {@link SimplePointChecker}. The first two consider that convergence is + * reached when the objective function value does not change much anymore, it + * does not use the point set at all. + * The third one considers that convergence is reached when the input point + * set does not change much anymore, it does not use objective function value + * at all. + * + * @param Type of the (point, objective value) pair. + * + * @see org.apache.commons.math3.optim.SimplePointChecker + * @see org.apache.commons.math3.optim.SimpleValueChecker + * @see org.apache.commons.math3.optim.SimpleVectorValueChecker + * + * @version $Id: ConvergenceChecker.java 1364392 2012-07-22 18:27:12Z tn $ + * @since 3.0 + */ +public interface ConvergenceChecker { + /** + * Check if the optimization algorithm has converged. + * + * @param iteration Current iteration. + * @param previous Best point in the previous iteration. + * @param current Best point in the current iteration. + * @return {@code true} if the algorithm is considered to have converged. + */ + boolean converged(int iteration, PAIR previous, PAIR current); +} diff --git a/src/main/java/org/apache/commons/math3/optim/GoalType.java b/src/main/java/org/apache/commons/math3/optim/GoalType.java new file mode 100644 index 000000000..00a0621a2 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/GoalType.java @@ -0,0 +1,31 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim; + +/** + * Goal type for an optimization problem (minimization or maximization of + * a scalar function. + * + * @version $Id: GoalType.java 1364392 2012-07-22 18:27:12Z tn $ + * @since 2.0 + */ +public enum GoalType implements OptimizationData { + /** Maximization. */ + MAXIMIZE, + /** Minimization. */ + MINIMIZE +} diff --git a/src/main/java/org/apache/commons/math3/optim/InitialGuess.java b/src/main/java/org/apache/commons/math3/optim/InitialGuess.java new file mode 100644 index 000000000..06480acab --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/InitialGuess.java @@ -0,0 +1,47 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.commons.math3.optim; + +/** + * Starting point (first guess) of the optimization procedure. + *
+ * Immutable class. + * + * @version $Id: InitialGuess.java 1416643 2012-12-03 19:37:14Z tn $ + * @since 3.1 + */ +public class InitialGuess implements OptimizationData { + /** Initial guess. */ + private final double[] init; + + /** + * @param startPoint Initial guess. + */ + public InitialGuess(double[] startPoint) { + init = startPoint.clone(); + } + + /** + * Gets the initial guess. + * + * @return the initial guess. + */ + public double[] getInitialGuess() { + return init.clone(); + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/MaxEval.java b/src/main/java/org/apache/commons/math3/optim/MaxEval.java new file mode 100644 index 000000000..6a5bbbfc7 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/MaxEval.java @@ -0,0 +1,62 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim; + +import org.apache.commons.math3.exception.NotStrictlyPositiveException; + +/** + * Maximum number of evaluations of the function to be optimized. + * + * @version $Id$ + * @since 3.1 + */ +public class MaxEval implements OptimizationData { + /** Allowed number of evalutations. */ + private final int maxEval; + + /** + * @param max Allowed number of evalutations. + * @throws NotStrictlyPositiveException if {@code max <= 0}. + */ + public MaxEval(int max) { + if (max <= 0) { + throw new NotStrictlyPositiveException(max); + } + + maxEval = max; + } + + /** + * Gets the maximum number of evaluations. + * + * @return the allowed number of evaluations. + */ + public int getMaxEval() { + return maxEval; + } + + /** + * Factory method that creates instance of this class that represents + * a virtually unlimited number of evaluations. + * + * @return a new instance suitable for allowing {@link Integer#MAX_VALUE} + * evaluations. + */ + public static MaxEval unlimited() { + return new MaxEval(Integer.MAX_VALUE); + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/MaxIter.java b/src/main/java/org/apache/commons/math3/optim/MaxIter.java new file mode 100644 index 000000000..7a88af734 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/MaxIter.java @@ -0,0 +1,62 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim; + +import org.apache.commons.math3.exception.NotStrictlyPositiveException; + +/** + * Maximum number of iterations performed by an (iterative) algorithm. + * + * @version $Id$ + * @since 3.1 + */ +public class MaxIter implements OptimizationData { + /** Allowed number of evalutations. */ + private final int maxIter; + + /** + * @param max Allowed number of iterations. + * @throws NotStrictlyPositiveException if {@code max <= 0}. + */ + public MaxIter(int max) { + if (max <= 0) { + throw new NotStrictlyPositiveException(max); + } + + maxIter = max; + } + + /** + * Gets the maximum number of evaluations. + * + * @return the allowed number of evaluations. + */ + public int getMaxIter() { + return maxIter; + } + + /** + * Factory method that creates instance of this class that represents + * a virtually unlimited number of iterations. + * + * @return a new instance suitable for allowing {@link Integer#MAX_VALUE} + * evaluations. + */ + public static MaxIter unlimited() { + return new MaxIter(Integer.MAX_VALUE); + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/ObjectiveFunction.java b/src/main/java/org/apache/commons/math3/optim/ObjectiveFunction.java new file mode 100644 index 000000000..b882f234b --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/ObjectiveFunction.java @@ -0,0 +1,46 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim; + +import org.apache.commons.math3.analysis.MultivariateFunction; + +/** + * Scalar function to be optimized. + * + * @version $Id$ + * @since 3.1 + */ +public class ObjectiveFunction implements OptimizationData { + /** Function to be optimized. */ + private final MultivariateFunction function; + + /** + * @param f Function to be optimized. + */ + public ObjectiveFunction(MultivariateFunction f) { + function = f; + } + + /** + * Gets the function to be optimized. + * + * @return the objective function. + */ + public MultivariateFunction getObjectiveFunction() { + return function; + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/OptimizationData.java b/src/main/java/org/apache/commons/math3/optim/OptimizationData.java new file mode 100644 index 000000000..e0ada5bb1 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/OptimizationData.java @@ -0,0 +1,29 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim; + +/** + * Marker interface. + * Implementations will provide functionality (optional or required) needed + * by the optimizers, and those will need to check the actual type of the + * arguments and perform the appropriate cast in order to access the data + * they need. + * + * @version $Id: OptimizationData.java 1416643 2012-12-03 19:37:14Z tn $ + * @since 3.1 + */ +public interface OptimizationData {} diff --git a/src/main/java/org/apache/commons/math3/optim/PointValuePair.java b/src/main/java/org/apache/commons/math3/optim/PointValuePair.java new file mode 100644 index 000000000..65810b58e --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/PointValuePair.java @@ -0,0 +1,122 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim; + +import java.io.Serializable; +import org.apache.commons.math3.util.Pair; + +/** + * This class holds a point and the value of an objective function at + * that point. + * + * @see PointVectorValuePair + * @see org.apache.commons.math3.analysis.MultivariateFunction + * @version $Id: PointValuePair.java 1416643 2012-12-03 19:37:14Z tn $ + * @since 3.0 + */ +public class PointValuePair extends Pair implements Serializable { + /** Serializable UID. */ + private static final long serialVersionUID = 20120513L; + + /** + * Builds a point/objective function value pair. + * + * @param point Point coordinates. This instance will store + * a copy of the array, not the array passed as argument. + * @param value Value of the objective function at the point. + */ + public PointValuePair(final double[] point, + final double value) { + this(point, value, true); + } + + /** + * Builds a point/objective function value pair. + * + * @param point Point coordinates. + * @param value Value of the objective function at the point. + * @param copyArray if {@code true}, the input array will be copied, + * otherwise it will be referenced. + */ + public PointValuePair(final double[] point, + final double value, + final boolean copyArray) { + super(copyArray ? ((point == null) ? null : + point.clone()) : + point, + value); + } + + /** + * Gets the point. + * + * @return a copy of the stored point. + */ + public double[] getPoint() { + final double[] p = getKey(); + return p == null ? null : p.clone(); + } + + /** + * Gets a reference to the point. + * + * @return a reference to the internal array storing the point. + */ + public double[] getPointRef() { + return getKey(); + } + + /** + * Replace the instance with a data transfer object for serialization. + * @return data transfer object that will be serialized + */ + private Object writeReplace() { + return new DataTransferObject(getKey(), getValue()); + } + + /** Internal class used only for serialization. */ + private static class DataTransferObject implements Serializable { + /** Serializable UID. */ + private static final long serialVersionUID = 20120513L; + /** + * Point coordinates. + * @Serial + */ + private final double[] point; + /** + * Value of the objective function at the point. + * @Serial + */ + private final double value; + + /** Simple constructor. + * @param point Point coordinates. + * @param value Value of the objective function at the point. + */ + public DataTransferObject(final double[] point, final double value) { + this.point = point.clone(); + this.value = value; + } + + /** Replace the deserialized data transfer object with a {@link PointValuePair}. + * @return replacement {@link PointValuePair} + */ + private Object readResolve() { + return new PointValuePair(point, value, false); + } + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/PointVectorValuePair.java b/src/main/java/org/apache/commons/math3/optim/PointVectorValuePair.java new file mode 100644 index 000000000..05f5a4fad --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/PointVectorValuePair.java @@ -0,0 +1,147 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim; + +import java.io.Serializable; +import org.apache.commons.math3.util.Pair; + +/** + * This class holds a point and the vectorial value of an objective function at + * that point. + * + * @see PointValuePair + * @see org.apache.commons.math3.analysis.MultivariateVectorFunction + * @version $Id: PointVectorValuePair.java 1416643 2012-12-03 19:37:14Z tn $ + * @since 3.0 + */ +public class PointVectorValuePair extends Pair implements Serializable { + /** Serializable UID. */ + private static final long serialVersionUID = 20120513L; + + /** + * Builds a point/objective function value pair. + * + * @param point Point coordinates. This instance will store + * a copy of the array, not the array passed as argument. + * @param value Value of the objective function at the point. + */ + public PointVectorValuePair(final double[] point, + final double[] value) { + this(point, value, true); + } + + /** + * Build a point/objective function value pair. + * + * @param point Point coordinates. + * @param value Value of the objective function at the point. + * @param copyArray if {@code true}, the input arrays will be copied, + * otherwise they will be referenced. + */ + public PointVectorValuePair(final double[] point, + final double[] value, + final boolean copyArray) { + super(copyArray ? + ((point == null) ? null : + point.clone()) : + point, + copyArray ? + ((value == null) ? null : + value.clone()) : + value); + } + + /** + * Gets the point. + * + * @return a copy of the stored point. + */ + public double[] getPoint() { + final double[] p = getKey(); + return p == null ? null : p.clone(); + } + + /** + * Gets a reference to the point. + * + * @return a reference to the internal array storing the point. + */ + public double[] getPointRef() { + return getKey(); + } + + /** + * Gets the value of the objective function. + * + * @return a copy of the stored value of the objective function. + */ + @Override + public double[] getValue() { + final double[] v = super.getValue(); + return v == null ? null : v.clone(); + } + + /** + * Gets a reference to the value of the objective function. + * + * @return a reference to the internal array storing the value of + * the objective function. + */ + public double[] getValueRef() { + return super.getValue(); + } + + /** + * Replace the instance with a data transfer object for serialization. + * @return data transfer object that will be serialized + */ + private Object writeReplace() { + return new DataTransferObject(getKey(), getValue()); + } + + /** Internal class used only for serialization. */ + private static class DataTransferObject implements Serializable { + /** Serializable UID. */ + private static final long serialVersionUID = 20120513L; + /** + * Point coordinates. + * @Serial + */ + private final double[] point; + /** + * Value of the objective function at the point. + * @Serial + */ + private final double[] value; + + /** Simple constructor. + * @param point Point coordinates. + * @param value Value of the objective function at the point. + */ + public DataTransferObject(final double[] point, final double[] value) { + this.point = point.clone(); + this.value = value.clone(); + } + + /** Replace the deserialized data transfer object with a {@link PointValuePair}. + * @return replacement {@link PointValuePair} + */ + private Object readResolve() { + return new PointVectorValuePair(point, value, false); + } + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/SimpleBounds.java b/src/main/java/org/apache/commons/math3/optim/SimpleBounds.java new file mode 100644 index 000000000..71ecd587e --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/SimpleBounds.java @@ -0,0 +1,80 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim; + +import java.util.Arrays; + +/** + * Simple optimization constraints: lower and upper bounds. + * The valid range of the parameters is an interval that can be infinite + * (in one or both directions). + *
+ * Immutable class. + * + * @version $Id: SimpleBounds.java 1416643 2012-12-03 19:37:14Z tn $ + * @since 3.1 + */ +public class SimpleBounds implements OptimizationData { + /** Lower bounds. */ + private final double[] lower; + /** Upper bounds. */ + private final double[] upper; + + /** + * @param lB Lower bounds. + * @param uB Upper bounds. + */ + public SimpleBounds(double[] lB, + double[] uB) { + lower = lB.clone(); + upper = uB.clone(); + } + + /** + * Gets the lower bounds. + * + * @return the lower bounds. + */ + public double[] getLower() { + return lower.clone(); + } + /** + * Gets the upper bounds. + * + * @return the upper bounds. + */ + public double[] getUpper() { + return upper.clone(); + } + + /** + * Factory method that creates instance of this class that represents + * unbounded ranges. + * + * @param dim Number of parameters. + * @return a new instance suitable for passing to an optimizer that + * requires bounds specification. + */ + public static SimpleBounds unbounded(int dim) { + final double[] lB = new double[dim]; + Arrays.fill(lB, Double.NEGATIVE_INFINITY); + final double[] uB = new double[dim]; + Arrays.fill(uB, Double.POSITIVE_INFINITY); + + return new SimpleBounds(lB, uB); + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/SimplePointChecker.java b/src/main/java/org/apache/commons/math3/optim/SimplePointChecker.java new file mode 100644 index 000000000..ea98a6fed --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/SimplePointChecker.java @@ -0,0 +1,136 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim; + +import org.apache.commons.math3.util.FastMath; +import org.apache.commons.math3.util.Pair; +import org.apache.commons.math3.exception.NotStrictlyPositiveException; + +/** + * Simple implementation of the {@link ConvergenceChecker} interface using + * only point coordinates. + * + * Convergence is considered to have been reached if either the relative + * difference between each point coordinate are smaller than a threshold + * or if either the absolute difference between the point coordinates are + * smaller than another threshold. + *
+ * The {@link #converged(int,Pair,Pair) converged} method will also return + * {@code true} if the number of iterations has been set (see + * {@link #SimplePointChecker(double,double,int) this constructor}). + * + * @param Type of the (point, value) pair. + * The type of the "value" part of the pair (not used by this class). + * + * @version $Id: SimplePointChecker.java 1413127 2012-11-24 04:37:30Z psteitz $ + * @since 3.0 + */ +public class SimplePointChecker> + extends AbstractConvergenceChecker { + /** + * If {@link #maxIterationCount} is set to this value, the number of + * iterations will never cause {@link #converged(int, Pair, Pair)} + * to return {@code true}. + */ + private static final int ITERATION_CHECK_DISABLED = -1; + /** + * Number of iterations after which the + * {@link #converged(int, Pair, Pair)} method + * will return true (unless the check is disabled). + */ + private final int maxIterationCount; + + /** + * Build an instance with specified thresholds. + * In order to perform only relative checks, the absolute tolerance + * must be set to a negative value. In order to perform only absolute + * checks, the relative tolerance must be set to a negative value. + * + * @param relativeThreshold relative tolerance threshold + * @param absoluteThreshold absolute tolerance threshold + */ + public SimplePointChecker(final double relativeThreshold, + final double absoluteThreshold) { + super(relativeThreshold, absoluteThreshold); + maxIterationCount = ITERATION_CHECK_DISABLED; + } + + /** + * Builds an instance with specified thresholds. + * In order to perform only relative checks, the absolute tolerance + * must be set to a negative value. In order to perform only absolute + * checks, the relative tolerance must be set to a negative value. + * + * @param relativeThreshold Relative tolerance threshold. + * @param absoluteThreshold Absolute tolerance threshold. + * @param maxIter Maximum iteration count. + * @throws NotStrictlyPositiveException if {@code maxIter <= 0}. + * + * @since 3.1 + */ + public SimplePointChecker(final double relativeThreshold, + final double absoluteThreshold, + final int maxIter) { + super(relativeThreshold, absoluteThreshold); + + if (maxIter <= 0) { + throw new NotStrictlyPositiveException(maxIter); + } + maxIterationCount = maxIter; + } + + /** + * Check if the optimization algorithm has converged considering the + * last two points. + * This method may be called several times from the same algorithm + * iteration with different points. This can be detected by checking the + * iteration number at each call if needed. Each time this method is + * called, the previous and current point correspond to points with the + * same role at each iteration, so they can be compared. As an example, + * simplex-based algorithms call this method for all points of the simplex, + * not only for the best or worst ones. + * + * @param iteration Index of current iteration + * @param previous Best point in the previous iteration. + * @param current Best point in the current iteration. + * @return {@code true} if the arguments satify the convergence criterion. + */ + @Override + public boolean converged(final int iteration, + final PAIR previous, + final PAIR current) { + if (maxIterationCount != ITERATION_CHECK_DISABLED) { + if (iteration >= maxIterationCount) { + return true; + } + } + + final double[] p = previous.getKey(); + final double[] c = current.getKey(); + for (int i = 0; i < p.length; ++i) { + final double pi = p[i]; + final double ci = c[i]; + final double difference = FastMath.abs(pi - ci); + final double size = FastMath.max(FastMath.abs(pi), FastMath.abs(ci)); + if (difference > size * getRelativeThreshold() && + difference > getAbsoluteThreshold()) { + return false; + } + } + return true; + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/SimpleValueChecker.java b/src/main/java/org/apache/commons/math3/optim/SimpleValueChecker.java new file mode 100644 index 000000000..dcd991a44 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/SimpleValueChecker.java @@ -0,0 +1,128 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.commons.math3.optim; + +import org.apache.commons.math3.util.FastMath; +import org.apache.commons.math3.exception.NotStrictlyPositiveException; + +/** + * Simple implementation of the {@link ConvergenceChecker} interface using + * only objective function values. + * + * Convergence is considered to have been reached if either the relative + * difference between the objective function values is smaller than a + * threshold or if either the absolute difference between the objective + * function values is smaller than another threshold. + *
+ * The {@link #converged(int,PointValuePair,PointValuePair) converged} + * method will also return {@code true} if the number of iterations has been set + * (see {@link #SimpleValueChecker(double,double,int) this constructor}). + * + * @version $Id: SimpleValueChecker.java 1416643 2012-12-03 19:37:14Z tn $ + * @since 3.0 + */ +public class SimpleValueChecker + extends AbstractConvergenceChecker { + /** + * If {@link #maxIterationCount} is set to this value, the number of + * iterations will never cause + * {@link #converged(int,PointValuePair,PointValuePair)} + * to return {@code true}. + */ + private static final int ITERATION_CHECK_DISABLED = -1; + /** + * Number of iterations after which the + * {@link #converged(int,PointValuePair,PointValuePair)} method + * will return true (unless the check is disabled). + */ + private final int maxIterationCount; + + /** Build an instance with specified thresholds. + * + * In order to perform only relative checks, the absolute tolerance + * must be set to a negative value. In order to perform only absolute + * checks, the relative tolerance must be set to a negative value. + * + * @param relativeThreshold relative tolerance threshold + * @param absoluteThreshold absolute tolerance threshold + */ + public SimpleValueChecker(final double relativeThreshold, + final double absoluteThreshold) { + super(relativeThreshold, absoluteThreshold); + maxIterationCount = ITERATION_CHECK_DISABLED; + } + + /** + * Builds an instance with specified thresholds. + * + * In order to perform only relative checks, the absolute tolerance + * must be set to a negative value. In order to perform only absolute + * checks, the relative tolerance must be set to a negative value. + * + * @param relativeThreshold relative tolerance threshold + * @param absoluteThreshold absolute tolerance threshold + * @param maxIter Maximum iteration count. + * @throws NotStrictlyPositiveException if {@code maxIter <= 0}. + * + * @since 3.1 + */ + public SimpleValueChecker(final double relativeThreshold, + final double absoluteThreshold, + final int maxIter) { + super(relativeThreshold, absoluteThreshold); + + if (maxIter <= 0) { + throw new NotStrictlyPositiveException(maxIter); + } + maxIterationCount = maxIter; + } + + /** + * Check if the optimization algorithm has converged considering the + * last two points. + * This method may be called several time from the same algorithm + * iteration with different points. This can be detected by checking the + * iteration number at each call if needed. Each time this method is + * called, the previous and current point correspond to points with the + * same role at each iteration, so they can be compared. As an example, + * simplex-based algorithms call this method for all points of the simplex, + * not only for the best or worst ones. + * + * @param iteration Index of current iteration + * @param previous Best point in the previous iteration. + * @param current Best point in the current iteration. + * @return {@code true} if the algorithm has converged. + */ + @Override + public boolean converged(final int iteration, + final PointValuePair previous, + final PointValuePair current) { + if (maxIterationCount != ITERATION_CHECK_DISABLED) { + if (iteration >= maxIterationCount) { + return true; + } + } + + final double p = previous.getValue(); + final double c = current.getValue(); + final double difference = FastMath.abs(p - c); + final double size = FastMath.max(FastMath.abs(p), FastMath.abs(c)); + return difference <= size * getRelativeThreshold() || + difference <= getAbsoluteThreshold(); + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/SimpleVectorValueChecker.java b/src/main/java/org/apache/commons/math3/optim/SimpleVectorValueChecker.java new file mode 100644 index 000000000..131e16326 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/SimpleVectorValueChecker.java @@ -0,0 +1,137 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.commons.math3.optim; + +import org.apache.commons.math3.util.FastMath; +import org.apache.commons.math3.exception.NotStrictlyPositiveException; + +/** + * Simple implementation of the {@link ConvergenceChecker} interface using + * only objective function values. + * + * Convergence is considered to have been reached if either the relative + * difference between the objective function values is smaller than a + * threshold or if either the absolute difference between the objective + * function values is smaller than another threshold for all vectors elements. + *
+ * The {@link #converged(int,PointVectorValuePair,PointVectorValuePair) converged} + * method will also return {@code true} if the number of iterations has been set + * (see {@link #SimpleVectorValueChecker(double,double,int) this constructor}). + * + * @version $Id: SimpleVectorValueChecker.java 1416643 2012-12-03 19:37:14Z tn $ + * @since 3.0 + */ +public class SimpleVectorValueChecker + extends AbstractConvergenceChecker { + /** + * If {@link #maxIterationCount} is set to this value, the number of + * iterations will never cause + * {@link #converged(int,PointVectorValuePair,PointVectorValuePair)} + * to return {@code true}. + */ + private static final int ITERATION_CHECK_DISABLED = -1; + /** + * Number of iterations after which the + * {@link #converged(int,PointVectorValuePair,PointVectorValuePair)} method + * will return true (unless the check is disabled). + */ + private final int maxIterationCount; + + /** + * Build an instance with specified thresholds. + * + * In order to perform only relative checks, the absolute tolerance + * must be set to a negative value. In order to perform only absolute + * checks, the relative tolerance must be set to a negative value. + * + * @param relativeThreshold relative tolerance threshold + * @param absoluteThreshold absolute tolerance threshold + */ + public SimpleVectorValueChecker(final double relativeThreshold, + final double absoluteThreshold) { + super(relativeThreshold, absoluteThreshold); + maxIterationCount = ITERATION_CHECK_DISABLED; + } + + /** + * Builds an instance with specified tolerance thresholds and + * iteration count. + * + * In order to perform only relative checks, the absolute tolerance + * must be set to a negative value. In order to perform only absolute + * checks, the relative tolerance must be set to a negative value. + * + * @param relativeThreshold Relative tolerance threshold. + * @param absoluteThreshold Absolute tolerance threshold. + * @param maxIter Maximum iteration count. + * @throws NotStrictlyPositiveException if {@code maxIter <= 0}. + * + * @since 3.1 + */ + public SimpleVectorValueChecker(final double relativeThreshold, + final double absoluteThreshold, + final int maxIter) { + super(relativeThreshold, absoluteThreshold); + + if (maxIter <= 0) { + throw new NotStrictlyPositiveException(maxIter); + } + maxIterationCount = maxIter; + } + + /** + * Check if the optimization algorithm has converged considering the + * last two points. + * This method may be called several times from the same algorithm + * iteration with different points. This can be detected by checking the + * iteration number at each call if needed. Each time this method is + * called, the previous and current point correspond to points with the + * same role at each iteration, so they can be compared. As an example, + * simplex-based algorithms call this method for all points of the simplex, + * not only for the best or worst ones. + * + * @param iteration Index of current iteration + * @param previous Best point in the previous iteration. + * @param current Best point in the current iteration. + * @return {@code true} if the arguments satify the convergence criterion. + */ + @Override + public boolean converged(final int iteration, + final PointVectorValuePair previous, + final PointVectorValuePair current) { + if (maxIterationCount != ITERATION_CHECK_DISABLED) { + if (iteration >= maxIterationCount) { + return true; + } + } + + final double[] p = previous.getValueRef(); + final double[] c = current.getValueRef(); + for (int i = 0; i < p.length; ++i) { + final double pi = p[i]; + final double ci = c[i]; + final double difference = FastMath.abs(pi - ci); + final double size = FastMath.max(FastMath.abs(pi), FastMath.abs(ci)); + if (difference > size * getRelativeThreshold() && + difference > getAbsoluteThreshold()) { + return false; + } + } + return true; + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/linear/LinearConstraint.java b/src/main/java/org/apache/commons/math3/optim/linear/LinearConstraint.java new file mode 100644 index 000000000..c3812fb0a --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/linear/LinearConstraint.java @@ -0,0 +1,229 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.linear; + +import java.io.IOException; +import java.io.ObjectInputStream; +import java.io.ObjectOutputStream; +import java.io.Serializable; +import org.apache.commons.math3.linear.MatrixUtils; +import org.apache.commons.math3.linear.RealVector; +import org.apache.commons.math3.linear.ArrayRealVector; + +/** + * A linear constraint for a linear optimization problem. + *

+ * A linear constraint has one of the forms: + *

    + *
  • c1x1 + ... cnxn = v
  • + *
  • c1x1 + ... cnxn <= v
  • + *
  • c1x1 + ... cnxn >= v
  • + *
  • l1x1 + ... lnxn + lcst = + * r1x1 + ... rnxn + rcst
  • + *
  • l1x1 + ... lnxn + lcst <= + * r1x1 + ... rnxn + rcst
  • + *
  • l1x1 + ... lnxn + lcst >= + * r1x1 + ... rnxn + rcst
  • + *
+ * The ci, li or ri are the coefficients of the constraints, the xi + * are the coordinates of the current point and v is the value of the constraint. + *

+ * + * @version $Id: LinearConstraint.java 1416643 2012-12-03 19:37:14Z tn $ + * @since 2.0 + */ +public class LinearConstraint implements Serializable { + /** Serializable version identifier. */ + private static final long serialVersionUID = -764632794033034092L; + /** Coefficients of the constraint (left hand side). */ + private final transient RealVector coefficients; + /** Relationship between left and right hand sides (=, <=, >=). */ + private final Relationship relationship; + /** Value of the constraint (right hand side). */ + private final double value; + + /** + * Build a constraint involving a single linear equation. + *

+ * A linear constraint with a single linear equation has one of the forms: + *

    + *
  • c1x1 + ... cnxn = v
  • + *
  • c1x1 + ... cnxn <= v
  • + *
  • c1x1 + ... cnxn >= v
  • + *
+ *

+ * @param coefficients The coefficients of the constraint (left hand side) + * @param relationship The type of (in)equality used in the constraint + * @param value The value of the constraint (right hand side) + */ + public LinearConstraint(final double[] coefficients, + final Relationship relationship, + final double value) { + this(new ArrayRealVector(coefficients), relationship, value); + } + + /** + * Build a constraint involving a single linear equation. + *

+ * A linear constraint with a single linear equation has one of the forms: + *

    + *
  • c1x1 + ... cnxn = v
  • + *
  • c1x1 + ... cnxn <= v
  • + *
  • c1x1 + ... cnxn >= v
  • + *
+ *

+ * @param coefficients The coefficients of the constraint (left hand side) + * @param relationship The type of (in)equality used in the constraint + * @param value The value of the constraint (right hand side) + */ + public LinearConstraint(final RealVector coefficients, + final Relationship relationship, + final double value) { + this.coefficients = coefficients; + this.relationship = relationship; + this.value = value; + } + + /** + * Build a constraint involving two linear equations. + *

+ * A linear constraint with two linear equation has one of the forms: + *

    + *
  • l1x1 + ... lnxn + lcst = + * r1x1 + ... rnxn + rcst
  • + *
  • l1x1 + ... lnxn + lcst <= + * r1x1 + ... rnxn + rcst
  • + *
  • l1x1 + ... lnxn + lcst >= + * r1x1 + ... rnxn + rcst
  • + *
+ *

+ * @param lhsCoefficients The coefficients of the linear expression on the left hand side of the constraint + * @param lhsConstant The constant term of the linear expression on the left hand side of the constraint + * @param relationship The type of (in)equality used in the constraint + * @param rhsCoefficients The coefficients of the linear expression on the right hand side of the constraint + * @param rhsConstant The constant term of the linear expression on the right hand side of the constraint + */ + public LinearConstraint(final double[] lhsCoefficients, final double lhsConstant, + final Relationship relationship, + final double[] rhsCoefficients, final double rhsConstant) { + double[] sub = new double[lhsCoefficients.length]; + for (int i = 0; i < sub.length; ++i) { + sub[i] = lhsCoefficients[i] - rhsCoefficients[i]; + } + this.coefficients = new ArrayRealVector(sub, false); + this.relationship = relationship; + this.value = rhsConstant - lhsConstant; + } + + /** + * Build a constraint involving two linear equations. + *

+ * A linear constraint with two linear equation has one of the forms: + *

    + *
  • l1x1 + ... lnxn + lcst = + * r1x1 + ... rnxn + rcst
  • + *
  • l1x1 + ... lnxn + lcst <= + * r1x1 + ... rnxn + rcst
  • + *
  • l1x1 + ... lnxn + lcst >= + * r1x1 + ... rnxn + rcst
  • + *
+ *

+ * @param lhsCoefficients The coefficients of the linear expression on the left hand side of the constraint + * @param lhsConstant The constant term of the linear expression on the left hand side of the constraint + * @param relationship The type of (in)equality used in the constraint + * @param rhsCoefficients The coefficients of the linear expression on the right hand side of the constraint + * @param rhsConstant The constant term of the linear expression on the right hand side of the constraint + */ + public LinearConstraint(final RealVector lhsCoefficients, final double lhsConstant, + final Relationship relationship, + final RealVector rhsCoefficients, final double rhsConstant) { + this.coefficients = lhsCoefficients.subtract(rhsCoefficients); + this.relationship = relationship; + this.value = rhsConstant - lhsConstant; + } + + /** + * Gets the coefficients of the constraint (left hand side). + * + * @return the coefficients of the constraint (left hand side). + */ + public RealVector getCoefficients() { + return coefficients; + } + + /** + * Gets the relationship between left and right hand sides. + * + * @return the relationship between left and right hand sides. + */ + public Relationship getRelationship() { + return relationship; + } + + /** + * Gets the value of the constraint (right hand side). + * + * @return the value of the constraint (right hand side). + */ + public double getValue() { + return value; + } + + @Override + public boolean equals(Object other) { + if (this == other) { + return true; + } + if (other instanceof LinearConstraint) { + LinearConstraint rhs = (LinearConstraint) other; + return relationship == rhs.relationship && + value == rhs.value && + coefficients.equals(rhs.coefficients); + } + return false; + } + + @Override + public int hashCode() { + return relationship.hashCode() ^ + Double.valueOf(value).hashCode() ^ + coefficients.hashCode(); + } + + /** + * Serialize the instance. + * @param oos stream where object should be written + * @throws IOException if object cannot be written to stream + */ + private void writeObject(ObjectOutputStream oos) + throws IOException { + oos.defaultWriteObject(); + MatrixUtils.serializeRealVector(coefficients, oos); + } + + /** + * Deserialize the instance. + * @param ois stream from which the object should be read + * @throws ClassNotFoundException if a class in the stream cannot be found + * @throws IOException if object cannot be read from the stream + */ + private void readObject(ObjectInputStream ois) + throws ClassNotFoundException, IOException { + ois.defaultReadObject(); + MatrixUtils.deserializeRealVector(this, "coefficients", ois); + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/linear/LinearConstraintSet.java b/src/main/java/org/apache/commons/math3/optim/linear/LinearConstraintSet.java new file mode 100644 index 000000000..cf5279a34 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/linear/LinearConstraintSet.java @@ -0,0 +1,64 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.linear; + +import java.util.Set; +import java.util.HashSet; +import java.util.Collection; +import java.util.Collections; +import org.apache.commons.math3.optim.OptimizationData; + +/** + * Class that represents a set of {@link LinearConstraint linear constraints}. + * + * @version $Id$ + * @since 3.1 + */ +public class LinearConstraintSet implements OptimizationData { + /** Set of constraints. */ + private final Set linearConstraints + = new HashSet(); + + /** + * Creates a set containing the given constraints. + * + * @param constraints Constraints. + */ + public LinearConstraintSet(LinearConstraint... constraints) { + for (LinearConstraint c : constraints) { + linearConstraints.add(c); + } + } + + /** + * Creates a set containing the given constraints. + * + * @param constraints Constraints. + */ + public LinearConstraintSet(Collection constraints) { + linearConstraints.addAll(constraints); + } + + /** + * Gets the set of linear constraints. + * + * @return the constraints. + */ + public Collection getConstraints() { + return Collections.unmodifiableSet(linearConstraints); + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/linear/LinearObjectiveFunction.java b/src/main/java/org/apache/commons/math3/optim/linear/LinearObjectiveFunction.java new file mode 100644 index 000000000..9e0064d8c --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/linear/LinearObjectiveFunction.java @@ -0,0 +1,149 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.linear; + +import java.io.IOException; +import java.io.ObjectInputStream; +import java.io.ObjectOutputStream; +import java.io.Serializable; +import org.apache.commons.math3.analysis.MultivariateFunction; +import org.apache.commons.math3.linear.MatrixUtils; +import org.apache.commons.math3.linear.RealVector; +import org.apache.commons.math3.linear.ArrayRealVector; +import org.apache.commons.math3.optim.OptimizationData; + +/** + * An objective function for a linear optimization problem. + *

+ * A linear objective function has one the form: + *

+ * c1x1 + ... cnxn + d
+ * 
+ * The ci and d are the coefficients of the equation, + * the xi are the coordinates of the current point. + *

+ * + * @version $Id: LinearObjectiveFunction.java 1416643 2012-12-03 19:37:14Z tn $ + * @since 2.0 + */ +public class LinearObjectiveFunction + implements MultivariateFunction, + OptimizationData, + Serializable { + /** Serializable version identifier. */ + private static final long serialVersionUID = -4531815507568396090L; + /** Coefficients of the linear equation (ci). */ + private final transient RealVector coefficients; + /** Constant term of the linear equation. */ + private final double constantTerm; + + /** + * @param coefficients Coefficients for the linear equation being optimized. + * @param constantTerm Constant term of the linear equation. + */ + public LinearObjectiveFunction(double[] coefficients, double constantTerm) { + this(new ArrayRealVector(coefficients), constantTerm); + } + + /** + * @param coefficients Coefficients for the linear equation being optimized. + * @param constantTerm Constant term of the linear equation. + */ + public LinearObjectiveFunction(RealVector coefficients, double constantTerm) { + this.coefficients = coefficients; + this.constantTerm = constantTerm; + } + + /** + * Gets the coefficients of the linear equation being optimized. + * + * @return coefficients of the linear equation being optimized. + */ + public RealVector getCoefficients() { + return coefficients; + } + + /** + * Gets the constant of the linear equation being optimized. + * + * @return constant of the linear equation being optimized. + */ + public double getConstantTerm() { + return constantTerm; + } + + /** + * Computes the value of the linear equation at the current point. + * + * @param point Point at which linear equation must be evaluated. + * @return the value of the linear equation at the current point. + */ + public double value(final double[] point) { + return value(new ArrayRealVector(point, false)); + } + + /** + * Computes the value of the linear equation at the current point. + * + * @param point Point at which linear equation must be evaluated. + * @return the value of the linear equation at the current point. + */ + public double value(final RealVector point) { + return coefficients.dotProduct(point) + constantTerm; + } + + @Override + public boolean equals(Object other) { + if (this == other) { + return true; + } + if (other instanceof LinearObjectiveFunction) { + LinearObjectiveFunction rhs = (LinearObjectiveFunction) other; + return (constantTerm == rhs.constantTerm) && coefficients.equals(rhs.coefficients); + } + + return false; + } + + @Override + public int hashCode() { + return Double.valueOf(constantTerm).hashCode() ^ coefficients.hashCode(); + } + + /** + * Serialize the instance. + * @param oos stream where object should be written + * @throws IOException if object cannot be written to stream + */ + private void writeObject(ObjectOutputStream oos) + throws IOException { + oos.defaultWriteObject(); + MatrixUtils.serializeRealVector(coefficients, oos); + } + + /** + * Deserialize the instance. + * @param ois stream from which the object should be read + * @throws ClassNotFoundException if a class in the stream cannot be found + * @throws IOException if object cannot be read from the stream + */ + private void readObject(ObjectInputStream ois) + throws ClassNotFoundException, IOException { + ois.defaultReadObject(); + MatrixUtils.deserializeRealVector(this, "coefficients", ois); + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/linear/LinearOptimizer.java b/src/main/java/org/apache/commons/math3/optim/linear/LinearOptimizer.java new file mode 100644 index 000000000..d88feefc6 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/linear/LinearOptimizer.java @@ -0,0 +1,129 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.linear; + +import java.util.Collection; +import java.util.Collections; +import org.apache.commons.math3.exception.TooManyIterationsException; +import org.apache.commons.math3.optim.OptimizationData; +import org.apache.commons.math3.optim.PointValuePair; +import org.apache.commons.math3.optim.nonlinear.scalar.MultivariateOptimizer; + +/** + * Base class for implementing linear optimizers. + * + * @version $Id: AbstractLinearOptimizer.java 1416643 2012-12-03 19:37:14Z tn $ + * @since 3.1 + */ +public abstract class LinearOptimizer + extends MultivariateOptimizer { + /** + * Linear objective function. + */ + private LinearObjectiveFunction function; + /** + * Linear constraints. + */ + private Collection linearConstraints; + /** + * Whether to restrict the variables to non-negative values. + */ + private boolean nonNegative; + + /** + * Simple constructor with default settings. + * + */ + protected LinearOptimizer() { + super(null); // No convergence checker. + } + + /** + * @return {@code true} if the variables are restricted to non-negative values. + */ + protected boolean isRestrictedToNonNegative() { + return nonNegative; + } + + /** + * @return the optimization type. + */ + protected LinearObjectiveFunction getFunction() { + return function; + } + + /** + * @return the optimization type. + */ + protected Collection getConstraints() { + return Collections.unmodifiableCollection(linearConstraints); + } + + /** + * {@inheritDoc} + * + * @param optData Optimization data. The following data will be looked for: + *
    + *
  • {@link org.apache.commons.math3.optim.MaxIter}
  • + *
  • {@link LinearObjectiveFunction}
  • + *
  • {@link LinearConstraintSet}
  • + *
  • {@link NonNegativeConstraint}
  • + *
+ * @return {@inheritDoc} + * @throws TooManyIterationsException if the maximal number of + * iterations is exceeded. + */ + @Override + public PointValuePair optimize(OptimizationData... optData) + throws TooManyIterationsException { + // Retrieve settings. + parseOptimizationData(optData); + // Set up base class and perform computation. + return super.optimize(optData); + } + + /** + * Scans the list of (required and optional) optimization data that + * characterize the problem. + * + * @param optData Optimization data. + * The following data will be looked for: + *
    + *
  • {@link LinearObjectiveFunction}
  • + *
  • {@link LinearConstraintSet}
  • + *
  • {@link NonNegativeConstraint}
  • + *
+ */ + private void parseOptimizationData(OptimizationData... optData) { + // The existing values (as set by the previous call) are reused if + // not provided in the argument list. + for (OptimizationData data : optData) { + if (data instanceof LinearObjectiveFunction) { + function = (LinearObjectiveFunction) data; + continue; + } + if (data instanceof LinearConstraintSet) { + linearConstraints = ((LinearConstraintSet) data).getConstraints(); + continue; + } + if (data instanceof NonNegativeConstraint) { + nonNegative = ((NonNegativeConstraint) data).isRestrictedToNonNegative(); + continue; + } + } + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/linear/NoFeasibleSolutionException.java b/src/main/java/org/apache/commons/math3/optim/linear/NoFeasibleSolutionException.java new file mode 100644 index 000000000..15209b7a2 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/linear/NoFeasibleSolutionException.java @@ -0,0 +1,38 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.linear; + +import org.apache.commons.math3.exception.MathIllegalStateException; +import org.apache.commons.math3.exception.util.LocalizedFormats; + +/** + * This class represents exceptions thrown by optimizers when no solution fulfills the constraints. + * + * @version $Id: NoFeasibleSolutionException.java 1416643 2012-12-03 19:37:14Z tn $ + * @since 2.0 + */ +public class NoFeasibleSolutionException extends MathIllegalStateException { + /** Serializable version identifier. */ + private static final long serialVersionUID = -3044253632189082760L; + + /** + * Simple constructor using a default message. + */ + public NoFeasibleSolutionException() { + super(LocalizedFormats.NO_FEASIBLE_SOLUTION); + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/linear/NonNegativeConstraint.java b/src/main/java/org/apache/commons/math3/optim/linear/NonNegativeConstraint.java new file mode 100644 index 000000000..35d018131 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/linear/NonNegativeConstraint.java @@ -0,0 +1,48 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.linear; + +import org.apache.commons.math3.optim.OptimizationData; + +/** + * A constraint for a linear optimization problem indicating whether all + * variables must be restricted to non-negative values. + * + * @version $Id$ + * @since 3.1 + */ +public class NonNegativeConstraint implements OptimizationData { + /** Whether the variables are all positive. */ + private final boolean isRestricted; + + /** + * @param restricted If {@code true}, all the variables must be positive. + */ + public NonNegativeConstraint(boolean restricted) { + isRestricted = restricted; + } + + /** + * Indicates whether all the variables must be restricted to non-negative + * values. + * + * @return {@code true} if all the variables must be positive. + */ + public boolean isRestrictedToNonNegative() { + return isRestricted; + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/linear/Relationship.java b/src/main/java/org/apache/commons/math3/optim/linear/Relationship.java new file mode 100644 index 000000000..acd7e6654 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/linear/Relationship.java @@ -0,0 +1,65 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.linear; + +/** + * Types of relationships between two cells in a Solver {@link LinearConstraint}. + * + * @version $Id: Relationship.java 1416643 2012-12-03 19:37:14Z tn $ + * @since 2.0 + */ +public enum Relationship { + /** Equality relationship. */ + EQ("="), + /** Lesser than or equal relationship. */ + LEQ("<="), + /** Greater than or equal relationship. */ + GEQ(">="); + + /** Display string for the relationship. */ + private final String stringValue; + + /** + * Simple constructor. + * + * @param stringValue Display string for the relationship. + */ + private Relationship(String stringValue) { + this.stringValue = stringValue; + } + + @Override + public String toString() { + return stringValue; + } + + /** + * Gets the relationship obtained when multiplying all coefficients by -1. + * + * @return the opposite relationship. + */ + public Relationship oppositeRelationship() { + switch (this) { + case LEQ : + return GEQ; + case GEQ : + return LEQ; + default : + return EQ; + } + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/linear/SimplexSolver.java b/src/main/java/org/apache/commons/math3/optim/linear/SimplexSolver.java new file mode 100644 index 000000000..e01811275 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/linear/SimplexSolver.java @@ -0,0 +1,245 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.linear; + +import java.util.ArrayList; +import java.util.List; +import org.apache.commons.math3.exception.TooManyIterationsException; +import org.apache.commons.math3.optim.PointValuePair; +import org.apache.commons.math3.util.Precision; + +/** + * Solves a linear problem using the "Two-Phase Simplex" method. + * + * @version $Id: SimplexSolver.java 1416643 2012-12-03 19:37:14Z tn $ + * @since 2.0 + */ +public class SimplexSolver extends LinearOptimizer { + /** Default amount of error to accept for algorithm convergence. */ + private static final double DEFAULT_EPSILON = 1.0e-6; + + /** Default amount of error to accept in floating point comparisons (as ulps). */ + private static final int DEFAULT_ULPS = 10; + + /** Amount of error to accept for algorithm convergence. */ + private final double epsilon; + + /** Amount of error to accept in floating point comparisons (as ulps). */ + private final int maxUlps; + + /** + * Builds a simplex solver with default settings. + */ + public SimplexSolver() { + this(DEFAULT_EPSILON, DEFAULT_ULPS); + } + + /** + * Builds a simplex solver with a specified accepted amount of error. + * + * @param epsilon Amount of error to accept for algorithm convergence. + * @param maxUlps Amount of error to accept in floating point comparisons. + */ + public SimplexSolver(final double epsilon, + final int maxUlps) { + this.epsilon = epsilon; + this.maxUlps = maxUlps; + } + + /** + * Returns the column with the most negative coefficient in the objective function row. + * + * @param tableau Simple tableau for the problem. + * @return the column with the most negative coefficient. + */ + private Integer getPivotColumn(SimplexTableau tableau) { + double minValue = 0; + Integer minPos = null; + for (int i = tableau.getNumObjectiveFunctions(); i < tableau.getWidth() - 1; i++) { + final double entry = tableau.getEntry(0, i); + // check if the entry is strictly smaller than the current minimum + // do not use a ulp/epsilon check + if (entry < minValue) { + minValue = entry; + minPos = i; + } + } + return minPos; + } + + /** + * Returns the row with the minimum ratio as given by the minimum ratio test (MRT). + * + * @param tableau Simple tableau for the problem. + * @param col Column to test the ratio of (see {@link #getPivotColumn(SimplexTableau)}). + * @return the row with the minimum ratio. + */ + private Integer getPivotRow(SimplexTableau tableau, final int col) { + // create a list of all the rows that tie for the lowest score in the minimum ratio test + List minRatioPositions = new ArrayList(); + double minRatio = Double.MAX_VALUE; + for (int i = tableau.getNumObjectiveFunctions(); i < tableau.getHeight(); i++) { + final double rhs = tableau.getEntry(i, tableau.getWidth() - 1); + final double entry = tableau.getEntry(i, col); + + if (Precision.compareTo(entry, 0d, maxUlps) > 0) { + final double ratio = rhs / entry; + // check if the entry is strictly equal to the current min ratio + // do not use a ulp/epsilon check + final int cmp = Double.compare(ratio, minRatio); + if (cmp == 0) { + minRatioPositions.add(i); + } else if (cmp < 0) { + minRatio = ratio; + minRatioPositions = new ArrayList(); + minRatioPositions.add(i); + } + } + } + + if (minRatioPositions.size() == 0) { + return null; + } else if (minRatioPositions.size() > 1) { + // there's a degeneracy as indicated by a tie in the minimum ratio test + + // 1. check if there's an artificial variable that can be forced out of the basis + if (tableau.getNumArtificialVariables() > 0) { + for (Integer row : minRatioPositions) { + for (int i = 0; i < tableau.getNumArtificialVariables(); i++) { + int column = i + tableau.getArtificialVariableOffset(); + final double entry = tableau.getEntry(row, column); + if (Precision.equals(entry, 1d, maxUlps) && row.equals(tableau.getBasicRow(column))) { + return row; + } + } + } + } + + // 2. apply Bland's rule to prevent cycling: + // take the row for which the corresponding basic variable has the smallest index + // + // see http://www.stanford.edu/class/msande310/blandrule.pdf + // see http://en.wikipedia.org/wiki/Bland%27s_rule (not equivalent to the above paper) + // + // Additional heuristic: if we did not get a solution after half of maxIterations + // revert to the simple case of just returning the top-most row + // This heuristic is based on empirical data gathered while investigating MATH-828. + if (getEvaluations() < getMaxEvaluations() / 2) { + Integer minRow = null; + int minIndex = tableau.getWidth(); + final int varStart = tableau.getNumObjectiveFunctions(); + final int varEnd = tableau.getWidth() - 1; + for (Integer row : minRatioPositions) { + for (int i = varStart; i < varEnd && !row.equals(minRow); i++) { + final Integer basicRow = tableau.getBasicRow(i); + if (basicRow != null && basicRow.equals(row)) { + if (i < minIndex) { + minIndex = i; + minRow = row; + } + } + } + } + return minRow; + } + } + return minRatioPositions.get(0); + } + + /** + * Runs one iteration of the Simplex method on the given model. + * + * @param tableau Simple tableau for the problem. + * @throws TooManyIterationsException if the allowed number of iterations has been exhausted. + * @throws UnboundedSolutionException if the model is found not to have a bounded solution. + */ + protected void doIteration(final SimplexTableau tableau) + throws TooManyIterationsException, + UnboundedSolutionException { + + incrementIterationCount(); + + Integer pivotCol = getPivotColumn(tableau); + Integer pivotRow = getPivotRow(tableau, pivotCol); + if (pivotRow == null) { + throw new UnboundedSolutionException(); + } + + // set the pivot element to 1 + double pivotVal = tableau.getEntry(pivotRow, pivotCol); + tableau.divideRow(pivotRow, pivotVal); + + // set the rest of the pivot column to 0 + for (int i = 0; i < tableau.getHeight(); i++) { + if (i != pivotRow) { + final double multiplier = tableau.getEntry(i, pivotCol); + tableau.subtractRow(i, pivotRow, multiplier); + } + } + } + + /** + * Solves Phase 1 of the Simplex method. + * + * @param tableau Simple tableau for the problem. + * @throws TooManyIterationsException if the allowed number of iterations has been exhausted. + * @throws UnboundedSolutionException if the model is found not to have a bounded solution. + * @throws NoFeasibleSolutionException if there is no feasible solution? + */ + protected void solvePhase1(final SimplexTableau tableau) + throws TooManyIterationsException, + UnboundedSolutionException, + NoFeasibleSolutionException { + + // make sure we're in Phase 1 + if (tableau.getNumArtificialVariables() == 0) { + return; + } + + while (!tableau.isOptimal()) { + doIteration(tableau); + } + + // if W is not zero then we have no feasible solution + if (!Precision.equals(tableau.getEntry(0, tableau.getRhsOffset()), 0d, epsilon)) { + throw new NoFeasibleSolutionException(); + } + } + + /** {@inheritDoc} */ + @Override + public PointValuePair doOptimize() + throws TooManyIterationsException, + UnboundedSolutionException, + NoFeasibleSolutionException { + final SimplexTableau tableau = + new SimplexTableau(getFunction(), + getConstraints(), + getGoalType(), + isRestrictedToNonNegative(), + epsilon, + maxUlps); + + solvePhase1(tableau); + tableau.dropPhase1Objective(); + + while (!tableau.isOptimal()) { + doIteration(tableau); + } + return tableau.getSolution(); + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/linear/SimplexTableau.java b/src/main/java/org/apache/commons/math3/optim/linear/SimplexTableau.java new file mode 100644 index 000000000..ec77345a8 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/linear/SimplexTableau.java @@ -0,0 +1,637 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.linear; + +import java.io.IOException; +import java.io.ObjectInputStream; +import java.io.ObjectOutputStream; +import java.io.Serializable; +import java.util.ArrayList; +import java.util.Collection; +import java.util.HashSet; +import java.util.List; +import java.util.Set; +import java.util.TreeSet; + +import org.apache.commons.math3.linear.Array2DRowRealMatrix; +import org.apache.commons.math3.linear.MatrixUtils; +import org.apache.commons.math3.linear.RealMatrix; +import org.apache.commons.math3.linear.RealVector; +import org.apache.commons.math3.optim.GoalType; +import org.apache.commons.math3.optim.PointValuePair; +import org.apache.commons.math3.util.FastMath; +import org.apache.commons.math3.util.Precision; + +/** + * A tableau for use in the Simplex method. + * + *

+ * Example: + *

+ *   W |  Z |  x1 |  x2 |  x- | s1 |  s2 |  a1 |  RHS
+ * ---------------------------------------------------
+ *  -1    0    0     0     0     0     0     1     0   <= phase 1 objective
+ *   0    1   -15   -10    0     0     0     0     0   <= phase 2 objective
+ *   0    0    1     0     0     1     0     0     2   <= constraint 1
+ *   0    0    0     1     0     0     1     0     3   <= constraint 2
+ *   0    0    1     1     0     0     0     1     4   <= constraint 3
+ * 
+ * W: Phase 1 objective function
+ * Z: Phase 2 objective function
+ * x1 & x2: Decision variables
+ * x-: Extra decision variable to allow for negative values
+ * s1 & s2: Slack/Surplus variables
+ * a1: Artificial variable
+ * RHS: Right hand side
+ *

+ * @version $Id: SimplexTableau.java 1416643 2012-12-03 19:37:14Z tn $ + * @since 2.0 + */ +class SimplexTableau implements Serializable { + + /** Column label for negative vars. */ + private static final String NEGATIVE_VAR_COLUMN_LABEL = "x-"; + + /** Default amount of error to accept in floating point comparisons (as ulps). */ + private static final int DEFAULT_ULPS = 10; + + /** The cut-off threshold to zero-out entries. */ + private static final double CUTOFF_THRESHOLD = 1e-12; + + /** Serializable version identifier. */ + private static final long serialVersionUID = -1369660067587938365L; + + /** Linear objective function. */ + private final LinearObjectiveFunction f; + + /** Linear constraints. */ + private final List constraints; + + /** Whether to restrict the variables to non-negative values. */ + private final boolean restrictToNonNegative; + + /** The variables each column represents */ + private final List columnLabels = new ArrayList(); + + /** Simple tableau. */ + private transient RealMatrix tableau; + + /** Number of decision variables. */ + private final int numDecisionVariables; + + /** Number of slack variables. */ + private final int numSlackVariables; + + /** Number of artificial variables. */ + private int numArtificialVariables; + + /** Amount of error to accept when checking for optimality. */ + private final double epsilon; + + /** Amount of error to accept in floating point comparisons. */ + private final int maxUlps; + + /** + * Builds a tableau for a linear problem. + * + * @param f Linear objective function. + * @param constraints Linear constraints. + * @param goalType Optimization goal: either {@link GoalType#MAXIMIZE} + * or {@link GoalType#MINIMIZE}. + * @param restrictToNonNegative Whether to restrict the variables to non-negative values. + * @param epsilon Amount of error to accept when checking for optimality. + */ + SimplexTableau(final LinearObjectiveFunction f, + final Collection constraints, + final GoalType goalType, + final boolean restrictToNonNegative, + final double epsilon) { + this(f, constraints, goalType, restrictToNonNegative, epsilon, DEFAULT_ULPS); + } + + /** + * Build a tableau for a linear problem. + * @param f linear objective function + * @param constraints linear constraints + * @param goalType type of optimization goal: either {@link GoalType#MAXIMIZE} or {@link GoalType#MINIMIZE} + * @param restrictToNonNegative whether to restrict the variables to non-negative values + * @param epsilon amount of error to accept when checking for optimality + * @param maxUlps amount of error to accept in floating point comparisons + */ + SimplexTableau(final LinearObjectiveFunction f, + final Collection constraints, + final GoalType goalType, + final boolean restrictToNonNegative, + final double epsilon, + final int maxUlps) { + this.f = f; + this.constraints = normalizeConstraints(constraints); + this.restrictToNonNegative = restrictToNonNegative; + this.epsilon = epsilon; + this.maxUlps = maxUlps; + this.numDecisionVariables = f.getCoefficients().getDimension() + + (restrictToNonNegative ? 0 : 1); + this.numSlackVariables = getConstraintTypeCounts(Relationship.LEQ) + + getConstraintTypeCounts(Relationship.GEQ); + this.numArtificialVariables = getConstraintTypeCounts(Relationship.EQ) + + getConstraintTypeCounts(Relationship.GEQ); + this.tableau = createTableau(goalType == GoalType.MAXIMIZE); + initializeColumnLabels(); + } + + /** + * Initialize the labels for the columns. + */ + protected void initializeColumnLabels() { + if (getNumObjectiveFunctions() == 2) { + columnLabels.add("W"); + } + columnLabels.add("Z"); + for (int i = 0; i < getOriginalNumDecisionVariables(); i++) { + columnLabels.add("x" + i); + } + if (!restrictToNonNegative) { + columnLabels.add(NEGATIVE_VAR_COLUMN_LABEL); + } + for (int i = 0; i < getNumSlackVariables(); i++) { + columnLabels.add("s" + i); + } + for (int i = 0; i < getNumArtificialVariables(); i++) { + columnLabels.add("a" + i); + } + columnLabels.add("RHS"); + } + + /** + * Create the tableau by itself. + * @param maximize if true, goal is to maximize the objective function + * @return created tableau + */ + protected RealMatrix createTableau(final boolean maximize) { + + // create a matrix of the correct size + int width = numDecisionVariables + numSlackVariables + + numArtificialVariables + getNumObjectiveFunctions() + 1; // + 1 is for RHS + int height = constraints.size() + getNumObjectiveFunctions(); + Array2DRowRealMatrix matrix = new Array2DRowRealMatrix(height, width); + + // initialize the objective function rows + if (getNumObjectiveFunctions() == 2) { + matrix.setEntry(0, 0, -1); + } + int zIndex = (getNumObjectiveFunctions() == 1) ? 0 : 1; + matrix.setEntry(zIndex, zIndex, maximize ? 1 : -1); + RealVector objectiveCoefficients = + maximize ? f.getCoefficients().mapMultiply(-1) : f.getCoefficients(); + copyArray(objectiveCoefficients.toArray(), matrix.getDataRef()[zIndex]); + matrix.setEntry(zIndex, width - 1, + maximize ? f.getConstantTerm() : -1 * f.getConstantTerm()); + + if (!restrictToNonNegative) { + matrix.setEntry(zIndex, getSlackVariableOffset() - 1, + getInvertedCoefficientSum(objectiveCoefficients)); + } + + // initialize the constraint rows + int slackVar = 0; + int artificialVar = 0; + for (int i = 0; i < constraints.size(); i++) { + LinearConstraint constraint = constraints.get(i); + int row = getNumObjectiveFunctions() + i; + + // decision variable coefficients + copyArray(constraint.getCoefficients().toArray(), matrix.getDataRef()[row]); + + // x- + if (!restrictToNonNegative) { + matrix.setEntry(row, getSlackVariableOffset() - 1, + getInvertedCoefficientSum(constraint.getCoefficients())); + } + + // RHS + matrix.setEntry(row, width - 1, constraint.getValue()); + + // slack variables + if (constraint.getRelationship() == Relationship.LEQ) { + matrix.setEntry(row, getSlackVariableOffset() + slackVar++, 1); // slack + } else if (constraint.getRelationship() == Relationship.GEQ) { + matrix.setEntry(row, getSlackVariableOffset() + slackVar++, -1); // excess + } + + // artificial variables + if ((constraint.getRelationship() == Relationship.EQ) || + (constraint.getRelationship() == Relationship.GEQ)) { + matrix.setEntry(0, getArtificialVariableOffset() + artificialVar, 1); + matrix.setEntry(row, getArtificialVariableOffset() + artificialVar++, 1); + matrix.setRowVector(0, matrix.getRowVector(0).subtract(matrix.getRowVector(row))); + } + } + + return matrix; + } + + /** + * Get new versions of the constraints which have positive right hand sides. + * @param originalConstraints original (not normalized) constraints + * @return new versions of the constraints + */ + public List normalizeConstraints(Collection originalConstraints) { + List normalized = new ArrayList(); + for (LinearConstraint constraint : originalConstraints) { + normalized.add(normalize(constraint)); + } + return normalized; + } + + /** + * Get a new equation equivalent to this one with a positive right hand side. + * @param constraint reference constraint + * @return new equation + */ + private LinearConstraint normalize(final LinearConstraint constraint) { + if (constraint.getValue() < 0) { + return new LinearConstraint(constraint.getCoefficients().mapMultiply(-1), + constraint.getRelationship().oppositeRelationship(), + -1 * constraint.getValue()); + } + return new LinearConstraint(constraint.getCoefficients(), + constraint.getRelationship(), constraint.getValue()); + } + + /** + * Get the number of objective functions in this tableau. + * @return 2 for Phase 1. 1 for Phase 2. + */ + protected final int getNumObjectiveFunctions() { + return this.numArtificialVariables > 0 ? 2 : 1; + } + + /** + * Get a count of constraints corresponding to a specified relationship. + * @param relationship relationship to count + * @return number of constraint with the specified relationship + */ + private int getConstraintTypeCounts(final Relationship relationship) { + int count = 0; + for (final LinearConstraint constraint : constraints) { + if (constraint.getRelationship() == relationship) { + ++count; + } + } + return count; + } + + /** + * Get the -1 times the sum of all coefficients in the given array. + * @param coefficients coefficients to sum + * @return the -1 times the sum of all coefficients in the given array. + */ + protected static double getInvertedCoefficientSum(final RealVector coefficients) { + double sum = 0; + for (double coefficient : coefficients.toArray()) { + sum -= coefficient; + } + return sum; + } + + /** + * Checks whether the given column is basic. + * @param col index of the column to check + * @return the row that the variable is basic in. null if the column is not basic + */ + protected Integer getBasicRow(final int col) { + Integer row = null; + for (int i = 0; i < getHeight(); i++) { + final double entry = getEntry(i, col); + if (Precision.equals(entry, 1d, maxUlps) && (row == null)) { + row = i; + } else if (!Precision.equals(entry, 0d, maxUlps)) { + return null; + } + } + return row; + } + + /** + * Removes the phase 1 objective function, positive cost non-artificial variables, + * and the non-basic artificial variables from this tableau. + */ + protected void dropPhase1Objective() { + if (getNumObjectiveFunctions() == 1) { + return; + } + + Set columnsToDrop = new TreeSet(); + columnsToDrop.add(0); + + // positive cost non-artificial variables + for (int i = getNumObjectiveFunctions(); i < getArtificialVariableOffset(); i++) { + final double entry = tableau.getEntry(0, i); + if (Precision.compareTo(entry, 0d, epsilon) > 0) { + columnsToDrop.add(i); + } + } + + // non-basic artificial variables + for (int i = 0; i < getNumArtificialVariables(); i++) { + int col = i + getArtificialVariableOffset(); + if (getBasicRow(col) == null) { + columnsToDrop.add(col); + } + } + + double[][] matrix = new double[getHeight() - 1][getWidth() - columnsToDrop.size()]; + for (int i = 1; i < getHeight(); i++) { + int col = 0; + for (int j = 0; j < getWidth(); j++) { + if (!columnsToDrop.contains(j)) { + matrix[i - 1][col++] = tableau.getEntry(i, j); + } + } + } + + // remove the columns in reverse order so the indices are correct + Integer[] drop = columnsToDrop.toArray(new Integer[columnsToDrop.size()]); + for (int i = drop.length - 1; i >= 0; i--) { + columnLabels.remove((int) drop[i]); + } + + this.tableau = new Array2DRowRealMatrix(matrix); + this.numArtificialVariables = 0; + } + + /** + * @param src the source array + * @param dest the destination array + */ + private void copyArray(final double[] src, final double[] dest) { + System.arraycopy(src, 0, dest, getNumObjectiveFunctions(), src.length); + } + + /** + * Returns whether the problem is at an optimal state. + * @return whether the model has been solved + */ + boolean isOptimal() { + for (int i = getNumObjectiveFunctions(); i < getWidth() - 1; i++) { + final double entry = tableau.getEntry(0, i); + if (Precision.compareTo(entry, 0d, epsilon) < 0) { + return false; + } + } + return true; + } + + /** + * Get the current solution. + * @return current solution + */ + protected PointValuePair getSolution() { + int negativeVarColumn = columnLabels.indexOf(NEGATIVE_VAR_COLUMN_LABEL); + Integer negativeVarBasicRow = negativeVarColumn > 0 ? getBasicRow(negativeVarColumn) : null; + double mostNegative = negativeVarBasicRow == null ? 0 : getEntry(negativeVarBasicRow, getRhsOffset()); + + Set basicRows = new HashSet(); + double[] coefficients = new double[getOriginalNumDecisionVariables()]; + for (int i = 0; i < coefficients.length; i++) { + int colIndex = columnLabels.indexOf("x" + i); + if (colIndex < 0) { + coefficients[i] = 0; + continue; + } + Integer basicRow = getBasicRow(colIndex); + if (basicRow != null && basicRow == 0) { + // if the basic row is found to be the objective function row + // set the coefficient to 0 -> this case handles unconstrained + // variables that are still part of the objective function + coefficients[i] = 0; + } else if (basicRows.contains(basicRow)) { + // if multiple variables can take a given value + // then we choose the first and set the rest equal to 0 + coefficients[i] = 0 - (restrictToNonNegative ? 0 : mostNegative); + } else { + basicRows.add(basicRow); + coefficients[i] = + (basicRow == null ? 0 : getEntry(basicRow, getRhsOffset())) - + (restrictToNonNegative ? 0 : mostNegative); + } + } + return new PointValuePair(coefficients, f.value(coefficients)); + } + + /** + * Subtracts a multiple of one row from another. + *

+ * After application of this operation, the following will hold: + *

minuendRow = minuendRow - multiple * subtrahendRow
+ * + * @param dividendRow index of the row + * @param divisor value of the divisor + */ + protected void divideRow(final int dividendRow, final double divisor) { + for (int j = 0; j < getWidth(); j++) { + tableau.setEntry(dividendRow, j, tableau.getEntry(dividendRow, j) / divisor); + } + } + + /** + * Subtracts a multiple of one row from another. + *

+ * After application of this operation, the following will hold: + *

minuendRow = minuendRow - multiple * subtrahendRow
+ * + * @param minuendRow row index + * @param subtrahendRow row index + * @param multiple multiplication factor + */ + protected void subtractRow(final int minuendRow, final int subtrahendRow, + final double multiple) { + for (int i = 0; i < getWidth(); i++) { + double result = tableau.getEntry(minuendRow, i) - tableau.getEntry(subtrahendRow, i) * multiple; + // cut-off values smaller than the CUTOFF_THRESHOLD, otherwise may lead to numerical instabilities + if (FastMath.abs(result) < CUTOFF_THRESHOLD) { + result = 0.0; + } + tableau.setEntry(minuendRow, i, result); + } + } + + /** + * Get the width of the tableau. + * @return width of the tableau + */ + protected final int getWidth() { + return tableau.getColumnDimension(); + } + + /** + * Get the height of the tableau. + * @return height of the tableau + */ + protected final int getHeight() { + return tableau.getRowDimension(); + } + + /** + * Get an entry of the tableau. + * @param row row index + * @param column column index + * @return entry at (row, column) + */ + protected final double getEntry(final int row, final int column) { + return tableau.getEntry(row, column); + } + + /** + * Set an entry of the tableau. + * @param row row index + * @param column column index + * @param value for the entry + */ + protected final void setEntry(final int row, final int column, + final double value) { + tableau.setEntry(row, column, value); + } + + /** + * Get the offset of the first slack variable. + * @return offset of the first slack variable + */ + protected final int getSlackVariableOffset() { + return getNumObjectiveFunctions() + numDecisionVariables; + } + + /** + * Get the offset of the first artificial variable. + * @return offset of the first artificial variable + */ + protected final int getArtificialVariableOffset() { + return getNumObjectiveFunctions() + numDecisionVariables + numSlackVariables; + } + + /** + * Get the offset of the right hand side. + * @return offset of the right hand side + */ + protected final int getRhsOffset() { + return getWidth() - 1; + } + + /** + * Get the number of decision variables. + *

+ * If variables are not restricted to positive values, this will include 1 extra decision variable to represent + * the absolute value of the most negative variable. + * + * @return number of decision variables + * @see #getOriginalNumDecisionVariables() + */ + protected final int getNumDecisionVariables() { + return numDecisionVariables; + } + + /** + * Get the original number of decision variables. + * @return original number of decision variables + * @see #getNumDecisionVariables() + */ + protected final int getOriginalNumDecisionVariables() { + return f.getCoefficients().getDimension(); + } + + /** + * Get the number of slack variables. + * @return number of slack variables + */ + protected final int getNumSlackVariables() { + return numSlackVariables; + } + + /** + * Get the number of artificial variables. + * @return number of artificial variables + */ + protected final int getNumArtificialVariables() { + return numArtificialVariables; + } + + /** + * Get the tableau data. + * @return tableau data + */ + protected final double[][] getData() { + return tableau.getData(); + } + + @Override + public boolean equals(Object other) { + + if (this == other) { + return true; + } + + if (other instanceof SimplexTableau) { + SimplexTableau rhs = (SimplexTableau) other; + return (restrictToNonNegative == rhs.restrictToNonNegative) && + (numDecisionVariables == rhs.numDecisionVariables) && + (numSlackVariables == rhs.numSlackVariables) && + (numArtificialVariables == rhs.numArtificialVariables) && + (epsilon == rhs.epsilon) && + (maxUlps == rhs.maxUlps) && + f.equals(rhs.f) && + constraints.equals(rhs.constraints) && + tableau.equals(rhs.tableau); + } + return false; + } + + @Override + public int hashCode() { + return Boolean.valueOf(restrictToNonNegative).hashCode() ^ + numDecisionVariables ^ + numSlackVariables ^ + numArtificialVariables ^ + Double.valueOf(epsilon).hashCode() ^ + maxUlps ^ + f.hashCode() ^ + constraints.hashCode() ^ + tableau.hashCode(); + } + + /** + * Serialize the instance. + * @param oos stream where object should be written + * @throws IOException if object cannot be written to stream + */ + private void writeObject(ObjectOutputStream oos) + throws IOException { + oos.defaultWriteObject(); + MatrixUtils.serializeRealMatrix(tableau, oos); + } + + /** + * Deserialize the instance. + * @param ois stream from which the object should be read + * @throws ClassNotFoundException if a class in the stream cannot be found + * @throws IOException if object cannot be read from the stream + */ + private void readObject(ObjectInputStream ois) + throws ClassNotFoundException, IOException { + ois.defaultReadObject(); + MatrixUtils.deserializeRealMatrix(this, "tableau", ois); + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/linear/UnboundedSolutionException.java b/src/main/java/org/apache/commons/math3/optim/linear/UnboundedSolutionException.java new file mode 100644 index 000000000..4044d5a05 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/linear/UnboundedSolutionException.java @@ -0,0 +1,38 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.linear; + +import org.apache.commons.math3.exception.MathIllegalStateException; +import org.apache.commons.math3.exception.util.LocalizedFormats; + +/** + * This class represents exceptions thrown by optimizers when a solution escapes to infinity. + * + * @version $Id: UnboundedSolutionException.java 1416643 2012-12-03 19:37:14Z tn $ + * @since 2.0 + */ +public class UnboundedSolutionException extends MathIllegalStateException { + /** Serializable version identifier. */ + private static final long serialVersionUID = 940539497277290619L; + + /** + * Simple constructor using a default message. + */ + public UnboundedSolutionException() { + super(LocalizedFormats.UNBOUNDED_SOLUTION); + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/linear/package-info.java b/src/main/java/org/apache/commons/math3/optim/linear/package-info.java new file mode 100644 index 000000000..64c46973f --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/linear/package-info.java @@ -0,0 +1,21 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.linear; + +/** + * Optimization algorithms for linear constrained problems. + */ diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/GradientMultivariateOptimizer.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/GradientMultivariateOptimizer.java new file mode 100644 index 000000000..345cda004 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/GradientMultivariateOptimizer.java @@ -0,0 +1,105 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.nonlinear.scalar; + +import org.apache.commons.math3.analysis.MultivariateVectorFunction; +import org.apache.commons.math3.optim.ConvergenceChecker; +import org.apache.commons.math3.optim.OptimizationData; +import org.apache.commons.math3.optim.PointValuePair; +import org.apache.commons.math3.exception.TooManyEvaluationsException; + +/** + * Base class for implementing optimizers for multivariate scalar + * differentiable functions. + * It contains boiler-plate code for dealing with gradient evaluation. + * + * @version $Id$ + * @since 3.1 + */ +public abstract class GradientMultivariateOptimizer + extends MultivariateOptimizer { + /** + * Gradient of the objective function. + */ + private MultivariateVectorFunction gradient; + + /** + * @param checker Convergence checker. + */ + protected GradientMultivariateOptimizer(ConvergenceChecker checker) { + super(checker); + } + + /** + * Compute the gradient vector. + * + * @param params Point at which the gradient must be evaluated. + * @return the gradient at the specified point. + */ + protected double[] computeObjectiveGradient(final double[] params) { + return gradient.value(params); + } + + /** + * {@inheritDoc} + * + * @param optData Optimization data. + * The following data will be looked for: + *

    + *
  • {@link org.apache.commons.math3.optim.MaxEval}
  • + *
  • {@link org.apache.commons.math3.optim.InitialGuess}
  • + *
  • {@link org.apache.commons.math3.optim.SimpleBounds}
  • + *
  • {@link org.apache.commons.math3.optim.GoalType}
  • + *
  • {@link org.apache.commons.math3.optim.ObjectiveFunction}
  • + *
  • {@link ObjectiveFunctionGradient}
  • + *
+ * @return {@inheritDoc} + * @throws TooManyEvaluationsException if the maximal number of + * evaluations (of the objective function) is exceeded. + */ + @Override + public PointValuePair optimize(OptimizationData... optData) + throws TooManyEvaluationsException { + // Retrieve settings. + parseOptimizationData(optData); + // Set up base class and perform computation. + return super.optimize(optData); + } + + /** + * Scans the list of (required and optional) optimization data that + * characterize the problem. + * + * @param optData Optimization data. + * The following data will be looked for: + *
    + *
  • {@link ObjectiveFunction}
  • + *
+ */ + private void parseOptimizationData(OptimizationData... optData) { + // The existing values (as set by the previous call) are reused if + // not provided in the argument list. + for (OptimizationData data : optData) { + if (data instanceof ObjectiveFunctionGradient) { + gradient = ((ObjectiveFunctionGradient) data).getObjectiveFunctionGradient(); + // If more data must be parsed, this statement _must_ be + // changed to "continue". + break; + } + } + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/LeastSquaresConverter.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/LeastSquaresConverter.java new file mode 100644 index 000000000..c9694ae6c --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/LeastSquaresConverter.java @@ -0,0 +1,187 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.commons.math3.optim.nonlinear.scalar; + +import org.apache.commons.math3.analysis.MultivariateFunction; +import org.apache.commons.math3.analysis.MultivariateVectorFunction; +import org.apache.commons.math3.exception.DimensionMismatchException; +import org.apache.commons.math3.linear.RealMatrix; + +/** + * This class converts + * {@link MultivariateVectorFunction vectorial objective functions} to + * {@link MultivariateFunction scalar objective functions} + * when the goal is to minimize them. + *
+ * This class is mostly used when the vectorial objective function represents + * a theoretical result computed from a point set applied to a model and + * the models point must be adjusted to fit the theoretical result to some + * reference observations. The observations may be obtained for example from + * physical measurements whether the model is built from theoretical + * considerations. + *
+ * This class computes a possibly weighted squared sum of the residuals, which is + * a scalar value. The residuals are the difference between the theoretical model + * (i.e. the output of the vectorial objective function) and the observations. The + * class implements the {@link MultivariateFunction} interface and can therefore be + * minimized by any optimizer supporting scalar objectives functions.This is one way + * to perform a least square estimation. There are other ways to do this without using + * this converter, as some optimization algorithms directly support vectorial objective + * functions. + *
+ * This class support combination of residuals with or without weights and correlations. + * + * @see MultivariateFunction + * @see MultivariateVectorFunction + * @version $Id: LeastSquaresConverter.java 1416643 2012-12-03 19:37:14Z tn $ + * @since 2.0 + */ + +public class LeastSquaresConverter implements MultivariateFunction { + /** Underlying vectorial function. */ + private final MultivariateVectorFunction function; + /** Observations to be compared to objective function to compute residuals. */ + private final double[] observations; + /** Optional weights for the residuals. */ + private final double[] weights; + /** Optional scaling matrix (weight and correlations) for the residuals. */ + private final RealMatrix scale; + + /** + * Builds a simple converter for uncorrelated residuals with identical + * weights. + * + * @param function vectorial residuals function to wrap + * @param observations observations to be compared to objective function to compute residuals + */ + public LeastSquaresConverter(final MultivariateVectorFunction function, + final double[] observations) { + this.function = function; + this.observations = observations.clone(); + this.weights = null; + this.scale = null; + } + + /** + * Builds a simple converter for uncorrelated residuals with the + * specified weights. + *

+ * The scalar objective function value is computed as: + *

+     * objective = ∑weighti(observationi-objectivei)2
+     * 
+ *

+ *

+ * Weights can be used for example to combine residuals with different standard + * deviations. As an example, consider a residuals array in which even elements + * are angular measurements in degrees with a 0.01° standard deviation and + * odd elements are distance measurements in meters with a 15m standard deviation. + * In this case, the weights array should be initialized with value + * 1.0/(0.012) in the even elements and 1.0/(15.02) in the + * odd elements (i.e. reciprocals of variances). + *

+ *

+ * The array computed by the objective function, the observations array and the + * weights array must have consistent sizes or a {@link DimensionMismatchException} + * will be triggered while computing the scalar objective. + *

+ * + * @param function vectorial residuals function to wrap + * @param observations observations to be compared to objective function to compute residuals + * @param weights weights to apply to the residuals + * @throws DimensionMismatchException if the observations vector and the weights + * vector dimensions do not match (objective function dimension is checked only when + * the {@link #value(double[])} method is called) + */ + public LeastSquaresConverter(final MultivariateVectorFunction function, + final double[] observations, + final double[] weights) { + if (observations.length != weights.length) { + throw new DimensionMismatchException(observations.length, weights.length); + } + this.function = function; + this.observations = observations.clone(); + this.weights = weights.clone(); + this.scale = null; + } + + /** + * Builds a simple converter for correlated residuals with the + * specified weights. + *

+ * The scalar objective function value is computed as: + *

+     * objective = yTy with y = scale×(observation-objective)
+     * 
+ *

+ *

+ * The array computed by the objective function, the observations array and the + * the scaling matrix must have consistent sizes or a {@link DimensionMismatchException} + * will be triggered while computing the scalar objective. + *

+ * + * @param function vectorial residuals function to wrap + * @param observations observations to be compared to objective function to compute residuals + * @param scale scaling matrix + * @throws DimensionMismatchException if the observations vector and the scale + * matrix dimensions do not match (objective function dimension is checked only when + * the {@link #value(double[])} method is called) + */ + public LeastSquaresConverter(final MultivariateVectorFunction function, + final double[] observations, + final RealMatrix scale) { + if (observations.length != scale.getColumnDimension()) { + throw new DimensionMismatchException(observations.length, scale.getColumnDimension()); + } + this.function = function; + this.observations = observations.clone(); + this.weights = null; + this.scale = scale.copy(); + } + + /** {@inheritDoc} */ + public double value(final double[] point) { + // compute residuals + final double[] residuals = function.value(point); + if (residuals.length != observations.length) { + throw new DimensionMismatchException(residuals.length, observations.length); + } + for (int i = 0; i < residuals.length; ++i) { + residuals[i] -= observations[i]; + } + + // compute sum of squares + double sumSquares = 0; + if (weights != null) { + for (int i = 0; i < residuals.length; ++i) { + final double ri = residuals[i]; + sumSquares += weights[i] * ri * ri; + } + } else if (scale != null) { + for (final double yi : scale.operate(residuals)) { + sumSquares += yi * yi; + } + } else { + for (final double ri : residuals) { + sumSquares += ri * ri; + } + } + + return sumSquares; + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/MultiStartMultivariateOptimizer.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/MultiStartMultivariateOptimizer.java new file mode 100644 index 000000000..169d642d6 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/MultiStartMultivariateOptimizer.java @@ -0,0 +1,112 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.nonlinear.scalar; + +import java.util.Collections; +import java.util.List; +import java.util.ArrayList; +import java.util.Comparator; +import org.apache.commons.math3.exception.NotStrictlyPositiveException; +import org.apache.commons.math3.exception.NullArgumentException; +import org.apache.commons.math3.random.RandomVectorGenerator; +import org.apache.commons.math3.optim.BaseMultiStartMultivariateOptimizer; +import org.apache.commons.math3.optim.PointValuePair; +import org.apache.commons.math3.optim.GoalType; + +/** + * Multi-start optimizer. + * + * This class wraps an optimizer in order to use it several times in + * turn with different starting points (trying to avoid being trapped + * in a local extremum when looking for a global one). + * + * @version $Id$ + * @since 3.0 + */ +public class MultiStartMultivariateOptimizer + extends BaseMultiStartMultivariateOptimizer { + /** Underlying optimizer. */ + private final MultivariateOptimizer optimizer; + /** Found optima. */ + private final List optima = new ArrayList(); + + /** + * Create a multi-start optimizer from a single-start optimizer. + * + * @param optimizer Single-start optimizer to wrap. + * @param starts Number of starts to perform. + * If {@code starts == 1}, the result will be same as if {@code optimizer} + * is called directly. + * @param generator Random vector generator to use for restarts. + * @throws NullArgumentException if {@code optimizer} or {@code generator} + * is {@code null}. + * @throws NotStrictlyPositiveException if {@code starts < 1}. + */ + public MultiStartMultivariateOptimizer(final MultivariateOptimizer optimizer, + final int starts, + final RandomVectorGenerator generator) + throws NullArgumentException, + NotStrictlyPositiveException { + super(optimizer, starts, generator); + this.optimizer = optimizer; + } + + /** + * {@inheritDoc} + */ + @Override + public PointValuePair[] getOptima() { + Collections.sort(optima, getPairComparator()); + return optima.toArray(new PointValuePair[0]); + } + + /** + * {@inheritDoc} + */ + @Override + protected void store(PointValuePair optimum) { + optima.add(optimum); + } + + /** + * {@inheritDoc} + */ + @Override + protected void clear() { + optima.clear(); + } + + /** + * @return a comparator for sorting the optima. + */ + private Comparator getPairComparator() { + return new Comparator() { + public int compare(final PointValuePair o1, + final PointValuePair o2) { + if (o1 == null) { + return (o2 == null) ? 0 : 1; + } else if (o2 == null) { + return -1; + } + final double v1 = o1.getValue(); + final double v2 = o2.getValue(); + return (optimizer.getGoalType() == GoalType.MINIMIZE) ? + Double.compare(v1, v2) : Double.compare(v2, v1); + } + }; + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/MultivariateFunctionMappingAdapter.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/MultivariateFunctionMappingAdapter.java new file mode 100644 index 000000000..96174bf79 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/MultivariateFunctionMappingAdapter.java @@ -0,0 +1,295 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.nonlinear.scalar; + +import org.apache.commons.math3.analysis.MultivariateFunction; +import org.apache.commons.math3.analysis.UnivariateFunction; +import org.apache.commons.math3.analysis.function.Logit; +import org.apache.commons.math3.analysis.function.Sigmoid; +import org.apache.commons.math3.exception.DimensionMismatchException; +import org.apache.commons.math3.exception.NumberIsTooSmallException; +import org.apache.commons.math3.util.FastMath; +import org.apache.commons.math3.util.MathUtils; + +/** + *

Adapter for mapping bounded {@link MultivariateFunction} to unbounded ones.

+ * + *

+ * This adapter can be used to wrap functions subject to simple bounds on + * parameters so they can be used by optimizers that do not directly + * support simple bounds. + *

+ *

+ * The principle is that the user function that will be wrapped will see its + * parameters bounded as required, i.e when its {@code value} method is called + * with argument array {@code point}, the elements array will fulfill requirement + * {@code lower[i] <= point[i] <= upper[i]} for all i. Some of the components + * may be unbounded or bounded only on one side if the corresponding bound is + * set to an infinite value. The optimizer will not manage the user function by + * itself, but it will handle this adapter and it is this adapter that will take + * care the bounds are fulfilled. The adapter {@link #value(double[])} method will + * be called by the optimizer with unbound parameters, and the adapter will map + * the unbounded value to the bounded range using appropriate functions like + * {@link Sigmoid} for double bounded elements for example. + *

+ *

+ * As the optimizer sees only unbounded parameters, it should be noted that the + * start point or simplex expected by the optimizer should be unbounded, so the + * user is responsible for converting his bounded point to unbounded by calling + * {@link #boundedToUnbounded(double[])} before providing them to the optimizer. + * For the same reason, the point returned by the {@link + * org.apache.commons.math3.optimization.BaseMultivariateOptimizer#optimize(int, + * MultivariateFunction, org.apache.commons.math3.optimization.GoalType, double[])} + * method is unbounded. So to convert this point to bounded, users must call + * {@link #unboundedToBounded(double[])} by themselves!

+ *

+ * This adapter is only a poor man solution to simple bounds optimization constraints + * that can be used with simple optimizers like + * {@link org.apache.commons.math3.optim.nonlinear.scalar.noderiv.SimplexOptimizer + * SimplexOptimizer}. + * A better solution is to use an optimizer that directly supports simple bounds like + * {@link org.apache.commons.math3.optim.nonlinear.scalar.noderiv.CMAESOptimizer + * CMAESOptimizer} or + * {@link org.apache.commons.math3.optim.nonlinear.scalar.noderiv.BOBYQAOptimizer + * BOBYQAOptimizer}. + * One caveat of this poor-man's solution is that behavior near the bounds may be + * numerically unstable as bounds are mapped from infinite values. + * Another caveat is that convergence values are evaluated by the optimizer with + * respect to unbounded variables, so there will be scales differences when + * converted to bounded variables. + *

+ * + * @see MultivariateFunctionPenaltyAdapter + * + * @version $Id: MultivariateFunctionMappingAdapter.java 1416643 2012-12-03 19:37:14Z tn $ + * @since 3.0 + */ +public class MultivariateFunctionMappingAdapter + implements MultivariateFunction { + /** Underlying bounded function. */ + private final MultivariateFunction bounded; + /** Mapping functions. */ + private final Mapper[] mappers; + + /** Simple constructor. + * @param bounded bounded function + * @param lower lower bounds for each element of the input parameters array + * (some elements may be set to {@code Double.NEGATIVE_INFINITY} for + * unbounded values) + * @param upper upper bounds for each element of the input parameters array + * (some elements may be set to {@code Double.POSITIVE_INFINITY} for + * unbounded values) + * @exception DimensionMismatchException if lower and upper bounds are not + * consistent, either according to dimension or to values + */ + public MultivariateFunctionMappingAdapter(final MultivariateFunction bounded, + final double[] lower, final double[] upper) { + // safety checks + MathUtils.checkNotNull(lower); + MathUtils.checkNotNull(upper); + if (lower.length != upper.length) { + throw new DimensionMismatchException(lower.length, upper.length); + } + for (int i = 0; i < lower.length; ++i) { + // note the following test is written in such a way it also fails for NaN + if (!(upper[i] >= lower[i])) { + throw new NumberIsTooSmallException(upper[i], lower[i], true); + } + } + + this.bounded = bounded; + this.mappers = new Mapper[lower.length]; + for (int i = 0; i < mappers.length; ++i) { + if (Double.isInfinite(lower[i])) { + if (Double.isInfinite(upper[i])) { + // element is unbounded, no transformation is needed + mappers[i] = new NoBoundsMapper(); + } else { + // element is simple-bounded on the upper side + mappers[i] = new UpperBoundMapper(upper[i]); + } + } else { + if (Double.isInfinite(upper[i])) { + // element is simple-bounded on the lower side + mappers[i] = new LowerBoundMapper(lower[i]); + } else { + // element is double-bounded + mappers[i] = new LowerUpperBoundMapper(lower[i], upper[i]); + } + } + } + } + + /** + * Maps an array from unbounded to bounded. + * + * @param point Unbounded values. + * @return the bounded values. + */ + public double[] unboundedToBounded(double[] point) { + // Map unbounded input point to bounded point. + final double[] mapped = new double[mappers.length]; + for (int i = 0; i < mappers.length; ++i) { + mapped[i] = mappers[i].unboundedToBounded(point[i]); + } + + return mapped; + } + + /** + * Maps an array from bounded to unbounded. + * + * @param point Bounded values. + * @return the unbounded values. + */ + public double[] boundedToUnbounded(double[] point) { + // Map bounded input point to unbounded point. + final double[] mapped = new double[mappers.length]; + for (int i = 0; i < mappers.length; ++i) { + mapped[i] = mappers[i].boundedToUnbounded(point[i]); + } + + return mapped; + } + + /** + * Compute the underlying function value from an unbounded point. + *

+ * This method simply bounds the unbounded point using the mappings + * set up at construction and calls the underlying function using + * the bounded point. + *

+ * @param point unbounded value + * @return underlying function value + * @see #unboundedToBounded(double[]) + */ + public double value(double[] point) { + return bounded.value(unboundedToBounded(point)); + } + + /** Mapping interface. */ + private interface Mapper { + /** + * Maps a value from unbounded to bounded. + * + * @param y Unbounded value. + * @return the bounded value. + */ + double unboundedToBounded(double y); + + /** + * Maps a value from bounded to unbounded. + * + * @param x Bounded value. + * @return the unbounded value. + */ + double boundedToUnbounded(double x); + } + + /** Local class for no bounds mapping. */ + private static class NoBoundsMapper implements Mapper { + /** {@inheritDoc} */ + public double unboundedToBounded(final double y) { + return y; + } + + /** {@inheritDoc} */ + public double boundedToUnbounded(final double x) { + return x; + } + } + + /** Local class for lower bounds mapping. */ + private static class LowerBoundMapper implements Mapper { + /** Low bound. */ + private final double lower; + + /** + * Simple constructor. + * + * @param lower lower bound + */ + public LowerBoundMapper(final double lower) { + this.lower = lower; + } + + /** {@inheritDoc} */ + public double unboundedToBounded(final double y) { + return lower + FastMath.exp(y); + } + + /** {@inheritDoc} */ + public double boundedToUnbounded(final double x) { + return FastMath.log(x - lower); + } + + } + + /** Local class for upper bounds mapping. */ + private static class UpperBoundMapper implements Mapper { + + /** Upper bound. */ + private final double upper; + + /** Simple constructor. + * @param upper upper bound + */ + public UpperBoundMapper(final double upper) { + this.upper = upper; + } + + /** {@inheritDoc} */ + public double unboundedToBounded(final double y) { + return upper - FastMath.exp(-y); + } + + /** {@inheritDoc} */ + public double boundedToUnbounded(final double x) { + return -FastMath.log(upper - x); + } + + } + + /** Local class for lower and bounds mapping. */ + private static class LowerUpperBoundMapper implements Mapper { + /** Function from unbounded to bounded. */ + private final UnivariateFunction boundingFunction; + /** Function from bounded to unbounded. */ + private final UnivariateFunction unboundingFunction; + + /** + * Simple constructor. + * + * @param lower lower bound + * @param upper upper bound + */ + public LowerUpperBoundMapper(final double lower, final double upper) { + boundingFunction = new Sigmoid(lower, upper); + unboundingFunction = new Logit(lower, upper); + } + + /** {@inheritDoc} */ + public double unboundedToBounded(final double y) { + return boundingFunction.value(y); + } + + /** {@inheritDoc} */ + public double boundedToUnbounded(final double x) { + return unboundingFunction.value(x); + } + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/MultivariateFunctionPenaltyAdapter.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/MultivariateFunctionPenaltyAdapter.java new file mode 100644 index 000000000..1454a2cfa --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/MultivariateFunctionPenaltyAdapter.java @@ -0,0 +1,187 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.nonlinear.scalar; + +import org.apache.commons.math3.analysis.MultivariateFunction; +import org.apache.commons.math3.exception.DimensionMismatchException; +import org.apache.commons.math3.exception.NumberIsTooSmallException; +import org.apache.commons.math3.util.FastMath; +import org.apache.commons.math3.util.MathUtils; + +/** + *

Adapter extending bounded {@link MultivariateFunction} to an unbouded + * domain using a penalty function.

+ * + *

+ * This adapter can be used to wrap functions subject to simple bounds on + * parameters so they can be used by optimizers that do not directly + * support simple bounds. + *

+ *

+ * The principle is that the user function that will be wrapped will see its + * parameters bounded as required, i.e when its {@code value} method is called + * with argument array {@code point}, the elements array will fulfill requirement + * {@code lower[i] <= point[i] <= upper[i]} for all i. Some of the components + * may be unbounded or bounded only on one side if the corresponding bound is + * set to an infinite value. The optimizer will not manage the user function by + * itself, but it will handle this adapter and it is this adapter that will take + * care the bounds are fulfilled. The adapter {@link #value(double[])} method will + * be called by the optimizer with unbound parameters, and the adapter will check + * if the parameters is within range or not. If it is in range, then the underlying + * user function will be called, and if it is not the value of a penalty function + * will be returned instead. + *

+ *

+ * This adapter is only a poor-man's solution to simple bounds optimization + * constraints that can be used with simple optimizers like + * {@link org.apache.commons.math3.optim.nonlinear.scalar.noderiv.SimplexOptimizer + * SimplexOptimizer}. + * A better solution is to use an optimizer that directly supports simple bounds like + * {@link org.apache.commons.math3.optim.nonlinear.scalar.noderiv.CMAESOptimizer + * CMAESOptimizer} or + * {@link org.apache.commons.math3.optim.nonlinear.scalar.noderiv.BOBYQAOptimizer + * BOBYQAOptimizer}. + * One caveat of this poor-man's solution is that if start point or start simplex + * is completely outside of the allowed range, only the penalty function is used, + * and the optimizer may converge without ever entering the range. + *

+ * + * @see MultivariateFunctionMappingAdapter + * + * @version $Id: MultivariateFunctionPenaltyAdapter.java 1416643 2012-12-03 19:37:14Z tn $ + * @since 3.0 + */ +public class MultivariateFunctionPenaltyAdapter + implements MultivariateFunction { + /** Underlying bounded function. */ + private final MultivariateFunction bounded; + /** Lower bounds. */ + private final double[] lower; + /** Upper bounds. */ + private final double[] upper; + /** Penalty offset. */ + private final double offset; + /** Penalty scales. */ + private final double[] scale; + + /** + * Simple constructor. + *

+ * When the optimizer provided points are out of range, the value of the + * penalty function will be used instead of the value of the underlying + * function. In order for this penalty to be effective in rejecting this + * point during the optimization process, the penalty function value should + * be defined with care. This value is computed as: + *

+     *   penalty(point) = offset + ∑i[scale[i] * √|point[i]-boundary[i]|]
+     * 
+ * where indices i correspond to all the components that violates their boundaries. + *

+ *

+ * So when attempting a function minimization, offset should be larger than + * the maximum expected value of the underlying function and scale components + * should all be positive. When attempting a function maximization, offset + * should be lesser than the minimum expected value of the underlying function + * and scale components should all be negative. + * minimization, and lesser than the minimum expected value of the underlying + * function when attempting maximization. + *

+ *

+ * These choices for the penalty function have two properties. First, all out + * of range points will return a function value that is worse than the value + * returned by any in range point. Second, the penalty is worse for large + * boundaries violation than for small violations, so the optimizer has an hint + * about the direction in which it should search for acceptable points. + *

+ * @param bounded bounded function + * @param lower lower bounds for each element of the input parameters array + * (some elements may be set to {@code Double.NEGATIVE_INFINITY} for + * unbounded values) + * @param upper upper bounds for each element of the input parameters array + * (some elements may be set to {@code Double.POSITIVE_INFINITY} for + * unbounded values) + * @param offset base offset of the penalty function + * @param scale scale of the penalty function + * @exception DimensionMismatchException if lower bounds, upper bounds and + * scales are not consistent, either according to dimension or to bounadary + * values + */ + public MultivariateFunctionPenaltyAdapter(final MultivariateFunction bounded, + final double[] lower, final double[] upper, + final double offset, final double[] scale) { + + // safety checks + MathUtils.checkNotNull(lower); + MathUtils.checkNotNull(upper); + MathUtils.checkNotNull(scale); + if (lower.length != upper.length) { + throw new DimensionMismatchException(lower.length, upper.length); + } + if (lower.length != scale.length) { + throw new DimensionMismatchException(lower.length, scale.length); + } + for (int i = 0; i < lower.length; ++i) { + // note the following test is written in such a way it also fails for NaN + if (!(upper[i] >= lower[i])) { + throw new NumberIsTooSmallException(upper[i], lower[i], true); + } + } + + this.bounded = bounded; + this.lower = lower.clone(); + this.upper = upper.clone(); + this.offset = offset; + this.scale = scale.clone(); + } + + /** + * Computes the underlying function value from an unbounded point. + *

+ * This method simply returns the value of the underlying function + * if the unbounded point already fulfills the bounds, and compute + * a replacement value using the offset and scale if bounds are + * violated, without calling the function at all. + *

+ * @param point unbounded point + * @return either underlying function value or penalty function value + */ + public double value(double[] point) { + + for (int i = 0; i < scale.length; ++i) { + if ((point[i] < lower[i]) || (point[i] > upper[i])) { + // bound violation starting at this component + double sum = 0; + for (int j = i; j < scale.length; ++j) { + final double overshoot; + if (point[j] < lower[j]) { + overshoot = scale[j] * (lower[j] - point[j]); + } else if (point[j] > upper[j]) { + overshoot = scale[j] * (point[j] - upper[j]); + } else { + overshoot = 0; + } + sum += FastMath.sqrt(overshoot); + } + return offset + sum; + } + } + + // all boundaries are fulfilled, we are in the expected + // domain of the underlying function + return bounded.value(point); + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/MultivariateOptimizer.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/MultivariateOptimizer.java new file mode 100644 index 000000000..3298b62a3 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/MultivariateOptimizer.java @@ -0,0 +1,119 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.nonlinear.scalar; + +import org.apache.commons.math3.analysis.MultivariateFunction; +import org.apache.commons.math3.optim.BaseMultivariateOptimizer; +import org.apache.commons.math3.optim.OptimizationData; +import org.apache.commons.math3.optim.GoalType; +import org.apache.commons.math3.optim.ConvergenceChecker; +import org.apache.commons.math3.optim.PointValuePair; +import org.apache.commons.math3.optim.ObjectiveFunction; +import org.apache.commons.math3.exception.TooManyEvaluationsException; + +/** + * Base class for a multivariate scalar function optimizer. + * + * @version $Id$ + * @since 3.1 + */ +public abstract class MultivariateOptimizer + extends BaseMultivariateOptimizer { + /** Objective function. */ + private MultivariateFunction function; + /** Type of optimization. */ + private GoalType goal; + + /** + * @param checker Convergence checker. + */ + protected MultivariateOptimizer(ConvergenceChecker checker) { + super(checker); + } + + /** + * {@inheritDoc} + * + * @param optData Optimization data. The following data will be looked for: + *
    + *
  • {@link org.apache.commons.math3.optim.MaxEval}
  • + *
  • {@link org.apache.commons.math3.optim.InitialGuess}
  • + *
  • {@link org.apache.commons.math3.optim.SimpleBounds}
  • + *
  • {@link ObjectiveFunction}
  • + *
  • {@link GoalType}
  • + *
+ * @return {@inheritDoc} + * @throws TooManyEvaluationsException if the maximal number of + * evaluations is exceeded. + */ + @Override + public PointValuePair optimize(OptimizationData... optData) + throws TooManyEvaluationsException { + // Retrieve settings. + parseOptimizationData(optData); + // Set up base class and perform computation. + return super.optimize(optData); + } + + /** + * Scans the list of (required and optional) optimization data that + * characterize the problem. + * + * @param optData Optimization data. + * The following data will be looked for: + *
    + *
  • {@link ObjectiveFunction}
  • + *
  • {@link GoalType}
  • + *
+ */ + private void parseOptimizationData(OptimizationData... optData) { + // The existing values (as set by the previous call) are reused if + // not provided in the argument list. + for (OptimizationData data : optData) { + if (data instanceof GoalType) { + goal = (GoalType) data; + continue; + } + if (data instanceof ObjectiveFunction) { + function = ((ObjectiveFunction) data).getObjectiveFunction(); + continue; + } + } + } + + /** + * @return the optimization type. + */ + public GoalType getGoalType() { + return goal; + } + + /** + * Computes the objective function value. + * This method must be called by subclasses to enforce the + * evaluation counter limit. + * + * @param params Point at which the objective function must be evaluated. + * @return the objective function value at the specified point. + * @throws TooManyEvaluationsException if the maximal number of + * evaluations is exceeded. + */ + protected double computeObjectiveValue(double[] params) { + super.incrementEvaluationCount(); + return function.value(params); + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/ObjectiveFunctionGradient.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/ObjectiveFunctionGradient.java new file mode 100644 index 000000000..8e56c9c2b --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/ObjectiveFunctionGradient.java @@ -0,0 +1,47 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.nonlinear.scalar; + +import org.apache.commons.math3.analysis.MultivariateVectorFunction; +import org.apache.commons.math3.optim.OptimizationData; + +/** + * Gradient of the scalar function to be optimized. + * + * @version $Id$ + * @since 3.1 + */ +public class ObjectiveFunctionGradient implements OptimizationData { + /** Function to be optimized. */ + private final MultivariateVectorFunction gradient; + + /** + * @param g Gradient of the function to be optimized. + */ + public ObjectiveFunctionGradient(MultivariateVectorFunction g) { + gradient = g; + } + + /** + * Gets the gradient of the function to be optimized. + * + * @return the objective function gradient. + */ + public MultivariateVectorFunction getObjectiveFunctionGradient() { + return gradient; + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/gradient/NonLinearConjugateGradientOptimizer.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/gradient/NonLinearConjugateGradientOptimizer.java new file mode 100644 index 000000000..f0720cdba --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/gradient/NonLinearConjugateGradientOptimizer.java @@ -0,0 +1,393 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.commons.math3.optim.nonlinear.scalar.gradient; + +import org.apache.commons.math3.analysis.UnivariateFunction; +import org.apache.commons.math3.analysis.solvers.BrentSolver; +import org.apache.commons.math3.analysis.solvers.UnivariateSolver; +import org.apache.commons.math3.exception.MathInternalError; +import org.apache.commons.math3.exception.MathIllegalStateException; +import org.apache.commons.math3.exception.TooManyEvaluationsException; +import org.apache.commons.math3.exception.util.LocalizedFormats; +import org.apache.commons.math3.optim.OptimizationData; +import org.apache.commons.math3.optim.GoalType; +import org.apache.commons.math3.optim.PointValuePair; +import org.apache.commons.math3.optim.ConvergenceChecker; +import org.apache.commons.math3.optim.nonlinear.scalar.GradientMultivariateOptimizer; +import org.apache.commons.math3.util.FastMath; + +/** + * Non-linear conjugate gradient optimizer. + *

+ * This class supports both the Fletcher-Reeves and the Polak-Ribière + * update formulas for the conjugate search directions. + * It also supports optional preconditioning. + *

+ * + * @version $Id: NonLinearConjugateGradientOptimizer.java 1416643 2012-12-03 19:37:14Z tn $ + * @since 2.0 + */ +public class NonLinearConjugateGradientOptimizer + extends GradientMultivariateOptimizer { + /** Update formula for the beta parameter. */ + private final Formula updateFormula; + /** Preconditioner (may be null). */ + private final Preconditioner preconditioner; + /** solver to use in the line search (may be null). */ + private final UnivariateSolver solver; + /** Initial step used to bracket the optimum in line search. */ + private double initialStep = 1; + + /** + * Constructor with default {@link BrentSolver line search solver} and + * {@link IdentityPreconditioner preconditioner}. + * + * @param updateFormula formula to use for updating the β parameter, + * must be one of {@link Formula#FLETCHER_REEVES} or + * {@link Formula#POLAK_RIBIERE}. + * @param checker Convergence checker. + */ + public NonLinearConjugateGradientOptimizer(final Formula updateFormula, + ConvergenceChecker checker) { + this(updateFormula, + checker, + new BrentSolver(), + new IdentityPreconditioner()); + } + + /** + * Available choices of update formulas for the updating the parameter + * that is used to compute the successive conjugate search directions. + * For non-linear conjugate gradients, there are + * two formulas: + *
    + *
  • Fletcher-Reeves formula
  • + *
  • Polak-Ribière formula
  • + *
+ * + * On the one hand, the Fletcher-Reeves formula is guaranteed to converge + * if the start point is close enough of the optimum whether the + * Polak-Ribière formula may not converge in rare cases. On the + * other hand, the Polak-Ribière formula is often faster when it + * does converge. Polak-Ribière is often used. + * + * @since 2.0 + */ + public static enum Formula { + /** Fletcher-Reeves formula. */ + FLETCHER_REEVES, + /** Polak-Ribière formula. */ + POLAK_RIBIERE + } + + /** + * The initial step is a factor with respect to the search direction + * (which itself is roughly related to the gradient of the function). + *
+ * It is used to find an interval that brackets the optimum in line + * search. + * + * @since 3.1 + */ + public static class BracketingStep implements OptimizationData { + /** Initial step. */ + private final double initialStep; + + /** + * @param step Initial step for the bracket search. + */ + public BracketingStep(double step) { + initialStep = step; + } + + /** + * Gets the initial step. + * + * @return the initial step. + */ + public double getBracketingStep() { + return initialStep; + } + } + + /** + * Constructor with default {@link IdentityPreconditioner preconditioner}. + * + * @param updateFormula formula to use for updating the β parameter, + * must be one of {@link Formula#FLETCHER_REEVES} or + * {@link Formula#POLAK_RIBIERE}. + * @param checker Convergence checker. + * @param lineSearchSolver Solver to use during line search. + */ + public NonLinearConjugateGradientOptimizer(final Formula updateFormula, + ConvergenceChecker checker, + final UnivariateSolver lineSearchSolver) { + this(updateFormula, + checker, + lineSearchSolver, + new IdentityPreconditioner()); + } + + /** + * @param updateFormula formula to use for updating the β parameter, + * must be one of {@link Formula#FLETCHER_REEVES} or + * {@link Formula#POLAK_RIBIERE}. + * @param checker Convergence checker. + * @param lineSearchSolver Solver to use during line search. + * @param preconditioner Preconditioner. + */ + public NonLinearConjugateGradientOptimizer(final Formula updateFormula, + ConvergenceChecker checker, + final UnivariateSolver lineSearchSolver, + final Preconditioner preconditioner) { + super(checker); + + this.updateFormula = updateFormula; + solver = lineSearchSolver; + this.preconditioner = preconditioner; + initialStep = 1; + } + + /** + * {@inheritDoc} + * + * @param optData Optimization data. + * The following data will be looked for: + *
    + *
  • {@link org.apache.commons.math3.optim.MaxEval}
  • + *
  • {@link org.apache.commons.math3.optim.InitialGuess}
  • + *
  • {@link org.apache.commons.math3.optim.SimpleBounds}
  • + *
  • {@link org.apache.commons.math3.optim.GoalType}
  • + *
  • {@link org.apache.commons.math3.optim.ObjectiveFunction}
  • + *
  • {@link org.apache.commons.math3.optim.nonlinear.scalar.ObjectiveFunctionGradient}
  • + *
  • {@link BracketingStep}
  • + *
+ * @return {@inheritDoc} + * @throws TooManyEvaluationsException if the maximal number of + * evaluations (of the objective function) is exceeded. + */ + @Override + public PointValuePair optimize(OptimizationData... optData) + throws TooManyEvaluationsException { + // Retrieve settings. + parseOptimizationData(optData); + // Set up base class and perform computation. + return super.optimize(optData); + } + + /** {@inheritDoc} */ + @Override + protected PointValuePair doOptimize() { + final ConvergenceChecker checker = getConvergenceChecker(); + final double[] point = getStartPoint(); + final GoalType goal = getGoalType(); + final int n = point.length; + double[] r = computeObjectiveGradient(point); + if (goal == GoalType.MINIMIZE) { + for (int i = 0; i < n; i++) { + r[i] = -r[i]; + } + } + + // Initial search direction. + double[] steepestDescent = preconditioner.precondition(point, r); + double[] searchDirection = steepestDescent.clone(); + + double delta = 0; + for (int i = 0; i < n; ++i) { + delta += r[i] * searchDirection[i]; + } + + PointValuePair current = null; + int iter = 0; + int maxEval = getMaxEvaluations(); + while (true) { + ++iter; + + final double objective = computeObjectiveValue(point); + PointValuePair previous = current; + current = new PointValuePair(point, objective); + if (previous != null) { + if (checker.converged(iter, previous, current)) { + // We have found an optimum. + return current; + } + } + + // Find the optimal step in the search direction. + final UnivariateFunction lsf = new LineSearchFunction(point, searchDirection); + final double uB = findUpperBound(lsf, 0, initialStep); + // XXX Last parameters is set to a value close to zero in order to + // work around the divergence problem in the "testCircleFitting" + // unit test (see MATH-439). + final double step = solver.solve(maxEval, lsf, 0, uB, 1e-15); + maxEval -= solver.getEvaluations(); // Subtract used up evaluations. + + // Validate new point. + for (int i = 0; i < point.length; ++i) { + point[i] += step * searchDirection[i]; + } + + r = computeObjectiveGradient(point); + if (goal == GoalType.MINIMIZE) { + for (int i = 0; i < n; ++i) { + r[i] = -r[i]; + } + } + + // Compute beta. + final double deltaOld = delta; + final double[] newSteepestDescent = preconditioner.precondition(point, r); + delta = 0; + for (int i = 0; i < n; ++i) { + delta += r[i] * newSteepestDescent[i]; + } + + final double beta; + switch (updateFormula) { + case FLETCHER_REEVES: + beta = delta / deltaOld; + break; + case POLAK_RIBIERE: + double deltaMid = 0; + for (int i = 0; i < r.length; ++i) { + deltaMid += r[i] * steepestDescent[i]; + } + beta = (delta - deltaMid) / deltaOld; + break; + default: + // Should never happen. + throw new MathInternalError(); + } + steepestDescent = newSteepestDescent; + + // Compute conjugate search direction. + if (iter % n == 0 || + beta < 0) { + // Break conjugation: reset search direction. + searchDirection = steepestDescent.clone(); + } else { + // Compute new conjugate search direction. + for (int i = 0; i < n; ++i) { + searchDirection[i] = steepestDescent[i] + beta * searchDirection[i]; + } + } + } + } + + /** + * Scans the list of (required and optional) optimization data that + * characterize the problem. + * + * @param optData Optimization data. + * The following data will be looked for: + *
    + *
  • {@link InitialStep}
  • + *
+ */ + private void parseOptimizationData(OptimizationData... optData) { + // The existing values (as set by the previous call) are reused if + // not provided in the argument list. + for (OptimizationData data : optData) { + if (data instanceof BracketingStep) { + initialStep = ((BracketingStep) data).getBracketingStep(); + // If more data must be parsed, this statement _must_ be + // changed to "continue". + break; + } + } + } + + /** + * Finds the upper bound b ensuring bracketing of a root between a and b. + * + * @param f function whose root must be bracketed. + * @param a lower bound of the interval. + * @param h initial step to try. + * @return b such that f(a) and f(b) have opposite signs. + * @throws MathIllegalStateException if no bracket can be found. + */ + private double findUpperBound(final UnivariateFunction f, + final double a, final double h) { + final double yA = f.value(a); + double yB = yA; + for (double step = h; step < Double.MAX_VALUE; step *= FastMath.max(2, yA / yB)) { + final double b = a + step; + yB = f.value(b); + if (yA * yB <= 0) { + return b; + } + } + throw new MathIllegalStateException(LocalizedFormats.UNABLE_TO_BRACKET_OPTIMUM_IN_LINE_SEARCH); + } + + /** Default identity preconditioner. */ + public static class IdentityPreconditioner implements Preconditioner { + /** {@inheritDoc} */ + public double[] precondition(double[] variables, double[] r) { + return r.clone(); + } + } + + /** + * Internal class for line search. + *

+ * The function represented by this class is the dot product of + * the objective function gradient and the search direction. Its + * value is zero when the gradient is orthogonal to the search + * direction, i.e. when the objective function value is a local + * extremum along the search direction. + *

+ */ + private class LineSearchFunction implements UnivariateFunction { + /** Current point. */ + private final double[] currentPoint; + /** Search direction. */ + private final double[] searchDirection; + + /** + * @param point Current point. + * @param direction Search direction. + */ + public LineSearchFunction(double[] point, + double[] direction) { + currentPoint = point.clone(); + searchDirection = direction.clone(); + } + + /** {@inheritDoc} */ + public double value(double x) { + // current point in the search direction + final double[] shiftedPoint = currentPoint.clone(); + for (int i = 0; i < shiftedPoint.length; ++i) { + shiftedPoint[i] += x * searchDirection[i]; + } + + // gradient of the objective function + final double[] gradient = computeObjectiveGradient(shiftedPoint); + + // dot product with the search direction + double dotProduct = 0; + for (int i = 0; i < gradient.length; ++i) { + dotProduct += gradient[i] * searchDirection[i]; + } + + return dotProduct; + } + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/gradient/Preconditioner.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/gradient/Preconditioner.java new file mode 100644 index 000000000..cd4c79886 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/gradient/Preconditioner.java @@ -0,0 +1,45 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.commons.math3.optim.nonlinear.scalar.gradient; + +/** + * This interface represents a preconditioner for differentiable scalar + * objective function optimizers. + * @version $Id: Preconditioner.java 1416643 2012-12-03 19:37:14Z tn $ + * @since 2.0 + */ +public interface Preconditioner { + /** + * Precondition a search direction. + *

+ * The returned preconditioned search direction must be computed fast or + * the algorithm performances will drop drastically. A classical approach + * is to compute only the diagonal elements of the hessian and to divide + * the raw search direction by these elements if they are all positive. + * If at least one of them is negative, it is safer to return a clone of + * the raw search direction as if the hessian was the identity matrix. The + * rationale for this simplified choice is that a negative diagonal element + * means the current point is far from the optimum and preconditioning will + * not be efficient anyway in this case. + *

+ * @param point current point at which the search direction was computed + * @param r raw search direction (i.e. opposite of the gradient) + * @return approximation of H-1r where H is the objective function hessian + */ + double[] precondition(double[] point, double[] r); +} diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/gradient/package-info.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/gradient/package-info.java new file mode 100644 index 000000000..e516c7d8e --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/gradient/package-info.java @@ -0,0 +1,21 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.nonlinear.scalar.gradient; + +/** + * This package provides optimization algorithms that require derivatives. + */ diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/AbstractSimplex.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/AbstractSimplex.java new file mode 100644 index 000000000..67eed181d --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/AbstractSimplex.java @@ -0,0 +1,346 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.commons.math3.optim.nonlinear.scalar.noderiv; + +import java.util.Arrays; +import java.util.Comparator; + +import org.apache.commons.math3.analysis.MultivariateFunction; +import org.apache.commons.math3.exception.NotStrictlyPositiveException; +import org.apache.commons.math3.exception.DimensionMismatchException; +import org.apache.commons.math3.exception.ZeroException; +import org.apache.commons.math3.exception.OutOfRangeException; +import org.apache.commons.math3.exception.NullArgumentException; +import org.apache.commons.math3.exception.MathIllegalArgumentException; +import org.apache.commons.math3.exception.util.LocalizedFormats; +import org.apache.commons.math3.optim.PointValuePair; +import org.apache.commons.math3.optim.OptimizationData; + +/** + * This class implements the simplex concept. + * It is intended to be used in conjunction with {@link SimplexOptimizer}. + *
+ * The initial configuration of the simplex is set by the constructors + * {@link #AbstractSimplex(double[])} or {@link #AbstractSimplex(double[][])}. + * The other {@link #AbstractSimplex(int) constructor} will set all steps + * to 1, thus building a default configuration from a unit hypercube. + *
+ * Users must call the {@link #build(double[]) build} method in order + * to create the data structure that will be acted on by the other methods of + * this class. + * + * @see SimplexOptimizer + * @version $Id: AbstractSimplex.java 1397759 2012-10-13 01:12:58Z erans $ + * @since 3.0 + */ +public abstract class AbstractSimplex implements OptimizationData { + /** Simplex. */ + private PointValuePair[] simplex; + /** Start simplex configuration. */ + private double[][] startConfiguration; + /** Simplex dimension (must be equal to {@code simplex.length - 1}). */ + private final int dimension; + + /** + * Build a unit hypercube simplex. + * + * @param n Dimension of the simplex. + */ + protected AbstractSimplex(int n) { + this(n, 1d); + } + + /** + * Build a hypercube simplex with the given side length. + * + * @param n Dimension of the simplex. + * @param sideLength Length of the sides of the hypercube. + */ + protected AbstractSimplex(int n, + double sideLength) { + this(createHypercubeSteps(n, sideLength)); + } + + /** + * The start configuration for simplex is built from a box parallel to + * the canonical axes of the space. The simplex is the subset of vertices + * of a box parallel to the canonical axes. It is built as the path followed + * while traveling from one vertex of the box to the diagonally opposite + * vertex moving only along the box edges. The first vertex of the box will + * be located at the start point of the optimization. + * As an example, in dimension 3 a simplex has 4 vertices. Setting the + * steps to (1, 10, 2) and the start point to (1, 1, 1) would imply the + * start simplex would be: { (1, 1, 1), (2, 1, 1), (2, 11, 1), (2, 11, 3) }. + * The first vertex would be set to the start point at (1, 1, 1) and the + * last vertex would be set to the diagonally opposite vertex at (2, 11, 3). + * + * @param steps Steps along the canonical axes representing box edges. They + * may be negative but not zero. + * @throws NullArgumentException if {@code steps} is {@code null}. + * @throws ZeroException if one of the steps is zero. + */ + protected AbstractSimplex(final double[] steps) { + if (steps == null) { + throw new NullArgumentException(); + } + if (steps.length == 0) { + throw new ZeroException(); + } + dimension = steps.length; + + // Only the relative position of the n final vertices with respect + // to the first one are stored. + startConfiguration = new double[dimension][dimension]; + for (int i = 0; i < dimension; i++) { + final double[] vertexI = startConfiguration[i]; + for (int j = 0; j < i + 1; j++) { + if (steps[j] == 0) { + throw new ZeroException(LocalizedFormats.EQUAL_VERTICES_IN_SIMPLEX); + } + System.arraycopy(steps, 0, vertexI, 0, j + 1); + } + } + } + + /** + * The real initial simplex will be set up by moving the reference + * simplex such that its first point is located at the start point of the + * optimization. + * + * @param referenceSimplex Reference simplex. + * @throws NotStrictlyPositiveException if the reference simplex does not + * contain at least one point. + * @throws DimensionMismatchException if there is a dimension mismatch + * in the reference simplex. + * @throws IllegalArgumentException if one of its vertices is duplicated. + */ + protected AbstractSimplex(final double[][] referenceSimplex) { + if (referenceSimplex.length <= 0) { + throw new NotStrictlyPositiveException(LocalizedFormats.SIMPLEX_NEED_ONE_POINT, + referenceSimplex.length); + } + dimension = referenceSimplex.length - 1; + + // Only the relative position of the n final vertices with respect + // to the first one are stored. + startConfiguration = new double[dimension][dimension]; + final double[] ref0 = referenceSimplex[0]; + + // Loop over vertices. + for (int i = 0; i < referenceSimplex.length; i++) { + final double[] refI = referenceSimplex[i]; + + // Safety checks. + if (refI.length != dimension) { + throw new DimensionMismatchException(refI.length, dimension); + } + for (int j = 0; j < i; j++) { + final double[] refJ = referenceSimplex[j]; + boolean allEquals = true; + for (int k = 0; k < dimension; k++) { + if (refI[k] != refJ[k]) { + allEquals = false; + break; + } + } + if (allEquals) { + throw new MathIllegalArgumentException(LocalizedFormats.EQUAL_VERTICES_IN_SIMPLEX, + i, j); + } + } + + // Store vertex i position relative to vertex 0 position. + if (i > 0) { + final double[] confI = startConfiguration[i - 1]; + for (int k = 0; k < dimension; k++) { + confI[k] = refI[k] - ref0[k]; + } + } + } + } + + /** + * Get simplex dimension. + * + * @return the dimension of the simplex. + */ + public int getDimension() { + return dimension; + } + + /** + * Get simplex size. + * After calling the {@link #build(double[]) build} method, this method will + * will be equivalent to {@code getDimension() + 1}. + * + * @return the size of the simplex. + */ + public int getSize() { + return simplex.length; + } + + /** + * Compute the next simplex of the algorithm. + * + * @param evaluationFunction Evaluation function. + * @param comparator Comparator to use to sort simplex vertices from best + * to worst. + * @throws org.apache.commons.math3.exception.TooManyEvaluationsException + * if the algorithm fails to converge. + */ + public abstract void iterate(final MultivariateFunction evaluationFunction, + final Comparator comparator); + + /** + * Build an initial simplex. + * + * @param startPoint First point of the simplex. + * @throws DimensionMismatchException if the start point does not match + * simplex dimension. + */ + public void build(final double[] startPoint) { + if (dimension != startPoint.length) { + throw new DimensionMismatchException(dimension, startPoint.length); + } + + // Set first vertex. + simplex = new PointValuePair[dimension + 1]; + simplex[0] = new PointValuePair(startPoint, Double.NaN); + + // Set remaining vertices. + for (int i = 0; i < dimension; i++) { + final double[] confI = startConfiguration[i]; + final double[] vertexI = new double[dimension]; + for (int k = 0; k < dimension; k++) { + vertexI[k] = startPoint[k] + confI[k]; + } + simplex[i + 1] = new PointValuePair(vertexI, Double.NaN); + } + } + + /** + * Evaluate all the non-evaluated points of the simplex. + * + * @param evaluationFunction Evaluation function. + * @param comparator Comparator to use to sort simplex vertices from best to worst. + * @throws org.apache.commons.math3.exception.TooManyEvaluationsException + * if the maximal number of evaluations is exceeded. + */ + public void evaluate(final MultivariateFunction evaluationFunction, + final Comparator comparator) { + // Evaluate the objective function at all non-evaluated simplex points. + for (int i = 0; i < simplex.length; i++) { + final PointValuePair vertex = simplex[i]; + final double[] point = vertex.getPointRef(); + if (Double.isNaN(vertex.getValue())) { + simplex[i] = new PointValuePair(point, evaluationFunction.value(point), false); + } + } + + // Sort the simplex from best to worst. + Arrays.sort(simplex, comparator); + } + + /** + * Replace the worst point of the simplex by a new point. + * + * @param pointValuePair Point to insert. + * @param comparator Comparator to use for sorting the simplex vertices + * from best to worst. + */ + protected void replaceWorstPoint(PointValuePair pointValuePair, + final Comparator comparator) { + for (int i = 0; i < dimension; i++) { + if (comparator.compare(simplex[i], pointValuePair) > 0) { + PointValuePair tmp = simplex[i]; + simplex[i] = pointValuePair; + pointValuePair = tmp; + } + } + simplex[dimension] = pointValuePair; + } + + /** + * Get the points of the simplex. + * + * @return all the simplex points. + */ + public PointValuePair[] getPoints() { + final PointValuePair[] copy = new PointValuePair[simplex.length]; + System.arraycopy(simplex, 0, copy, 0, simplex.length); + return copy; + } + + /** + * Get the simplex point stored at the requested {@code index}. + * + * @param index Location. + * @return the point at location {@code index}. + */ + public PointValuePair getPoint(int index) { + if (index < 0 || + index >= simplex.length) { + throw new OutOfRangeException(index, 0, simplex.length - 1); + } + return simplex[index]; + } + + /** + * Store a new point at location {@code index}. + * Note that no deep-copy of {@code point} is performed. + * + * @param index Location. + * @param point New value. + */ + protected void setPoint(int index, PointValuePair point) { + if (index < 0 || + index >= simplex.length) { + throw new OutOfRangeException(index, 0, simplex.length - 1); + } + simplex[index] = point; + } + + /** + * Replace all points. + * Note that no deep-copy of {@code points} is performed. + * + * @param points New Points. + */ + protected void setPoints(PointValuePair[] points) { + if (points.length != simplex.length) { + throw new DimensionMismatchException(points.length, simplex.length); + } + simplex = points; + } + + /** + * Create steps for a unit hypercube. + * + * @param n Dimension of the hypercube. + * @param sideLength Length of the sides of the hypercube. + * @return the steps. + */ + private static double[] createHypercubeSteps(int n, + double sideLength) { + final double[] steps = new double[n]; + for (int i = 0; i < n; i++) { + steps[i] = sideLength; + } + return steps; + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/BOBYQAOptimizer.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/BOBYQAOptimizer.java new file mode 100644 index 000000000..3b68693c8 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/BOBYQAOptimizer.java @@ -0,0 +1,2482 @@ +// CHECKSTYLE: stop all +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.nonlinear.scalar.noderiv; + +import java.util.Arrays; +import org.apache.commons.math3.analysis.MultivariateFunction; +import org.apache.commons.math3.exception.MathIllegalStateException; +import org.apache.commons.math3.exception.NumberIsTooSmallException; +import org.apache.commons.math3.exception.OutOfRangeException; +import org.apache.commons.math3.exception.util.LocalizedFormats; +import org.apache.commons.math3.linear.Array2DRowRealMatrix; +import org.apache.commons.math3.linear.ArrayRealVector; +import org.apache.commons.math3.linear.RealVector; +import org.apache.commons.math3.optim.GoalType; +import org.apache.commons.math3.optim.PointValuePair; +import org.apache.commons.math3.optim.nonlinear.scalar.MultivariateOptimizer; + +/** + * Powell's BOBYQA algorithm. This implementation is translated and + * adapted from the Fortran version available + * here. + * See + * this paper for an introduction. + *
+ * BOBYQA is particularly well suited for high dimensional problems + * where derivatives are not available. In most cases it outperforms the + * {@link PowellOptimizer} significantly. Stochastic algorithms like + * {@link CMAESOptimizer} succeed more often than BOBYQA, but are more + * expensive. BOBYQA could also be considered as a replacement of any + * derivative-based optimizer when the derivatives are approximated by + * finite differences. + * + * @version $Id: BOBYQAOptimizer.java 1413131 2012-11-24 04:44:02Z psteitz $ + * @since 3.0 + */ +public class BOBYQAOptimizer + extends MultivariateOptimizer { + /** Minimum dimension of the problem: {@value} */ + public static final int MINIMUM_PROBLEM_DIMENSION = 2; + /** Default value for {@link #initialTrustRegionRadius}: {@value} . */ + public static final double DEFAULT_INITIAL_RADIUS = 10.0; + /** Default value for {@link #stoppingTrustRegionRadius}: {@value} . */ + public static final double DEFAULT_STOPPING_RADIUS = 1E-8; + + private static final double ZERO = 0d; + private static final double ONE = 1d; + private static final double TWO = 2d; + private static final double TEN = 10d; + private static final double SIXTEEN = 16d; + private static final double TWO_HUNDRED_FIFTY = 250d; + private static final double MINUS_ONE = -ONE; + private static final double HALF = ONE / 2; + private static final double ONE_OVER_FOUR = ONE / 4; + private static final double ONE_OVER_EIGHT = ONE / 8; + private static final double ONE_OVER_TEN = ONE / 10; + private static final double ONE_OVER_A_THOUSAND = ONE / 1000; + + /** + * numberOfInterpolationPoints XXX + */ + private final int numberOfInterpolationPoints; + /** + * initialTrustRegionRadius XXX + */ + private double initialTrustRegionRadius; + /** + * stoppingTrustRegionRadius XXX + */ + private final double stoppingTrustRegionRadius; + /** Goal type (minimize or maximize). */ + private boolean isMinimize; + /** + * Current best values for the variables to be optimized. + * The vector will be changed in-place to contain the values of the least + * calculated objective function values. + */ + private ArrayRealVector currentBest; + /** Differences between the upper and lower bounds. */ + private double[] boundDifference; + /** + * Index of the interpolation point at the trust region center. + */ + private int trustRegionCenterInterpolationPointIndex; + /** + * Last n columns of matrix H (where n is the dimension + * of the problem). + * XXX "bmat" in the original code. + */ + private Array2DRowRealMatrix bMatrix; + /** + * Factorization of the leading npt square submatrix of H, this + * factorization being Z ZT, which provides both the correct + * rank and positive semi-definiteness. + * XXX "zmat" in the original code. + */ + private Array2DRowRealMatrix zMatrix; + /** + * Coordinates of the interpolation points relative to {@link #originShift}. + * XXX "xpt" in the original code. + */ + private Array2DRowRealMatrix interpolationPoints; + /** + * Shift of origin that should reduce the contributions from rounding + * errors to values of the model and Lagrange functions. + * XXX "xbase" in the original code. + */ + private ArrayRealVector originShift; + /** + * Values of the objective function at the interpolation points. + * XXX "fval" in the original code. + */ + private ArrayRealVector fAtInterpolationPoints; + /** + * Displacement from {@link #originShift} of the trust region center. + * XXX "xopt" in the original code. + */ + private ArrayRealVector trustRegionCenterOffset; + /** + * Gradient of the quadratic model at {@link #originShift} + + * {@link #trustRegionCenterOffset}. + * XXX "gopt" in the original code. + */ + private ArrayRealVector gradientAtTrustRegionCenter; + /** + * Differences {@link #getLowerBound()} - {@link #originShift}. + * All the components of every {@link #trustRegionCenterOffset} are going + * to satisfy the bounds
+ * {@link #getLowerBound() lowerBound}i ≤ + * {@link #trustRegionCenterOffset}i,
+ * with appropriate equalities when {@link #trustRegionCenterOffset} is + * on a constraint boundary. + * XXX "sl" in the original code. + */ + private ArrayRealVector lowerDifference; + /** + * Differences {@link #getUpperBound()} - {@link #originShift} + * All the components of every {@link #trustRegionCenterOffset} are going + * to satisfy the bounds
+ * {@link #trustRegionCenterOffset}i ≤ + * {@link #getUpperBound() upperBound}i,
+ * with appropriate equalities when {@link #trustRegionCenterOffset} is + * on a constraint boundary. + * XXX "su" in the original code. + */ + private ArrayRealVector upperDifference; + /** + * Parameters of the implicit second derivatives of the quadratic model. + * XXX "pq" in the original code. + */ + private ArrayRealVector modelSecondDerivativesParameters; + /** + * Point chosen by function {@link #trsbox(double,ArrayRealVector, + * ArrayRealVector, ArrayRealVector,ArrayRealVector,ArrayRealVector) trsbox} + * or {@link #altmov(int,double) altmov}. + * Usually {@link #originShift} + {@link #newPoint} is the vector of + * variables for the next evaluation of the objective function. + * It also satisfies the constraints indicated in {@link #lowerDifference} + * and {@link #upperDifference}. + * XXX "xnew" in the original code. + */ + private ArrayRealVector newPoint; + /** + * Alternative to {@link #newPoint}, chosen by + * {@link #altmov(int,double) altmov}. + * It may replace {@link #newPoint} in order to increase the denominator + * in the {@link #update(double, double, int) updating procedure}. + * XXX "xalt" in the original code. + */ + private ArrayRealVector alternativeNewPoint; + /** + * Trial step from {@link #trustRegionCenterOffset} which is usually + * {@link #newPoint} - {@link #trustRegionCenterOffset}. + * XXX "d__" in the original code. + */ + private ArrayRealVector trialStepPoint; + /** + * Values of the Lagrange functions at a new point. + * XXX "vlag" in the original code. + */ + private ArrayRealVector lagrangeValuesAtNewPoint; + /** + * Explicit second derivatives of the quadratic model. + * XXX "hq" in the original code. + */ + private ArrayRealVector modelSecondDerivativesValues; + + /** + * @param numberOfInterpolationPoints Number of interpolation conditions. + * For a problem of dimension {@code n}, its value must be in the interval + * {@code [n+2, (n+1)(n+2)/2]}. + * Choices that exceed {@code 2n+1} are not recommended. + */ + public BOBYQAOptimizer(int numberOfInterpolationPoints) { + this(numberOfInterpolationPoints, + DEFAULT_INITIAL_RADIUS, + DEFAULT_STOPPING_RADIUS); + } + + /** + * @param numberOfInterpolationPoints Number of interpolation conditions. + * For a problem of dimension {@code n}, its value must be in the interval + * {@code [n+2, (n+1)(n+2)/2]}. + * Choices that exceed {@code 2n+1} are not recommended. + * @param initialTrustRegionRadius Initial trust region radius. + * @param stoppingTrustRegionRadius Stopping trust region radius. + */ + public BOBYQAOptimizer(int numberOfInterpolationPoints, + double initialTrustRegionRadius, + double stoppingTrustRegionRadius) { + super(null); // No custom convergence criterion. + this.numberOfInterpolationPoints = numberOfInterpolationPoints; + this.initialTrustRegionRadius = initialTrustRegionRadius; + this.stoppingTrustRegionRadius = stoppingTrustRegionRadius; + } + + /** {@inheritDoc} */ + @Override + protected PointValuePair doOptimize() { + final double[] lowerBound = getLowerBound(); + final double[] upperBound = getUpperBound(); + + // Validity checks. + setup(lowerBound, upperBound); + + isMinimize = (getGoalType() == GoalType.MINIMIZE); + currentBest = new ArrayRealVector(getStartPoint()); + + final double value = bobyqa(lowerBound, upperBound); + + return new PointValuePair(currentBest.getDataRef(), + isMinimize ? value : -value); + } + + /** + * This subroutine seeks the least value of a function of many variables, + * by applying a trust region method that forms quadratic models by + * interpolation. There is usually some freedom in the interpolation + * conditions, which is taken up by minimizing the Frobenius norm of + * the change to the second derivative of the model, beginning with the + * zero matrix. The values of the variables are constrained by upper and + * lower bounds. The arguments of the subroutine are as follows. + * + * N must be set to the number of variables and must be at least two. + * NPT is the number of interpolation conditions. Its value must be in + * the interval [N+2,(N+1)(N+2)/2]. Choices that exceed 2*N+1 are not + * recommended. + * Initial values of the variables must be set in X(1),X(2),...,X(N). They + * will be changed to the values that give the least calculated F. + * For I=1,2,...,N, XL(I) and XU(I) must provide the lower and upper + * bounds, respectively, on X(I). The construction of quadratic models + * requires XL(I) to be strictly less than XU(I) for each I. Further, + * the contribution to a model from changes to the I-th variable is + * damaged severely by rounding errors if XU(I)-XL(I) is too small. + * RHOBEG and RHOEND must be set to the initial and final values of a trust + * region radius, so both must be positive with RHOEND no greater than + * RHOBEG. Typically, RHOBEG should be about one tenth of the greatest + * expected change to a variable, while RHOEND should indicate the + * accuracy that is required in the final values of the variables. An + * error return occurs if any of the differences XU(I)-XL(I), I=1,...,N, + * is less than 2*RHOBEG. + * MAXFUN must be set to an upper bound on the number of calls of CALFUN. + * The array W will be used for working space. Its length must be at least + * (NPT+5)*(NPT+N)+3*N*(N+5)/2. + * + * @param lowerBound Lower bounds. + * @param upperBound Upper bounds. + * @return the value of the objective at the optimum. + */ + private double bobyqa(double[] lowerBound, + double[] upperBound) { + printMethod(); // XXX + + final int n = currentBest.getDimension(); + + // Return if there is insufficient space between the bounds. Modify the + // initial X if necessary in order to avoid conflicts between the bounds + // and the construction of the first quadratic model. The lower and upper + // bounds on moves from the updated X are set now, in the ISL and ISU + // partitions of W, in order to provide useful and exact information about + // components of X that become within distance RHOBEG from their bounds. + + for (int j = 0; j < n; j++) { + final double boundDiff = boundDifference[j]; + lowerDifference.setEntry(j, lowerBound[j] - currentBest.getEntry(j)); + upperDifference.setEntry(j, upperBound[j] - currentBest.getEntry(j)); + if (lowerDifference.getEntry(j) >= -initialTrustRegionRadius) { + if (lowerDifference.getEntry(j) >= ZERO) { + currentBest.setEntry(j, lowerBound[j]); + lowerDifference.setEntry(j, ZERO); + upperDifference.setEntry(j, boundDiff); + } else { + currentBest.setEntry(j, lowerBound[j] + initialTrustRegionRadius); + lowerDifference.setEntry(j, -initialTrustRegionRadius); + // Computing MAX + final double deltaOne = upperBound[j] - currentBest.getEntry(j); + upperDifference.setEntry(j, Math.max(deltaOne, initialTrustRegionRadius)); + } + } else if (upperDifference.getEntry(j) <= initialTrustRegionRadius) { + if (upperDifference.getEntry(j) <= ZERO) { + currentBest.setEntry(j, upperBound[j]); + lowerDifference.setEntry(j, -boundDiff); + upperDifference.setEntry(j, ZERO); + } else { + currentBest.setEntry(j, upperBound[j] - initialTrustRegionRadius); + // Computing MIN + final double deltaOne = lowerBound[j] - currentBest.getEntry(j); + final double deltaTwo = -initialTrustRegionRadius; + lowerDifference.setEntry(j, Math.min(deltaOne, deltaTwo)); + upperDifference.setEntry(j, initialTrustRegionRadius); + } + } + } + + // Make the call of BOBYQB. + + return bobyqb(lowerBound, upperBound); + } // bobyqa + + // ---------------------------------------------------------------------------------------- + + /** + * The arguments N, NPT, X, XL, XU, RHOBEG, RHOEND, IPRINT and MAXFUN + * are identical to the corresponding arguments in SUBROUTINE BOBYQA. + * XBASE holds a shift of origin that should reduce the contributions + * from rounding errors to values of the model and Lagrange functions. + * XPT is a two-dimensional array that holds the coordinates of the + * interpolation points relative to XBASE. + * FVAL holds the values of F at the interpolation points. + * XOPT is set to the displacement from XBASE of the trust region centre. + * GOPT holds the gradient of the quadratic model at XBASE+XOPT. + * HQ holds the explicit second derivatives of the quadratic model. + * PQ contains the parameters of the implicit second derivatives of the + * quadratic model. + * BMAT holds the last N columns of H. + * ZMAT holds the factorization of the leading NPT by NPT submatrix of H, + * this factorization being ZMAT times ZMAT^T, which provides both the + * correct rank and positive semi-definiteness. + * NDIM is the first dimension of BMAT and has the value NPT+N. + * SL and SU hold the differences XL-XBASE and XU-XBASE, respectively. + * All the components of every XOPT are going to satisfy the bounds + * SL(I) .LEQ. XOPT(I) .LEQ. SU(I), with appropriate equalities when + * XOPT is on a constraint boundary. + * XNEW is chosen by SUBROUTINE TRSBOX or ALTMOV. Usually XBASE+XNEW is the + * vector of variables for the next call of CALFUN. XNEW also satisfies + * the SL and SU constraints in the way that has just been mentioned. + * XALT is an alternative to XNEW, chosen by ALTMOV, that may replace XNEW + * in order to increase the denominator in the updating of UPDATE. + * D is reserved for a trial step from XOPT, which is usually XNEW-XOPT. + * VLAG contains the values of the Lagrange functions at a new point X. + * They are part of a product that requires VLAG to be of length NDIM. + * W is a one-dimensional array that is used for working space. Its length + * must be at least 3*NDIM = 3*(NPT+N). + * + * @param lowerBound Lower bounds. + * @param upperBound Upper bounds. + * @return the value of the objective at the optimum. + */ + private double bobyqb(double[] lowerBound, + double[] upperBound) { + printMethod(); // XXX + + final int n = currentBest.getDimension(); + final int npt = numberOfInterpolationPoints; + final int np = n + 1; + final int nptm = npt - np; + final int nh = n * np / 2; + + final ArrayRealVector work1 = new ArrayRealVector(n); + final ArrayRealVector work2 = new ArrayRealVector(npt); + final ArrayRealVector work3 = new ArrayRealVector(npt); + + double cauchy = Double.NaN; + double alpha = Double.NaN; + double dsq = Double.NaN; + double crvmin = Double.NaN; + + // Set some constants. + // Parameter adjustments + + // Function Body + + // The call of PRELIM sets the elements of XBASE, XPT, FVAL, GOPT, HQ, PQ, + // BMAT and ZMAT for the first iteration, with the corresponding values of + // of NF and KOPT, which are the number of calls of CALFUN so far and the + // index of the interpolation point at the trust region centre. Then the + // initial XOPT is set too. The branch to label 720 occurs if MAXFUN is + // less than NPT. GOPT will be updated if KOPT is different from KBASE. + + trustRegionCenterInterpolationPointIndex = 0; + + prelim(lowerBound, upperBound); + double xoptsq = ZERO; + for (int i = 0; i < n; i++) { + trustRegionCenterOffset.setEntry(i, interpolationPoints.getEntry(trustRegionCenterInterpolationPointIndex, i)); + // Computing 2nd power + final double deltaOne = trustRegionCenterOffset.getEntry(i); + xoptsq += deltaOne * deltaOne; + } + double fsave = fAtInterpolationPoints.getEntry(0); + final int kbase = 0; + + // Complete the settings that are required for the iterative procedure. + + int ntrits = 0; + int itest = 0; + int knew = 0; + int nfsav = getEvaluations(); + double rho = initialTrustRegionRadius; + double delta = rho; + double diffa = ZERO; + double diffb = ZERO; + double diffc = ZERO; + double f = ZERO; + double beta = ZERO; + double adelt = ZERO; + double denom = ZERO; + double ratio = ZERO; + double dnorm = ZERO; + double scaden = ZERO; + double biglsq = ZERO; + double distsq = ZERO; + + // Update GOPT if necessary before the first iteration and after each + // call of RESCUE that makes a call of CALFUN. + + int state = 20; + for(;;) switch (state) { + case 20: { + printState(20); // XXX + if (trustRegionCenterInterpolationPointIndex != kbase) { + int ih = 0; + for (int j = 0; j < n; j++) { + for (int i = 0; i <= j; i++) { + if (i < j) { + gradientAtTrustRegionCenter.setEntry(j, gradientAtTrustRegionCenter.getEntry(j) + modelSecondDerivativesValues.getEntry(ih) * trustRegionCenterOffset.getEntry(i)); + } + gradientAtTrustRegionCenter.setEntry(i, gradientAtTrustRegionCenter.getEntry(i) + modelSecondDerivativesValues.getEntry(ih) * trustRegionCenterOffset.getEntry(j)); + ih++; + } + } + if (getEvaluations() > npt) { + for (int k = 0; k < npt; k++) { + double temp = ZERO; + for (int j = 0; j < n; j++) { + temp += interpolationPoints.getEntry(k, j) * trustRegionCenterOffset.getEntry(j); + } + temp *= modelSecondDerivativesParameters.getEntry(k); + for (int i = 0; i < n; i++) { + gradientAtTrustRegionCenter.setEntry(i, gradientAtTrustRegionCenter.getEntry(i) + temp * interpolationPoints.getEntry(k, i)); + } + } + // throw new PathIsExploredException(); // XXX + } + } + + // Generate the next point in the trust region that provides a small value + // of the quadratic model subject to the constraints on the variables. + // The int NTRITS is set to the number "trust region" iterations that + // have occurred since the last "alternative" iteration. If the length + // of XNEW-XOPT is less than HALF*RHO, however, then there is a branch to + // label 650 or 680 with NTRITS=-1, instead of calculating F at XNEW. + + } + case 60: { + printState(60); // XXX + final ArrayRealVector gnew = new ArrayRealVector(n); + final ArrayRealVector xbdi = new ArrayRealVector(n); + final ArrayRealVector s = new ArrayRealVector(n); + final ArrayRealVector hs = new ArrayRealVector(n); + final ArrayRealVector hred = new ArrayRealVector(n); + + final double[] dsqCrvmin = trsbox(delta, gnew, xbdi, s, + hs, hred); + dsq = dsqCrvmin[0]; + crvmin = dsqCrvmin[1]; + + // Computing MIN + double deltaOne = delta; + double deltaTwo = Math.sqrt(dsq); + dnorm = Math.min(deltaOne, deltaTwo); + if (dnorm < HALF * rho) { + ntrits = -1; + // Computing 2nd power + deltaOne = TEN * rho; + distsq = deltaOne * deltaOne; + if (getEvaluations() <= nfsav + 2) { + state = 650; break; + } + + // The following choice between labels 650 and 680 depends on whether or + // not our work with the current RHO seems to be complete. Either RHO is + // decreased or termination occurs if the errors in the quadratic model at + // the last three interpolation points compare favourably with predictions + // of likely improvements to the model within distance HALF*RHO of XOPT. + + // Computing MAX + deltaOne = Math.max(diffa, diffb); + final double errbig = Math.max(deltaOne, diffc); + final double frhosq = rho * ONE_OVER_EIGHT * rho; + if (crvmin > ZERO && + errbig > frhosq * crvmin) { + state = 650; break; + } + final double bdtol = errbig / rho; + for (int j = 0; j < n; j++) { + double bdtest = bdtol; + if (newPoint.getEntry(j) == lowerDifference.getEntry(j)) { + bdtest = work1.getEntry(j); + } + if (newPoint.getEntry(j) == upperDifference.getEntry(j)) { + bdtest = -work1.getEntry(j); + } + if (bdtest < bdtol) { + double curv = modelSecondDerivativesValues.getEntry((j + j * j) / 2); + for (int k = 0; k < npt; k++) { + // Computing 2nd power + final double d1 = interpolationPoints.getEntry(k, j); + curv += modelSecondDerivativesParameters.getEntry(k) * (d1 * d1); + } + bdtest += HALF * curv * rho; + if (bdtest < bdtol) { + state = 650; break; + } + // throw new PathIsExploredException(); // XXX + } + } + state = 680; break; + } + ++ntrits; + + // Severe cancellation is likely to occur if XOPT is too far from XBASE. + // If the following test holds, then XBASE is shifted so that XOPT becomes + // zero. The appropriate changes are made to BMAT and to the second + // derivatives of the current model, beginning with the changes to BMAT + // that do not depend on ZMAT. VLAG is used temporarily for working space. + + } + case 90: { + printState(90); // XXX + if (dsq <= xoptsq * ONE_OVER_A_THOUSAND) { + final double fracsq = xoptsq * ONE_OVER_FOUR; + double sumpq = ZERO; + // final RealVector sumVector + // = new ArrayRealVector(npt, -HALF * xoptsq).add(interpolationPoints.operate(trustRegionCenter)); + for (int k = 0; k < npt; k++) { + sumpq += modelSecondDerivativesParameters.getEntry(k); + double sum = -HALF * xoptsq; + for (int i = 0; i < n; i++) { + sum += interpolationPoints.getEntry(k, i) * trustRegionCenterOffset.getEntry(i); + } + // sum = sumVector.getEntry(k); // XXX "testAckley" and "testDiffPow" fail. + work2.setEntry(k, sum); + final double temp = fracsq - HALF * sum; + for (int i = 0; i < n; i++) { + work1.setEntry(i, bMatrix.getEntry(k, i)); + lagrangeValuesAtNewPoint.setEntry(i, sum * interpolationPoints.getEntry(k, i) + temp * trustRegionCenterOffset.getEntry(i)); + final int ip = npt + i; + for (int j = 0; j <= i; j++) { + bMatrix.setEntry(ip, j, + bMatrix.getEntry(ip, j) + + work1.getEntry(i) * lagrangeValuesAtNewPoint.getEntry(j) + + lagrangeValuesAtNewPoint.getEntry(i) * work1.getEntry(j)); + } + } + } + + // Then the revisions of BMAT that depend on ZMAT are calculated. + + for (int m = 0; m < nptm; m++) { + double sumz = ZERO; + double sumw = ZERO; + for (int k = 0; k < npt; k++) { + sumz += zMatrix.getEntry(k, m); + lagrangeValuesAtNewPoint.setEntry(k, work2.getEntry(k) * zMatrix.getEntry(k, m)); + sumw += lagrangeValuesAtNewPoint.getEntry(k); + } + for (int j = 0; j < n; j++) { + double sum = (fracsq * sumz - HALF * sumw) * trustRegionCenterOffset.getEntry(j); + for (int k = 0; k < npt; k++) { + sum += lagrangeValuesAtNewPoint.getEntry(k) * interpolationPoints.getEntry(k, j); + } + work1.setEntry(j, sum); + for (int k = 0; k < npt; k++) { + bMatrix.setEntry(k, j, + bMatrix.getEntry(k, j) + + sum * zMatrix.getEntry(k, m)); + } + } + for (int i = 0; i < n; i++) { + final int ip = i + npt; + final double temp = work1.getEntry(i); + for (int j = 0; j <= i; j++) { + bMatrix.setEntry(ip, j, + bMatrix.getEntry(ip, j) + + temp * work1.getEntry(j)); + } + } + } + + // The following instructions complete the shift, including the changes + // to the second derivative parameters of the quadratic model. + + int ih = 0; + for (int j = 0; j < n; j++) { + work1.setEntry(j, -HALF * sumpq * trustRegionCenterOffset.getEntry(j)); + for (int k = 0; k < npt; k++) { + work1.setEntry(j, work1.getEntry(j) + modelSecondDerivativesParameters.getEntry(k) * interpolationPoints.getEntry(k, j)); + interpolationPoints.setEntry(k, j, interpolationPoints.getEntry(k, j) - trustRegionCenterOffset.getEntry(j)); + } + for (int i = 0; i <= j; i++) { + modelSecondDerivativesValues.setEntry(ih, + modelSecondDerivativesValues.getEntry(ih) + + work1.getEntry(i) * trustRegionCenterOffset.getEntry(j) + + trustRegionCenterOffset.getEntry(i) * work1.getEntry(j)); + bMatrix.setEntry(npt + i, j, bMatrix.getEntry(npt + j, i)); + ih++; + } + } + for (int i = 0; i < n; i++) { + originShift.setEntry(i, originShift.getEntry(i) + trustRegionCenterOffset.getEntry(i)); + newPoint.setEntry(i, newPoint.getEntry(i) - trustRegionCenterOffset.getEntry(i)); + lowerDifference.setEntry(i, lowerDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i)); + upperDifference.setEntry(i, upperDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i)); + trustRegionCenterOffset.setEntry(i, ZERO); + } + xoptsq = ZERO; + } + if (ntrits == 0) { + state = 210; break; + } + state = 230; break; + + // XBASE is also moved to XOPT by a call of RESCUE. This calculation is + // more expensive than the previous shift, because new matrices BMAT and + // ZMAT are generated from scratch, which may include the replacement of + // interpolation points whose positions seem to be causing near linear + // dependence in the interpolation conditions. Therefore RESCUE is called + // only if rounding errors have reduced by at least a factor of two the + // denominator of the formula for updating the H matrix. It provides a + // useful safeguard, but is not invoked in most applications of BOBYQA. + + } + case 210: { + printState(210); // XXX + // Pick two alternative vectors of variables, relative to XBASE, that + // are suitable as new positions of the KNEW-th interpolation point. + // Firstly, XNEW is set to the point on a line through XOPT and another + // interpolation point that minimizes the predicted value of the next + // denominator, subject to ||XNEW - XOPT|| .LEQ. ADELT and to the SL + // and SU bounds. Secondly, XALT is set to the best feasible point on + // a constrained version of the Cauchy step of the KNEW-th Lagrange + // function, the corresponding value of the square of this function + // being returned in CAUCHY. The choice between these alternatives is + // going to be made when the denominator is calculated. + + final double[] alphaCauchy = altmov(knew, adelt); + alpha = alphaCauchy[0]; + cauchy = alphaCauchy[1]; + + for (int i = 0; i < n; i++) { + trialStepPoint.setEntry(i, newPoint.getEntry(i) - trustRegionCenterOffset.getEntry(i)); + } + + // Calculate VLAG and BETA for the current choice of D. The scalar + // product of D with XPT(K,.) is going to be held in W(NPT+K) for + // use when VQUAD is calculated. + + } + case 230: { + printState(230); // XXX + for (int k = 0; k < npt; k++) { + double suma = ZERO; + double sumb = ZERO; + double sum = ZERO; + for (int j = 0; j < n; j++) { + suma += interpolationPoints.getEntry(k, j) * trialStepPoint.getEntry(j); + sumb += interpolationPoints.getEntry(k, j) * trustRegionCenterOffset.getEntry(j); + sum += bMatrix.getEntry(k, j) * trialStepPoint.getEntry(j); + } + work3.setEntry(k, suma * (HALF * suma + sumb)); + lagrangeValuesAtNewPoint.setEntry(k, sum); + work2.setEntry(k, suma); + } + beta = ZERO; + for (int m = 0; m < nptm; m++) { + double sum = ZERO; + for (int k = 0; k < npt; k++) { + sum += zMatrix.getEntry(k, m) * work3.getEntry(k); + } + beta -= sum * sum; + for (int k = 0; k < npt; k++) { + lagrangeValuesAtNewPoint.setEntry(k, lagrangeValuesAtNewPoint.getEntry(k) + sum * zMatrix.getEntry(k, m)); + } + } + dsq = ZERO; + double bsum = ZERO; + double dx = ZERO; + for (int j = 0; j < n; j++) { + // Computing 2nd power + final double d1 = trialStepPoint.getEntry(j); + dsq += d1 * d1; + double sum = ZERO; + for (int k = 0; k < npt; k++) { + sum += work3.getEntry(k) * bMatrix.getEntry(k, j); + } + bsum += sum * trialStepPoint.getEntry(j); + final int jp = npt + j; + for (int i = 0; i < n; i++) { + sum += bMatrix.getEntry(jp, i) * trialStepPoint.getEntry(i); + } + lagrangeValuesAtNewPoint.setEntry(jp, sum); + bsum += sum * trialStepPoint.getEntry(j); + dx += trialStepPoint.getEntry(j) * trustRegionCenterOffset.getEntry(j); + } + + beta = dx * dx + dsq * (xoptsq + dx + dx + HALF * dsq) + beta - bsum; // Original + // beta += dx * dx + dsq * (xoptsq + dx + dx + HALF * dsq) - bsum; // XXX "testAckley" and "testDiffPow" fail. + // beta = dx * dx + dsq * (xoptsq + 2 * dx + HALF * dsq) + beta - bsum; // XXX "testDiffPow" fails. + + lagrangeValuesAtNewPoint.setEntry(trustRegionCenterInterpolationPointIndex, + lagrangeValuesAtNewPoint.getEntry(trustRegionCenterInterpolationPointIndex) + ONE); + + // If NTRITS is zero, the denominator may be increased by replacing + // the step D of ALTMOV by a Cauchy step. Then RESCUE may be called if + // rounding errors have damaged the chosen denominator. + + if (ntrits == 0) { + // Computing 2nd power + final double d1 = lagrangeValuesAtNewPoint.getEntry(knew); + denom = d1 * d1 + alpha * beta; + if (denom < cauchy && cauchy > ZERO) { + for (int i = 0; i < n; i++) { + newPoint.setEntry(i, alternativeNewPoint.getEntry(i)); + trialStepPoint.setEntry(i, newPoint.getEntry(i) - trustRegionCenterOffset.getEntry(i)); + } + cauchy = ZERO; // XXX Useful statement? + state = 230; break; + } + // Alternatively, if NTRITS is positive, then set KNEW to the index of + // the next interpolation point to be deleted to make room for a trust + // region step. Again RESCUE may be called if rounding errors have damaged_ + // the chosen denominator, which is the reason for attempting to select + // KNEW before calculating the next value of the objective function. + + } else { + final double delsq = delta * delta; + scaden = ZERO; + biglsq = ZERO; + knew = 0; + for (int k = 0; k < npt; k++) { + if (k == trustRegionCenterInterpolationPointIndex) { + continue; + } + double hdiag = ZERO; + for (int m = 0; m < nptm; m++) { + // Computing 2nd power + final double d1 = zMatrix.getEntry(k, m); + hdiag += d1 * d1; + } + // Computing 2nd power + final double d2 = lagrangeValuesAtNewPoint.getEntry(k); + final double den = beta * hdiag + d2 * d2; + distsq = ZERO; + for (int j = 0; j < n; j++) { + // Computing 2nd power + final double d3 = interpolationPoints.getEntry(k, j) - trustRegionCenterOffset.getEntry(j); + distsq += d3 * d3; + } + // Computing MAX + // Computing 2nd power + final double d4 = distsq / delsq; + final double temp = Math.max(ONE, d4 * d4); + if (temp * den > scaden) { + scaden = temp * den; + knew = k; + denom = den; + } + // Computing MAX + // Computing 2nd power + final double d5 = lagrangeValuesAtNewPoint.getEntry(k); + biglsq = Math.max(biglsq, temp * (d5 * d5)); + } + } + + // Put the variables for the next calculation of the objective function + // in XNEW, with any adjustments for the bounds. + + // Calculate the value of the objective function at XBASE+XNEW, unless + // the limit on the number of calculations of F has been reached. + + } + case 360: { + printState(360); // XXX + for (int i = 0; i < n; i++) { + // Computing MIN + // Computing MAX + final double d3 = lowerBound[i]; + final double d4 = originShift.getEntry(i) + newPoint.getEntry(i); + final double d1 = Math.max(d3, d4); + final double d2 = upperBound[i]; + currentBest.setEntry(i, Math.min(d1, d2)); + if (newPoint.getEntry(i) == lowerDifference.getEntry(i)) { + currentBest.setEntry(i, lowerBound[i]); + } + if (newPoint.getEntry(i) == upperDifference.getEntry(i)) { + currentBest.setEntry(i, upperBound[i]); + } + } + + f = computeObjectiveValue(currentBest.toArray()); + + if (!isMinimize) + f = -f; + if (ntrits == -1) { + fsave = f; + state = 720; break; + } + + // Use the quadratic model to predict the change in F due to the step D, + // and set DIFF to the error of this prediction. + + final double fopt = fAtInterpolationPoints.getEntry(trustRegionCenterInterpolationPointIndex); + double vquad = ZERO; + int ih = 0; + for (int j = 0; j < n; j++) { + vquad += trialStepPoint.getEntry(j) * gradientAtTrustRegionCenter.getEntry(j); + for (int i = 0; i <= j; i++) { + double temp = trialStepPoint.getEntry(i) * trialStepPoint.getEntry(j); + if (i == j) { + temp *= HALF; + } + vquad += modelSecondDerivativesValues.getEntry(ih) * temp; + ih++; + } + } + for (int k = 0; k < npt; k++) { + // Computing 2nd power + final double d1 = work2.getEntry(k); + final double d2 = d1 * d1; // "d1" must be squared first to prevent test failures. + vquad += HALF * modelSecondDerivativesParameters.getEntry(k) * d2; + } + final double diff = f - fopt - vquad; + diffc = diffb; + diffb = diffa; + diffa = Math.abs(diff); + if (dnorm > rho) { + nfsav = getEvaluations(); + } + + // Pick the next value of DELTA after a trust region step. + + if (ntrits > 0) { + if (vquad >= ZERO) { + throw new MathIllegalStateException(LocalizedFormats.TRUST_REGION_STEP_FAILED, vquad); + } + ratio = (f - fopt) / vquad; + final double hDelta = HALF * delta; + if (ratio <= ONE_OVER_TEN) { + // Computing MIN + delta = Math.min(hDelta, dnorm); + } else if (ratio <= .7) { + // Computing MAX + delta = Math.max(hDelta, dnorm); + } else { + // Computing MAX + delta = Math.max(hDelta, 2 * dnorm); + } + if (delta <= rho * 1.5) { + delta = rho; + } + + // Recalculate KNEW and DENOM if the new F is less than FOPT. + + if (f < fopt) { + final int ksav = knew; + final double densav = denom; + final double delsq = delta * delta; + scaden = ZERO; + biglsq = ZERO; + knew = 0; + for (int k = 0; k < npt; k++) { + double hdiag = ZERO; + for (int m = 0; m < nptm; m++) { + // Computing 2nd power + final double d1 = zMatrix.getEntry(k, m); + hdiag += d1 * d1; + } + // Computing 2nd power + final double d1 = lagrangeValuesAtNewPoint.getEntry(k); + final double den = beta * hdiag + d1 * d1; + distsq = ZERO; + for (int j = 0; j < n; j++) { + // Computing 2nd power + final double d2 = interpolationPoints.getEntry(k, j) - newPoint.getEntry(j); + distsq += d2 * d2; + } + // Computing MAX + // Computing 2nd power + final double d3 = distsq / delsq; + final double temp = Math.max(ONE, d3 * d3); + if (temp * den > scaden) { + scaden = temp * den; + knew = k; + denom = den; + } + // Computing MAX + // Computing 2nd power + final double d4 = lagrangeValuesAtNewPoint.getEntry(k); + final double d5 = temp * (d4 * d4); + biglsq = Math.max(biglsq, d5); + } + if (scaden <= HALF * biglsq) { + knew = ksav; + denom = densav; + } + } + } + + // Update BMAT and ZMAT, so that the KNEW-th interpolation point can be + // moved. Also update the second derivative terms of the model. + + update(beta, denom, knew); + + ih = 0; + final double pqold = modelSecondDerivativesParameters.getEntry(knew); + modelSecondDerivativesParameters.setEntry(knew, ZERO); + for (int i = 0; i < n; i++) { + final double temp = pqold * interpolationPoints.getEntry(knew, i); + for (int j = 0; j <= i; j++) { + modelSecondDerivativesValues.setEntry(ih, modelSecondDerivativesValues.getEntry(ih) + temp * interpolationPoints.getEntry(knew, j)); + ih++; + } + } + for (int m = 0; m < nptm; m++) { + final double temp = diff * zMatrix.getEntry(knew, m); + for (int k = 0; k < npt; k++) { + modelSecondDerivativesParameters.setEntry(k, modelSecondDerivativesParameters.getEntry(k) + temp * zMatrix.getEntry(k, m)); + } + } + + // Include the new interpolation point, and make the changes to GOPT at + // the old XOPT that are caused by the updating of the quadratic model. + + fAtInterpolationPoints.setEntry(knew, f); + for (int i = 0; i < n; i++) { + interpolationPoints.setEntry(knew, i, newPoint.getEntry(i)); + work1.setEntry(i, bMatrix.getEntry(knew, i)); + } + for (int k = 0; k < npt; k++) { + double suma = ZERO; + for (int m = 0; m < nptm; m++) { + suma += zMatrix.getEntry(knew, m) * zMatrix.getEntry(k, m); + } + double sumb = ZERO; + for (int j = 0; j < n; j++) { + sumb += interpolationPoints.getEntry(k, j) * trustRegionCenterOffset.getEntry(j); + } + final double temp = suma * sumb; + for (int i = 0; i < n; i++) { + work1.setEntry(i, work1.getEntry(i) + temp * interpolationPoints.getEntry(k, i)); + } + } + for (int i = 0; i < n; i++) { + gradientAtTrustRegionCenter.setEntry(i, gradientAtTrustRegionCenter.getEntry(i) + diff * work1.getEntry(i)); + } + + // Update XOPT, GOPT and KOPT if the new calculated F is less than FOPT. + + if (f < fopt) { + trustRegionCenterInterpolationPointIndex = knew; + xoptsq = ZERO; + ih = 0; + for (int j = 0; j < n; j++) { + trustRegionCenterOffset.setEntry(j, newPoint.getEntry(j)); + // Computing 2nd power + final double d1 = trustRegionCenterOffset.getEntry(j); + xoptsq += d1 * d1; + for (int i = 0; i <= j; i++) { + if (i < j) { + gradientAtTrustRegionCenter.setEntry(j, gradientAtTrustRegionCenter.getEntry(j) + modelSecondDerivativesValues.getEntry(ih) * trialStepPoint.getEntry(i)); + } + gradientAtTrustRegionCenter.setEntry(i, gradientAtTrustRegionCenter.getEntry(i) + modelSecondDerivativesValues.getEntry(ih) * trialStepPoint.getEntry(j)); + ih++; + } + } + for (int k = 0; k < npt; k++) { + double temp = ZERO; + for (int j = 0; j < n; j++) { + temp += interpolationPoints.getEntry(k, j) * trialStepPoint.getEntry(j); + } + temp *= modelSecondDerivativesParameters.getEntry(k); + for (int i = 0; i < n; i++) { + gradientAtTrustRegionCenter.setEntry(i, gradientAtTrustRegionCenter.getEntry(i) + temp * interpolationPoints.getEntry(k, i)); + } + } + } + + // Calculate the parameters of the least Frobenius norm interpolant to + // the current data, the gradient of this interpolant at XOPT being put + // into VLAG(NPT+I), I=1,2,...,N. + + if (ntrits > 0) { + for (int k = 0; k < npt; k++) { + lagrangeValuesAtNewPoint.setEntry(k, fAtInterpolationPoints.getEntry(k) - fAtInterpolationPoints.getEntry(trustRegionCenterInterpolationPointIndex)); + work3.setEntry(k, ZERO); + } + for (int j = 0; j < nptm; j++) { + double sum = ZERO; + for (int k = 0; k < npt; k++) { + sum += zMatrix.getEntry(k, j) * lagrangeValuesAtNewPoint.getEntry(k); + } + for (int k = 0; k < npt; k++) { + work3.setEntry(k, work3.getEntry(k) + sum * zMatrix.getEntry(k, j)); + } + } + for (int k = 0; k < npt; k++) { + double sum = ZERO; + for (int j = 0; j < n; j++) { + sum += interpolationPoints.getEntry(k, j) * trustRegionCenterOffset.getEntry(j); + } + work2.setEntry(k, work3.getEntry(k)); + work3.setEntry(k, sum * work3.getEntry(k)); + } + double gqsq = ZERO; + double gisq = ZERO; + for (int i = 0; i < n; i++) { + double sum = ZERO; + for (int k = 0; k < npt; k++) { + sum += bMatrix.getEntry(k, i) * + lagrangeValuesAtNewPoint.getEntry(k) + interpolationPoints.getEntry(k, i) * work3.getEntry(k); + } + if (trustRegionCenterOffset.getEntry(i) == lowerDifference.getEntry(i)) { + // Computing MIN + // Computing 2nd power + final double d1 = Math.min(ZERO, gradientAtTrustRegionCenter.getEntry(i)); + gqsq += d1 * d1; + // Computing 2nd power + final double d2 = Math.min(ZERO, sum); + gisq += d2 * d2; + } else if (trustRegionCenterOffset.getEntry(i) == upperDifference.getEntry(i)) { + // Computing MAX + // Computing 2nd power + final double d1 = Math.max(ZERO, gradientAtTrustRegionCenter.getEntry(i)); + gqsq += d1 * d1; + // Computing 2nd power + final double d2 = Math.max(ZERO, sum); + gisq += d2 * d2; + } else { + // Computing 2nd power + final double d1 = gradientAtTrustRegionCenter.getEntry(i); + gqsq += d1 * d1; + gisq += sum * sum; + } + lagrangeValuesAtNewPoint.setEntry(npt + i, sum); + } + + // Test whether to replace the new quadratic model by the least Frobenius + // norm interpolant, making the replacement if the test is satisfied. + + ++itest; + if (gqsq < TEN * gisq) { + itest = 0; + } + if (itest >= 3) { + for (int i = 0, max = Math.max(npt, nh); i < max; i++) { + if (i < n) { + gradientAtTrustRegionCenter.setEntry(i, lagrangeValuesAtNewPoint.getEntry(npt + i)); + } + if (i < npt) { + modelSecondDerivativesParameters.setEntry(i, work2.getEntry(i)); + } + if (i < nh) { + modelSecondDerivativesValues.setEntry(i, ZERO); + } + itest = 0; + } + } + } + + // If a trust region step has provided a sufficient decrease in F, then + // branch for another trust region calculation. The case NTRITS=0 occurs + // when the new interpolation point was reached by an alternative step. + + if (ntrits == 0) { + state = 60; break; + } + if (f <= fopt + ONE_OVER_TEN * vquad) { + state = 60; break; + } + + // Alternatively, find out if the interpolation points are close enough + // to the best point so far. + + // Computing MAX + // Computing 2nd power + final double d1 = TWO * delta; + // Computing 2nd power + final double d2 = TEN * rho; + distsq = Math.max(d1 * d1, d2 * d2); + } + case 650: { + printState(650); // XXX + knew = -1; + for (int k = 0; k < npt; k++) { + double sum = ZERO; + for (int j = 0; j < n; j++) { + // Computing 2nd power + final double d1 = interpolationPoints.getEntry(k, j) - trustRegionCenterOffset.getEntry(j); + sum += d1 * d1; + } + if (sum > distsq) { + knew = k; + distsq = sum; + } + } + + // If KNEW is positive, then ALTMOV finds alternative new positions for + // the KNEW-th interpolation point within distance ADELT of XOPT. It is + // reached via label 90. Otherwise, there is a branch to label 60 for + // another trust region iteration, unless the calculations with the + // current RHO are complete. + + if (knew >= 0) { + final double dist = Math.sqrt(distsq); + if (ntrits == -1) { + // Computing MIN + delta = Math.min(ONE_OVER_TEN * delta, HALF * dist); + if (delta <= rho * 1.5) { + delta = rho; + } + } + ntrits = 0; + // Computing MAX + // Computing MIN + final double d1 = Math.min(ONE_OVER_TEN * dist, delta); + adelt = Math.max(d1, rho); + dsq = adelt * adelt; + state = 90; break; + } + if (ntrits == -1) { + state = 680; break; + } + if (ratio > ZERO) { + state = 60; break; + } + if (Math.max(delta, dnorm) > rho) { + state = 60; break; + } + + // The calculations with the current value of RHO are complete. Pick the + // next values of RHO and DELTA. + } + case 680: { + printState(680); // XXX + if (rho > stoppingTrustRegionRadius) { + delta = HALF * rho; + ratio = rho / stoppingTrustRegionRadius; + if (ratio <= SIXTEEN) { + rho = stoppingTrustRegionRadius; + } else if (ratio <= TWO_HUNDRED_FIFTY) { + rho = Math.sqrt(ratio) * stoppingTrustRegionRadius; + } else { + rho *= ONE_OVER_TEN; + } + delta = Math.max(delta, rho); + ntrits = 0; + nfsav = getEvaluations(); + state = 60; break; + } + + // Return from the calculation, after another Newton-Raphson step, if + // it is too short to have been tried before. + + if (ntrits == -1) { + state = 360; break; + } + } + case 720: { + printState(720); // XXX + if (fAtInterpolationPoints.getEntry(trustRegionCenterInterpolationPointIndex) <= fsave) { + for (int i = 0; i < n; i++) { + // Computing MIN + // Computing MAX + final double d3 = lowerBound[i]; + final double d4 = originShift.getEntry(i) + trustRegionCenterOffset.getEntry(i); + final double d1 = Math.max(d3, d4); + final double d2 = upperBound[i]; + currentBest.setEntry(i, Math.min(d1, d2)); + if (trustRegionCenterOffset.getEntry(i) == lowerDifference.getEntry(i)) { + currentBest.setEntry(i, lowerBound[i]); + } + if (trustRegionCenterOffset.getEntry(i) == upperDifference.getEntry(i)) { + currentBest.setEntry(i, upperBound[i]); + } + } + f = fAtInterpolationPoints.getEntry(trustRegionCenterInterpolationPointIndex); + } + return f; + } + default: { + throw new MathIllegalStateException(LocalizedFormats.SIMPLE_MESSAGE, "bobyqb"); + }} + } // bobyqb + + // ---------------------------------------------------------------------------------------- + + /** + * The arguments N, NPT, XPT, XOPT, BMAT, ZMAT, NDIM, SL and SU all have + * the same meanings as the corresponding arguments of BOBYQB. + * KOPT is the index of the optimal interpolation point. + * KNEW is the index of the interpolation point that is going to be moved. + * ADELT is the current trust region bound. + * XNEW will be set to a suitable new position for the interpolation point + * XPT(KNEW,.). Specifically, it satisfies the SL, SU and trust region + * bounds and it should provide a large denominator in the next call of + * UPDATE. The step XNEW-XOPT from XOPT is restricted to moves along the + * straight lines through XOPT and another interpolation point. + * XALT also provides a large value of the modulus of the KNEW-th Lagrange + * function subject to the constraints that have been mentioned, its main + * difference from XNEW being that XALT-XOPT is a constrained version of + * the Cauchy step within the trust region. An exception is that XALT is + * not calculated if all components of GLAG (see below) are zero. + * ALPHA will be set to the KNEW-th diagonal element of the H matrix. + * CAUCHY will be set to the square of the KNEW-th Lagrange function at + * the step XALT-XOPT from XOPT for the vector XALT that is returned, + * except that CAUCHY is set to zero if XALT is not calculated. + * GLAG is a working space vector of length N for the gradient of the + * KNEW-th Lagrange function at XOPT. + * HCOL is a working space vector of length NPT for the second derivative + * coefficients of the KNEW-th Lagrange function. + * W is a working space vector of length 2N that is going to hold the + * constrained Cauchy step from XOPT of the Lagrange function, followed + * by the downhill version of XALT when the uphill step is calculated. + * + * Set the first NPT components of W to the leading elements of the + * KNEW-th column of the H matrix. + * @param knew + * @param adelt + */ + private double[] altmov( + int knew, + double adelt + ) { + printMethod(); // XXX + + final int n = currentBest.getDimension(); + final int npt = numberOfInterpolationPoints; + + final ArrayRealVector glag = new ArrayRealVector(n); + final ArrayRealVector hcol = new ArrayRealVector(npt); + + final ArrayRealVector work1 = new ArrayRealVector(n); + final ArrayRealVector work2 = new ArrayRealVector(n); + + for (int k = 0; k < npt; k++) { + hcol.setEntry(k, ZERO); + } + for (int j = 0, max = npt - n - 1; j < max; j++) { + final double tmp = zMatrix.getEntry(knew, j); + for (int k = 0; k < npt; k++) { + hcol.setEntry(k, hcol.getEntry(k) + tmp * zMatrix.getEntry(k, j)); + } + } + final double alpha = hcol.getEntry(knew); + final double ha = HALF * alpha; + + // Calculate the gradient of the KNEW-th Lagrange function at XOPT. + + for (int i = 0; i < n; i++) { + glag.setEntry(i, bMatrix.getEntry(knew, i)); + } + for (int k = 0; k < npt; k++) { + double tmp = ZERO; + for (int j = 0; j < n; j++) { + tmp += interpolationPoints.getEntry(k, j) * trustRegionCenterOffset.getEntry(j); + } + tmp *= hcol.getEntry(k); + for (int i = 0; i < n; i++) { + glag.setEntry(i, glag.getEntry(i) + tmp * interpolationPoints.getEntry(k, i)); + } + } + + // Search for a large denominator along the straight lines through XOPT + // and another interpolation point. SLBD and SUBD will be lower and upper + // bounds on the step along each of these lines in turn. PREDSQ will be + // set to the square of the predicted denominator for each line. PRESAV + // will be set to the largest admissible value of PREDSQ that occurs. + + double presav = ZERO; + double step = Double.NaN; + int ksav = 0; + int ibdsav = 0; + double stpsav = 0; + for (int k = 0; k < npt; k++) { + if (k == trustRegionCenterInterpolationPointIndex) { + continue; + } + double dderiv = ZERO; + double distsq = ZERO; + for (int i = 0; i < n; i++) { + final double tmp = interpolationPoints.getEntry(k, i) - trustRegionCenterOffset.getEntry(i); + dderiv += glag.getEntry(i) * tmp; + distsq += tmp * tmp; + } + double subd = adelt / Math.sqrt(distsq); + double slbd = -subd; + int ilbd = 0; + int iubd = 0; + final double sumin = Math.min(ONE, subd); + + // Revise SLBD and SUBD if necessary because of the bounds in SL and SU. + + for (int i = 0; i < n; i++) { + final double tmp = interpolationPoints.getEntry(k, i) - trustRegionCenterOffset.getEntry(i); + if (tmp > ZERO) { + if (slbd * tmp < lowerDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i)) { + slbd = (lowerDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i)) / tmp; + ilbd = -i - 1; + } + if (subd * tmp > upperDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i)) { + // Computing MAX + subd = Math.max(sumin, + (upperDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i)) / tmp); + iubd = i + 1; + } + } else if (tmp < ZERO) { + if (slbd * tmp > upperDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i)) { + slbd = (upperDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i)) / tmp; + ilbd = i + 1; + } + if (subd * tmp < lowerDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i)) { + // Computing MAX + subd = Math.max(sumin, + (lowerDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i)) / tmp); + iubd = -i - 1; + } + } + } + + // Seek a large modulus of the KNEW-th Lagrange function when the index + // of the other interpolation point on the line through XOPT is KNEW. + + step = slbd; + int isbd = ilbd; + double vlag = Double.NaN; + if (k == knew) { + final double diff = dderiv - ONE; + vlag = slbd * (dderiv - slbd * diff); + final double d1 = subd * (dderiv - subd * diff); + if (Math.abs(d1) > Math.abs(vlag)) { + step = subd; + vlag = d1; + isbd = iubd; + } + final double d2 = HALF * dderiv; + final double d3 = d2 - diff * slbd; + final double d4 = d2 - diff * subd; + if (d3 * d4 < ZERO) { + final double d5 = d2 * d2 / diff; + if (Math.abs(d5) > Math.abs(vlag)) { + step = d2 / diff; + vlag = d5; + isbd = 0; + } + } + + // Search along each of the other lines through XOPT and another point. + + } else { + vlag = slbd * (ONE - slbd); + final double tmp = subd * (ONE - subd); + if (Math.abs(tmp) > Math.abs(vlag)) { + step = subd; + vlag = tmp; + isbd = iubd; + } + if (subd > HALF) { + if (Math.abs(vlag) < ONE_OVER_FOUR) { + step = HALF; + vlag = ONE_OVER_FOUR; + isbd = 0; + } + } + vlag *= dderiv; + } + + // Calculate PREDSQ for the current line search and maintain PRESAV. + + final double tmp = step * (ONE - step) * distsq; + final double predsq = vlag * vlag * (vlag * vlag + ha * tmp * tmp); + if (predsq > presav) { + presav = predsq; + ksav = k; + stpsav = step; + ibdsav = isbd; + } + } + + // Construct XNEW in a way that satisfies the bound constraints exactly. + + for (int i = 0; i < n; i++) { + final double tmp = trustRegionCenterOffset.getEntry(i) + stpsav * (interpolationPoints.getEntry(ksav, i) - trustRegionCenterOffset.getEntry(i)); + newPoint.setEntry(i, Math.max(lowerDifference.getEntry(i), + Math.min(upperDifference.getEntry(i), tmp))); + } + if (ibdsav < 0) { + newPoint.setEntry(-ibdsav - 1, lowerDifference.getEntry(-ibdsav - 1)); + } + if (ibdsav > 0) { + newPoint.setEntry(ibdsav - 1, upperDifference.getEntry(ibdsav - 1)); + } + + // Prepare for the iterative method that assembles the constrained Cauchy + // step in W. The sum of squares of the fixed components of W is formed in + // WFIXSQ, and the free components of W are set to BIGSTP. + + final double bigstp = adelt + adelt; + int iflag = 0; + double cauchy = Double.NaN; + double csave = ZERO; + while (true) { + double wfixsq = ZERO; + double ggfree = ZERO; + for (int i = 0; i < n; i++) { + final double glagValue = glag.getEntry(i); + work1.setEntry(i, ZERO); + if (Math.min(trustRegionCenterOffset.getEntry(i) - lowerDifference.getEntry(i), glagValue) > ZERO || + Math.max(trustRegionCenterOffset.getEntry(i) - upperDifference.getEntry(i), glagValue) < ZERO) { + work1.setEntry(i, bigstp); + // Computing 2nd power + ggfree += glagValue * glagValue; + } + } + if (ggfree == ZERO) { + return new double[] { alpha, ZERO }; + } + + // Investigate whether more components of W can be fixed. + final double tmp1 = adelt * adelt - wfixsq; + if (tmp1 > ZERO) { + step = Math.sqrt(tmp1 / ggfree); + ggfree = ZERO; + for (int i = 0; i < n; i++) { + if (work1.getEntry(i) == bigstp) { + final double tmp2 = trustRegionCenterOffset.getEntry(i) - step * glag.getEntry(i); + if (tmp2 <= lowerDifference.getEntry(i)) { + work1.setEntry(i, lowerDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i)); + // Computing 2nd power + final double d1 = work1.getEntry(i); + wfixsq += d1 * d1; + } else if (tmp2 >= upperDifference.getEntry(i)) { + work1.setEntry(i, upperDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i)); + // Computing 2nd power + final double d1 = work1.getEntry(i); + wfixsq += d1 * d1; + } else { + // Computing 2nd power + final double d1 = glag.getEntry(i); + ggfree += d1 * d1; + } + } + } + } + + // Set the remaining free components of W and all components of XALT, + // except that W may be scaled later. + + double gw = ZERO; + for (int i = 0; i < n; i++) { + final double glagValue = glag.getEntry(i); + if (work1.getEntry(i) == bigstp) { + work1.setEntry(i, -step * glagValue); + final double min = Math.min(upperDifference.getEntry(i), + trustRegionCenterOffset.getEntry(i) + work1.getEntry(i)); + alternativeNewPoint.setEntry(i, Math.max(lowerDifference.getEntry(i), min)); + } else if (work1.getEntry(i) == ZERO) { + alternativeNewPoint.setEntry(i, trustRegionCenterOffset.getEntry(i)); + } else if (glagValue > ZERO) { + alternativeNewPoint.setEntry(i, lowerDifference.getEntry(i)); + } else { + alternativeNewPoint.setEntry(i, upperDifference.getEntry(i)); + } + gw += glagValue * work1.getEntry(i); + } + + // Set CURV to the curvature of the KNEW-th Lagrange function along W. + // Scale W by a factor less than one if that can reduce the modulus of + // the Lagrange function at XOPT+W. Set CAUCHY to the final value of + // the square of this function. + + double curv = ZERO; + for (int k = 0; k < npt; k++) { + double tmp = ZERO; + for (int j = 0; j < n; j++) { + tmp += interpolationPoints.getEntry(k, j) * work1.getEntry(j); + } + curv += hcol.getEntry(k) * tmp * tmp; + } + if (iflag == 1) { + curv = -curv; + } + if (curv > -gw && + curv < -gw * (ONE + Math.sqrt(TWO))) { + final double scale = -gw / curv; + for (int i = 0; i < n; i++) { + final double tmp = trustRegionCenterOffset.getEntry(i) + scale * work1.getEntry(i); + alternativeNewPoint.setEntry(i, Math.max(lowerDifference.getEntry(i), + Math.min(upperDifference.getEntry(i), tmp))); + } + // Computing 2nd power + final double d1 = HALF * gw * scale; + cauchy = d1 * d1; + } else { + // Computing 2nd power + final double d1 = gw + HALF * curv; + cauchy = d1 * d1; + } + + // If IFLAG is zero, then XALT is calculated as before after reversing + // the sign of GLAG. Thus two XALT vectors become available. The one that + // is chosen is the one that gives the larger value of CAUCHY. + + if (iflag == 0) { + for (int i = 0; i < n; i++) { + glag.setEntry(i, -glag.getEntry(i)); + work2.setEntry(i, alternativeNewPoint.getEntry(i)); + } + csave = cauchy; + iflag = 1; + } else { + break; + } + } + if (csave > cauchy) { + for (int i = 0; i < n; i++) { + alternativeNewPoint.setEntry(i, work2.getEntry(i)); + } + cauchy = csave; + } + + return new double[] { alpha, cauchy }; + } // altmov + + // ---------------------------------------------------------------------------------------- + + /** + * SUBROUTINE PRELIM sets the elements of XBASE, XPT, FVAL, GOPT, HQ, PQ, + * BMAT and ZMAT for the first iteration, and it maintains the values of + * NF and KOPT. The vector X is also changed by PRELIM. + * + * The arguments N, NPT, X, XL, XU, RHOBEG, IPRINT and MAXFUN are the + * same as the corresponding arguments in SUBROUTINE BOBYQA. + * The arguments XBASE, XPT, FVAL, HQ, PQ, BMAT, ZMAT, NDIM, SL and SU + * are the same as the corresponding arguments in BOBYQB, the elements + * of SL and SU being set in BOBYQA. + * GOPT is usually the gradient of the quadratic model at XOPT+XBASE, but + * it is set by PRELIM to the gradient of the quadratic model at XBASE. + * If XOPT is nonzero, BOBYQB will change it to its usual value later. + * NF is maintaned as the number of calls of CALFUN so far. + * KOPT will be such that the least calculated value of F so far is at + * the point XPT(KOPT,.)+XBASE in the space of the variables. + * + * @param lowerBound Lower bounds. + * @param upperBound Upper bounds. + */ + private void prelim(double[] lowerBound, + double[] upperBound) { + printMethod(); // XXX + + final int n = currentBest.getDimension(); + final int npt = numberOfInterpolationPoints; + final int ndim = bMatrix.getRowDimension(); + + final double rhosq = initialTrustRegionRadius * initialTrustRegionRadius; + final double recip = 1d / rhosq; + final int np = n + 1; + + // Set XBASE to the initial vector of variables, and set the initial + // elements of XPT, BMAT, HQ, PQ and ZMAT to zero. + + for (int j = 0; j < n; j++) { + originShift.setEntry(j, currentBest.getEntry(j)); + for (int k = 0; k < npt; k++) { + interpolationPoints.setEntry(k, j, ZERO); + } + for (int i = 0; i < ndim; i++) { + bMatrix.setEntry(i, j, ZERO); + } + } + for (int i = 0, max = n * np / 2; i < max; i++) { + modelSecondDerivativesValues.setEntry(i, ZERO); + } + for (int k = 0; k < npt; k++) { + modelSecondDerivativesParameters.setEntry(k, ZERO); + for (int j = 0, max = npt - np; j < max; j++) { + zMatrix.setEntry(k, j, ZERO); + } + } + + // Begin the initialization procedure. NF becomes one more than the number + // of function values so far. The coordinates of the displacement of the + // next initial interpolation point from XBASE are set in XPT(NF+1,.). + + int ipt = 0; + int jpt = 0; + double fbeg = Double.NaN; + do { + final int nfm = getEvaluations(); + final int nfx = nfm - n; + final int nfmm = nfm - 1; + final int nfxm = nfx - 1; + double stepa = 0; + double stepb = 0; + if (nfm <= 2 * n) { + if (nfm >= 1 && + nfm <= n) { + stepa = initialTrustRegionRadius; + if (upperDifference.getEntry(nfmm) == ZERO) { + stepa = -stepa; + // throw new PathIsExploredException(); // XXX + } + interpolationPoints.setEntry(nfm, nfmm, stepa); + } else if (nfm > n) { + stepa = interpolationPoints.getEntry(nfx, nfxm); + stepb = -initialTrustRegionRadius; + if (lowerDifference.getEntry(nfxm) == ZERO) { + stepb = Math.min(TWO * initialTrustRegionRadius, upperDifference.getEntry(nfxm)); + // throw new PathIsExploredException(); // XXX + } + if (upperDifference.getEntry(nfxm) == ZERO) { + stepb = Math.max(-TWO * initialTrustRegionRadius, lowerDifference.getEntry(nfxm)); + // throw new PathIsExploredException(); // XXX + } + interpolationPoints.setEntry(nfm, nfxm, stepb); + } + } else { + final int tmp1 = (nfm - np) / n; + jpt = nfm - tmp1 * n - n; + ipt = jpt + tmp1; + if (ipt > n) { + final int tmp2 = jpt; + jpt = ipt - n; + ipt = tmp2; +// throw new PathIsExploredException(); // XXX + } + final int iptMinus1 = ipt - 1; + final int jptMinus1 = jpt - 1; + interpolationPoints.setEntry(nfm, iptMinus1, interpolationPoints.getEntry(ipt, iptMinus1)); + interpolationPoints.setEntry(nfm, jptMinus1, interpolationPoints.getEntry(jpt, jptMinus1)); + } + + // Calculate the next value of F. The least function value so far and + // its index are required. + + for (int j = 0; j < n; j++) { + currentBest.setEntry(j, Math.min(Math.max(lowerBound[j], + originShift.getEntry(j) + interpolationPoints.getEntry(nfm, j)), + upperBound[j])); + if (interpolationPoints.getEntry(nfm, j) == lowerDifference.getEntry(j)) { + currentBest.setEntry(j, lowerBound[j]); + } + if (interpolationPoints.getEntry(nfm, j) == upperDifference.getEntry(j)) { + currentBest.setEntry(j, upperBound[j]); + } + } + + final double objectiveValue = computeObjectiveValue(currentBest.toArray()); + final double f = isMinimize ? objectiveValue : -objectiveValue; + final int numEval = getEvaluations(); // nfm + 1 + fAtInterpolationPoints.setEntry(nfm, f); + + if (numEval == 1) { + fbeg = f; + trustRegionCenterInterpolationPointIndex = 0; + } else if (f < fAtInterpolationPoints.getEntry(trustRegionCenterInterpolationPointIndex)) { + trustRegionCenterInterpolationPointIndex = nfm; + } + + // Set the nonzero initial elements of BMAT and the quadratic model in the + // cases when NF is at most 2*N+1. If NF exceeds N+1, then the positions + // of the NF-th and (NF-N)-th interpolation points may be switched, in + // order that the function value at the first of them contributes to the + // off-diagonal second derivative terms of the initial quadratic model. + + if (numEval <= 2 * n + 1) { + if (numEval >= 2 && + numEval <= n + 1) { + gradientAtTrustRegionCenter.setEntry(nfmm, (f - fbeg) / stepa); + if (npt < numEval + n) { + final double oneOverStepA = ONE / stepa; + bMatrix.setEntry(0, nfmm, -oneOverStepA); + bMatrix.setEntry(nfm, nfmm, oneOverStepA); + bMatrix.setEntry(npt + nfmm, nfmm, -HALF * rhosq); + // throw new PathIsExploredException(); // XXX + } + } else if (numEval >= n + 2) { + final int ih = nfx * (nfx + 1) / 2 - 1; + final double tmp = (f - fbeg) / stepb; + final double diff = stepb - stepa; + modelSecondDerivativesValues.setEntry(ih, TWO * (tmp - gradientAtTrustRegionCenter.getEntry(nfxm)) / diff); + gradientAtTrustRegionCenter.setEntry(nfxm, (gradientAtTrustRegionCenter.getEntry(nfxm) * stepb - tmp * stepa) / diff); + if (stepa * stepb < ZERO) { + if (f < fAtInterpolationPoints.getEntry(nfm - n)) { + fAtInterpolationPoints.setEntry(nfm, fAtInterpolationPoints.getEntry(nfm - n)); + fAtInterpolationPoints.setEntry(nfm - n, f); + if (trustRegionCenterInterpolationPointIndex == nfm) { + trustRegionCenterInterpolationPointIndex = nfm - n; + } + interpolationPoints.setEntry(nfm - n, nfxm, stepb); + interpolationPoints.setEntry(nfm, nfxm, stepa); + } + } + bMatrix.setEntry(0, nfxm, -(stepa + stepb) / (stepa * stepb)); + bMatrix.setEntry(nfm, nfxm, -HALF / interpolationPoints.getEntry(nfm - n, nfxm)); + bMatrix.setEntry(nfm - n, nfxm, + -bMatrix.getEntry(0, nfxm) - bMatrix.getEntry(nfm, nfxm)); + zMatrix.setEntry(0, nfxm, Math.sqrt(TWO) / (stepa * stepb)); + zMatrix.setEntry(nfm, nfxm, Math.sqrt(HALF) / rhosq); + // zMatrix.setEntry(nfm, nfxm, Math.sqrt(HALF) * recip); // XXX "testAckley" and "testDiffPow" fail. + zMatrix.setEntry(nfm - n, nfxm, + -zMatrix.getEntry(0, nfxm) - zMatrix.getEntry(nfm, nfxm)); + } + + // Set the off-diagonal second derivatives of the Lagrange functions and + // the initial quadratic model. + + } else { + zMatrix.setEntry(0, nfxm, recip); + zMatrix.setEntry(nfm, nfxm, recip); + zMatrix.setEntry(ipt, nfxm, -recip); + zMatrix.setEntry(jpt, nfxm, -recip); + + final int ih = ipt * (ipt - 1) / 2 + jpt - 1; + final double tmp = interpolationPoints.getEntry(nfm, ipt - 1) * interpolationPoints.getEntry(nfm, jpt - 1); + modelSecondDerivativesValues.setEntry(ih, (fbeg - fAtInterpolationPoints.getEntry(ipt) - fAtInterpolationPoints.getEntry(jpt) + f) / tmp); +// throw new PathIsExploredException(); // XXX + } + } while (getEvaluations() < npt); + } // prelim + + + // ---------------------------------------------------------------------------------------- + + /** + * A version of the truncated conjugate gradient is applied. If a line + * search is restricted by a constraint, then the procedure is restarted, + * the values of the variables that are at their bounds being fixed. If + * the trust region boundary is reached, then further changes may be made + * to D, each one being in the two dimensional space that is spanned + * by the current D and the gradient of Q at XOPT+D, staying on the trust + * region boundary. Termination occurs when the reduction in Q seems to + * be close to the greatest reduction that can be achieved. + * The arguments N, NPT, XPT, XOPT, GOPT, HQ, PQ, SL and SU have the same + * meanings as the corresponding arguments of BOBYQB. + * DELTA is the trust region radius for the present calculation, which + * seeks a small value of the quadratic model within distance DELTA of + * XOPT subject to the bounds on the variables. + * XNEW will be set to a new vector of variables that is approximately + * the one that minimizes the quadratic model within the trust region + * subject to the SL and SU constraints on the variables. It satisfies + * as equations the bounds that become active during the calculation. + * D is the calculated trial step from XOPT, generated iteratively from an + * initial value of zero. Thus XNEW is XOPT+D after the final iteration. + * GNEW holds the gradient of the quadratic model at XOPT+D. It is updated + * when D is updated. + * xbdi.get( is a working space vector. For I=1,2,...,N, the element xbdi.get((I) is + * set to -1.0, 0.0, or 1.0, the value being nonzero if and only if the + * I-th variable has become fixed at a bound, the bound being SL(I) or + * SU(I) in the case xbdi.get((I)=-1.0 or xbdi.get((I)=1.0, respectively. This + * information is accumulated during the construction of XNEW. + * The arrays S, HS and HRED are also used for working space. They hold the + * current search direction, and the changes in the gradient of Q along S + * and the reduced D, respectively, where the reduced D is the same as D, + * except that the components of the fixed variables are zero. + * DSQ will be set to the square of the length of XNEW-XOPT. + * CRVMIN is set to zero if D reaches the trust region boundary. Otherwise + * it is set to the least curvature of H that occurs in the conjugate + * gradient searches that are not restricted by any constraints. The + * value CRVMIN=-1.0D0 is set, however, if all of these searches are + * constrained. + * @param delta + * @param gnew + * @param xbdi + * @param s + * @param hs + * @param hred + */ + private double[] trsbox( + double delta, + ArrayRealVector gnew, + ArrayRealVector xbdi, + ArrayRealVector s, + ArrayRealVector hs, + ArrayRealVector hred + ) { + printMethod(); // XXX + + final int n = currentBest.getDimension(); + final int npt = numberOfInterpolationPoints; + + double dsq = Double.NaN; + double crvmin = Double.NaN; + + // Local variables + double ds; + int iu; + double dhd, dhs, cth, shs, sth, ssq, beta=0, sdec, blen; + int iact = -1; + int nact = 0; + double angt = 0, qred; + int isav; + double temp = 0, xsav = 0, xsum = 0, angbd = 0, dredg = 0, sredg = 0; + int iterc; + double resid = 0, delsq = 0, ggsav = 0, tempa = 0, tempb = 0, + redmax = 0, dredsq = 0, redsav = 0, gredsq = 0, rednew = 0; + int itcsav = 0; + double rdprev = 0, rdnext = 0, stplen = 0, stepsq = 0; + int itermax = 0; + + // Set some constants. + + // Function Body + + // The sign of GOPT(I) gives the sign of the change to the I-th variable + // that will reduce Q from its value at XOPT. Thus xbdi.get((I) shows whether + // or not to fix the I-th variable at one of its bounds initially, with + // NACT being set to the number of fixed variables. D and GNEW are also + // set for the first iteration. DELSQ is the upper bound on the sum of + // squares of the free variables. QRED is the reduction in Q so far. + + iterc = 0; + nact = 0; + for (int i = 0; i < n; i++) { + xbdi.setEntry(i, ZERO); + if (trustRegionCenterOffset.getEntry(i) <= lowerDifference.getEntry(i)) { + if (gradientAtTrustRegionCenter.getEntry(i) >= ZERO) { + xbdi.setEntry(i, MINUS_ONE); + } + } else if (trustRegionCenterOffset.getEntry(i) >= upperDifference.getEntry(i)) { + if (gradientAtTrustRegionCenter.getEntry(i) <= ZERO) { + xbdi.setEntry(i, ONE); + } + } + if (xbdi.getEntry(i) != ZERO) { + ++nact; + } + trialStepPoint.setEntry(i, ZERO); + gnew.setEntry(i, gradientAtTrustRegionCenter.getEntry(i)); + } + delsq = delta * delta; + qred = ZERO; + crvmin = MINUS_ONE; + + // Set the next search direction of the conjugate gradient method. It is + // the steepest descent direction initially and when the iterations are + // restarted because a variable has just been fixed by a bound, and of + // course the components of the fixed variables are zero. ITERMAX is an + // upper bound on the indices of the conjugate gradient iterations. + + int state = 20; + for(;;) { + switch (state) { + case 20: { + printState(20); // XXX + beta = ZERO; + } + case 30: { + printState(30); // XXX + stepsq = ZERO; + for (int i = 0; i < n; i++) { + if (xbdi.getEntry(i) != ZERO) { + s.setEntry(i, ZERO); + } else if (beta == ZERO) { + s.setEntry(i, -gnew.getEntry(i)); + } else { + s.setEntry(i, beta * s.getEntry(i) - gnew.getEntry(i)); + } + // Computing 2nd power + final double d1 = s.getEntry(i); + stepsq += d1 * d1; + } + if (stepsq == ZERO) { + state = 190; break; + } + if (beta == ZERO) { + gredsq = stepsq; + itermax = iterc + n - nact; + } + if (gredsq * delsq <= qred * 1e-4 * qred) { + state = 190; break; + } + + // Multiply the search direction by the second derivative matrix of Q and + // calculate some scalars for the choice of steplength. Then set BLEN to + // the length of the the step to the trust region boundary and STPLEN to + // the steplength, ignoring the simple bounds. + + state = 210; break; + } + case 50: { + printState(50); // XXX + resid = delsq; + ds = ZERO; + shs = ZERO; + for (int i = 0; i < n; i++) { + if (xbdi.getEntry(i) == ZERO) { + // Computing 2nd power + final double d1 = trialStepPoint.getEntry(i); + resid -= d1 * d1; + ds += s.getEntry(i) * trialStepPoint.getEntry(i); + shs += s.getEntry(i) * hs.getEntry(i); + } + } + if (resid <= ZERO) { + state = 90; break; + } + temp = Math.sqrt(stepsq * resid + ds * ds); + if (ds < ZERO) { + blen = (temp - ds) / stepsq; + } else { + blen = resid / (temp + ds); + } + stplen = blen; + if (shs > ZERO) { + // Computing MIN + stplen = Math.min(blen, gredsq / shs); + } + + // Reduce STPLEN if necessary in order to preserve the simple bounds, + // letting IACT be the index of the new constrained variable. + + iact = -1; + for (int i = 0; i < n; i++) { + if (s.getEntry(i) != ZERO) { + xsum = trustRegionCenterOffset.getEntry(i) + trialStepPoint.getEntry(i); + if (s.getEntry(i) > ZERO) { + temp = (upperDifference.getEntry(i) - xsum) / s.getEntry(i); + } else { + temp = (lowerDifference.getEntry(i) - xsum) / s.getEntry(i); + } + if (temp < stplen) { + stplen = temp; + iact = i; + } + } + } + + // Update CRVMIN, GNEW and D. Set SDEC to the decrease that occurs in Q. + + sdec = ZERO; + if (stplen > ZERO) { + ++iterc; + temp = shs / stepsq; + if (iact == -1 && temp > ZERO) { + crvmin = Math.min(crvmin,temp); + if (crvmin == MINUS_ONE) { + crvmin = temp; + } + } + ggsav = gredsq; + gredsq = ZERO; + for (int i = 0; i < n; i++) { + gnew.setEntry(i, gnew.getEntry(i) + stplen * hs.getEntry(i)); + if (xbdi.getEntry(i) == ZERO) { + // Computing 2nd power + final double d1 = gnew.getEntry(i); + gredsq += d1 * d1; + } + trialStepPoint.setEntry(i, trialStepPoint.getEntry(i) + stplen * s.getEntry(i)); + } + // Computing MAX + final double d1 = stplen * (ggsav - HALF * stplen * shs); + sdec = Math.max(d1, ZERO); + qred += sdec; + } + + // Restart the conjugate gradient method if it has hit a new bound. + + if (iact >= 0) { + ++nact; + xbdi.setEntry(iact, ONE); + if (s.getEntry(iact) < ZERO) { + xbdi.setEntry(iact, MINUS_ONE); + } + // Computing 2nd power + final double d1 = trialStepPoint.getEntry(iact); + delsq -= d1 * d1; + if (delsq <= ZERO) { + state = 190; break; + } + state = 20; break; + } + + // If STPLEN is less than BLEN, then either apply another conjugate + // gradient iteration or RETURN. + + if (stplen < blen) { + if (iterc == itermax) { + state = 190; break; + } + if (sdec <= qred * .01) { + state = 190; break; + } + beta = gredsq / ggsav; + state = 30; break; + } + } + case 90: { + printState(90); // XXX + crvmin = ZERO; + + // Prepare for the alternative iteration by calculating some scalars + // and by multiplying the reduced D by the second derivative matrix of + // Q, where S holds the reduced D in the call of GGMULT. + + } + case 100: { + printState(100); // XXX + if (nact >= n - 1) { + state = 190; break; + } + dredsq = ZERO; + dredg = ZERO; + gredsq = ZERO; + for (int i = 0; i < n; i++) { + if (xbdi.getEntry(i) == ZERO) { + // Computing 2nd power + double d1 = trialStepPoint.getEntry(i); + dredsq += d1 * d1; + dredg += trialStepPoint.getEntry(i) * gnew.getEntry(i); + // Computing 2nd power + d1 = gnew.getEntry(i); + gredsq += d1 * d1; + s.setEntry(i, trialStepPoint.getEntry(i)); + } else { + s.setEntry(i, ZERO); + } + } + itcsav = iterc; + state = 210; break; + // Let the search direction S be a linear combination of the reduced D + // and the reduced G that is orthogonal to the reduced D. + } + case 120: { + printState(120); // XXX + ++iterc; + temp = gredsq * dredsq - dredg * dredg; + if (temp <= qred * 1e-4 * qred) { + state = 190; break; + } + temp = Math.sqrt(temp); + for (int i = 0; i < n; i++) { + if (xbdi.getEntry(i) == ZERO) { + s.setEntry(i, (dredg * trialStepPoint.getEntry(i) - dredsq * gnew.getEntry(i)) / temp); + } else { + s.setEntry(i, ZERO); + } + } + sredg = -temp; + + // By considering the simple bounds on the variables, calculate an upper + // bound on the tangent of half the angle of the alternative iteration, + // namely ANGBD, except that, if already a free variable has reached a + // bound, there is a branch back to label 100 after fixing that variable. + + angbd = ONE; + iact = -1; + for (int i = 0; i < n; i++) { + if (xbdi.getEntry(i) == ZERO) { + tempa = trustRegionCenterOffset.getEntry(i) + trialStepPoint.getEntry(i) - lowerDifference.getEntry(i); + tempb = upperDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i) - trialStepPoint.getEntry(i); + if (tempa <= ZERO) { + ++nact; + xbdi.setEntry(i, MINUS_ONE); + state = 100; break; + } else if (tempb <= ZERO) { + ++nact; + xbdi.setEntry(i, ONE); + state = 100; break; + } + // Computing 2nd power + double d1 = trialStepPoint.getEntry(i); + // Computing 2nd power + double d2 = s.getEntry(i); + ssq = d1 * d1 + d2 * d2; + // Computing 2nd power + d1 = trustRegionCenterOffset.getEntry(i) - lowerDifference.getEntry(i); + temp = ssq - d1 * d1; + if (temp > ZERO) { + temp = Math.sqrt(temp) - s.getEntry(i); + if (angbd * temp > tempa) { + angbd = tempa / temp; + iact = i; + xsav = MINUS_ONE; + } + } + // Computing 2nd power + d1 = upperDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i); + temp = ssq - d1 * d1; + if (temp > ZERO) { + temp = Math.sqrt(temp) + s.getEntry(i); + if (angbd * temp > tempb) { + angbd = tempb / temp; + iact = i; + xsav = ONE; + } + } + } + } + + // Calculate HHD and some curvatures for the alternative iteration. + + state = 210; break; + } + case 150: { + printState(150); // XXX + shs = ZERO; + dhs = ZERO; + dhd = ZERO; + for (int i = 0; i < n; i++) { + if (xbdi.getEntry(i) == ZERO) { + shs += s.getEntry(i) * hs.getEntry(i); + dhs += trialStepPoint.getEntry(i) * hs.getEntry(i); + dhd += trialStepPoint.getEntry(i) * hred.getEntry(i); + } + } + + // Seek the greatest reduction in Q for a range of equally spaced values + // of ANGT in [0,ANGBD], where ANGT is the tangent of half the angle of + // the alternative iteration. + + redmax = ZERO; + isav = -1; + redsav = ZERO; + iu = (int) (angbd * 17. + 3.1); + for (int i = 0; i < iu; i++) { + angt = angbd * i / iu; + sth = (angt + angt) / (ONE + angt * angt); + temp = shs + angt * (angt * dhd - dhs - dhs); + rednew = sth * (angt * dredg - sredg - HALF * sth * temp); + if (rednew > redmax) { + redmax = rednew; + isav = i; + rdprev = redsav; + } else if (i == isav + 1) { + rdnext = rednew; + } + redsav = rednew; + } + + // Return if the reduction is zero. Otherwise, set the sine and cosine + // of the angle of the alternative iteration, and calculate SDEC. + + if (isav < 0) { + state = 190; break; + } + if (isav < iu) { + temp = (rdnext - rdprev) / (redmax + redmax - rdprev - rdnext); + angt = angbd * (isav + HALF * temp) / iu; + } + cth = (ONE - angt * angt) / (ONE + angt * angt); + sth = (angt + angt) / (ONE + angt * angt); + temp = shs + angt * (angt * dhd - dhs - dhs); + sdec = sth * (angt * dredg - sredg - HALF * sth * temp); + if (sdec <= ZERO) { + state = 190; break; + } + + // Update GNEW, D and HRED. If the angle of the alternative iteration + // is restricted by a bound on a free variable, that variable is fixed + // at the bound. + + dredg = ZERO; + gredsq = ZERO; + for (int i = 0; i < n; i++) { + gnew.setEntry(i, gnew.getEntry(i) + (cth - ONE) * hred.getEntry(i) + sth * hs.getEntry(i)); + if (xbdi.getEntry(i) == ZERO) { + trialStepPoint.setEntry(i, cth * trialStepPoint.getEntry(i) + sth * s.getEntry(i)); + dredg += trialStepPoint.getEntry(i) * gnew.getEntry(i); + // Computing 2nd power + final double d1 = gnew.getEntry(i); + gredsq += d1 * d1; + } + hred.setEntry(i, cth * hred.getEntry(i) + sth * hs.getEntry(i)); + } + qred += sdec; + if (iact >= 0 && isav == iu) { + ++nact; + xbdi.setEntry(iact, xsav); + state = 100; break; + } + + // If SDEC is sufficiently small, then RETURN after setting XNEW to + // XOPT+D, giving careful attention to the bounds. + + if (sdec > qred * .01) { + state = 120; break; + } + } + case 190: { + printState(190); // XXX + dsq = ZERO; + for (int i = 0; i < n; i++) { + // Computing MAX + // Computing MIN + final double min = Math.min(trustRegionCenterOffset.getEntry(i) + trialStepPoint.getEntry(i), + upperDifference.getEntry(i)); + newPoint.setEntry(i, Math.max(min, lowerDifference.getEntry(i))); + if (xbdi.getEntry(i) == MINUS_ONE) { + newPoint.setEntry(i, lowerDifference.getEntry(i)); + } + if (xbdi.getEntry(i) == ONE) { + newPoint.setEntry(i, upperDifference.getEntry(i)); + } + trialStepPoint.setEntry(i, newPoint.getEntry(i) - trustRegionCenterOffset.getEntry(i)); + // Computing 2nd power + final double d1 = trialStepPoint.getEntry(i); + dsq += d1 * d1; + } + return new double[] { dsq, crvmin }; + // The following instructions multiply the current S-vector by the second + // derivative matrix of the quadratic model, putting the product in HS. + // They are reached from three different parts of the software above and + // they can be regarded as an external subroutine. + } + case 210: { + printState(210); // XXX + int ih = 0; + for (int j = 0; j < n; j++) { + hs.setEntry(j, ZERO); + for (int i = 0; i <= j; i++) { + if (i < j) { + hs.setEntry(j, hs.getEntry(j) + modelSecondDerivativesValues.getEntry(ih) * s.getEntry(i)); + } + hs.setEntry(i, hs.getEntry(i) + modelSecondDerivativesValues.getEntry(ih) * s.getEntry(j)); + ih++; + } + } + final RealVector tmp = interpolationPoints.operate(s).ebeMultiply(modelSecondDerivativesParameters); + for (int k = 0; k < npt; k++) { + if (modelSecondDerivativesParameters.getEntry(k) != ZERO) { + for (int i = 0; i < n; i++) { + hs.setEntry(i, hs.getEntry(i) + tmp.getEntry(k) * interpolationPoints.getEntry(k, i)); + } + } + } + if (crvmin != ZERO) { + state = 50; break; + } + if (iterc > itcsav) { + state = 150; break; + } + for (int i = 0; i < n; i++) { + hred.setEntry(i, hs.getEntry(i)); + } + state = 120; break; + } + default: { + throw new MathIllegalStateException(LocalizedFormats.SIMPLE_MESSAGE, "trsbox"); + }} + } + } // trsbox + + // ---------------------------------------------------------------------------------------- + + /** + * The arrays BMAT and ZMAT are updated, as required by the new position + * of the interpolation point that has the index KNEW. The vector VLAG has + * N+NPT components, set on entry to the first NPT and last N components + * of the product Hw in equation (4.11) of the Powell (2006) paper on + * NEWUOA. Further, BETA is set on entry to the value of the parameter + * with that name, and DENOM is set to the denominator of the updating + * formula. Elements of ZMAT may be treated as zero if their moduli are + * at most ZTEST. The first NDIM elements of W are used for working space. + * @param beta + * @param denom + * @param knew + */ + private void update( + double beta, + double denom, + int knew + ) { + printMethod(); // XXX + + final int n = currentBest.getDimension(); + final int npt = numberOfInterpolationPoints; + final int nptm = npt - n - 1; + + // XXX Should probably be split into two arrays. + final ArrayRealVector work = new ArrayRealVector(npt + n); + + double ztest = ZERO; + for (int k = 0; k < npt; k++) { + for (int j = 0; j < nptm; j++) { + // Computing MAX + ztest = Math.max(ztest, Math.abs(zMatrix.getEntry(k, j))); + } + } + ztest *= 1e-20; + + // Apply the rotations that put zeros in the KNEW-th row of ZMAT. + + for (int j = 1; j < nptm; j++) { + final double d1 = zMatrix.getEntry(knew, j); + if (Math.abs(d1) > ztest) { + // Computing 2nd power + final double d2 = zMatrix.getEntry(knew, 0); + // Computing 2nd power + final double d3 = zMatrix.getEntry(knew, j); + final double d4 = Math.sqrt(d2 * d2 + d3 * d3); + final double d5 = zMatrix.getEntry(knew, 0) / d4; + final double d6 = zMatrix.getEntry(knew, j) / d4; + for (int i = 0; i < npt; i++) { + final double d7 = d5 * zMatrix.getEntry(i, 0) + d6 * zMatrix.getEntry(i, j); + zMatrix.setEntry(i, j, d5 * zMatrix.getEntry(i, j) - d6 * zMatrix.getEntry(i, 0)); + zMatrix.setEntry(i, 0, d7); + } + } + zMatrix.setEntry(knew, j, ZERO); + } + + // Put the first NPT components of the KNEW-th column of HLAG into W, + // and calculate the parameters of the updating formula. + + for (int i = 0; i < npt; i++) { + work.setEntry(i, zMatrix.getEntry(knew, 0) * zMatrix.getEntry(i, 0)); + } + final double alpha = work.getEntry(knew); + final double tau = lagrangeValuesAtNewPoint.getEntry(knew); + lagrangeValuesAtNewPoint.setEntry(knew, lagrangeValuesAtNewPoint.getEntry(knew) - ONE); + + // Complete the updating of ZMAT. + + final double sqrtDenom = Math.sqrt(denom); + final double d1 = tau / sqrtDenom; + final double d2 = zMatrix.getEntry(knew, 0) / sqrtDenom; + for (int i = 0; i < npt; i++) { + zMatrix.setEntry(i, 0, + d1 * zMatrix.getEntry(i, 0) - d2 * lagrangeValuesAtNewPoint.getEntry(i)); + } + + // Finally, update the matrix BMAT. + + for (int j = 0; j < n; j++) { + final int jp = npt + j; + work.setEntry(jp, bMatrix.getEntry(knew, j)); + final double d3 = (alpha * lagrangeValuesAtNewPoint.getEntry(jp) - tau * work.getEntry(jp)) / denom; + final double d4 = (-beta * work.getEntry(jp) - tau * lagrangeValuesAtNewPoint.getEntry(jp)) / denom; + for (int i = 0; i <= jp; i++) { + bMatrix.setEntry(i, j, + bMatrix.getEntry(i, j) + d3 * lagrangeValuesAtNewPoint.getEntry(i) + d4 * work.getEntry(i)); + if (i >= npt) { + bMatrix.setEntry(jp, (i - npt), bMatrix.getEntry(i, j)); + } + } + } + } // update + + /** + * Performs validity checks. + * + * @param lowerBound Lower bounds (constraints) of the objective variables. + * @param upperBound Upperer bounds (constraints) of the objective variables. + */ + private void setup(double[] lowerBound, + double[] upperBound) { + printMethod(); // XXX + + double[] init = getStartPoint(); + final int dimension = init.length; + + // Check problem dimension. + if (dimension < MINIMUM_PROBLEM_DIMENSION) { + throw new NumberIsTooSmallException(dimension, MINIMUM_PROBLEM_DIMENSION, true); + } + // Check number of interpolation points. + final int[] nPointsInterval = { dimension + 2, (dimension + 2) * (dimension + 1) / 2 }; + if (numberOfInterpolationPoints < nPointsInterval[0] || + numberOfInterpolationPoints > nPointsInterval[1]) { + throw new OutOfRangeException(LocalizedFormats.NUMBER_OF_INTERPOLATION_POINTS, + numberOfInterpolationPoints, + nPointsInterval[0], + nPointsInterval[1]); + } + + // Initialize bound differences. + boundDifference = new double[dimension]; + + double requiredMinDiff = 2 * initialTrustRegionRadius; + double minDiff = Double.POSITIVE_INFINITY; + for (int i = 0; i < dimension; i++) { + boundDifference[i] = upperBound[i] - lowerBound[i]; + minDiff = Math.min(minDiff, boundDifference[i]); + } + if (minDiff < requiredMinDiff) { + initialTrustRegionRadius = minDiff / 3.0; + } + + // Initialize the data structures used by the "bobyqa" method. + bMatrix = new Array2DRowRealMatrix(dimension + numberOfInterpolationPoints, + dimension); + zMatrix = new Array2DRowRealMatrix(numberOfInterpolationPoints, + numberOfInterpolationPoints - dimension - 1); + interpolationPoints = new Array2DRowRealMatrix(numberOfInterpolationPoints, + dimension); + originShift = new ArrayRealVector(dimension); + fAtInterpolationPoints = new ArrayRealVector(numberOfInterpolationPoints); + trustRegionCenterOffset = new ArrayRealVector(dimension); + gradientAtTrustRegionCenter = new ArrayRealVector(dimension); + lowerDifference = new ArrayRealVector(dimension); + upperDifference = new ArrayRealVector(dimension); + modelSecondDerivativesParameters = new ArrayRealVector(numberOfInterpolationPoints); + newPoint = new ArrayRealVector(dimension); + alternativeNewPoint = new ArrayRealVector(dimension); + trialStepPoint = new ArrayRealVector(dimension); + lagrangeValuesAtNewPoint = new ArrayRealVector(dimension + numberOfInterpolationPoints); + modelSecondDerivativesValues = new ArrayRealVector(dimension * (dimension + 1) / 2); + } + + /** + * Creates a new array. + * + * @param n Dimension of the returned array. + * @param value Value for each element. + * @return an array containing {@code n} elements set to the given + * {@code value}. + */ + private static double[] fillNewArray(int n, + double value) { + double[] ds = new double[n]; + Arrays.fill(ds, value); + return ds; + } + + // XXX utility for figuring out call sequence. + private static String caller(int n) { + final Throwable t = new Throwable(); + final StackTraceElement[] elements = t.getStackTrace(); + final StackTraceElement e = elements[n]; + return e.getMethodName() + " (at line " + e.getLineNumber() + ")"; + } + // XXX utility for figuring out call sequence. + private static void printState(int s) { + // System.out.println(caller(2) + ": state " + s); + } + // XXX utility for figuring out call sequence. + private static void printMethod() { + // System.out.println(caller(2)); + } + + /** + * Marker for code paths that are not explored with the current unit tests. + * If the path becomes explored, it should just be removed from the code. + */ + private static class PathIsExploredException extends RuntimeException { + private static final long serialVersionUID = 745350979634801853L; + + private static final String PATH_IS_EXPLORED + = "If this exception is thrown, just remove it from the code"; + + PathIsExploredException() { + super(PATH_IS_EXPLORED + " " + BOBYQAOptimizer.caller(3)); + } + } +} +//CHECKSTYLE: resume all diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/CMAESOptimizer.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/CMAESOptimizer.java new file mode 100644 index 000000000..8e436f9d5 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/CMAESOptimizer.java @@ -0,0 +1,1317 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.commons.math3.optim.nonlinear.scalar.noderiv; + +import java.util.ArrayList; +import java.util.Arrays; +import java.util.List; +import org.apache.commons.math3.exception.DimensionMismatchException; +import org.apache.commons.math3.exception.NotPositiveException; +import org.apache.commons.math3.exception.NotStrictlyPositiveException; +import org.apache.commons.math3.exception.OutOfRangeException; +import org.apache.commons.math3.exception.TooManyEvaluationsException; +import org.apache.commons.math3.linear.Array2DRowRealMatrix; +import org.apache.commons.math3.linear.EigenDecomposition; +import org.apache.commons.math3.linear.MatrixUtils; +import org.apache.commons.math3.linear.RealMatrix; +import org.apache.commons.math3.optim.ConvergenceChecker; +import org.apache.commons.math3.optim.OptimizationData; +import org.apache.commons.math3.optim.GoalType; +import org.apache.commons.math3.optim.PointValuePair; +import org.apache.commons.math3.optim.nonlinear.scalar.MultivariateOptimizer; +import org.apache.commons.math3.random.RandomGenerator; +import org.apache.commons.math3.util.MathArrays; + +/** + *

An implementation of the active Covariance Matrix Adaptation Evolution Strategy (CMA-ES) + * for non-linear, non-convex, non-smooth, global function minimization. + * The CMA-Evolution Strategy (CMA-ES) is a reliable stochastic optimization method + * which should be applied if derivative-based methods, e.g. quasi-Newton BFGS or + * conjugate gradient, fail due to a rugged search landscape (e.g. noise, local + * optima, outlier, etc.) of the objective function. Like a + * quasi-Newton method, the CMA-ES learns and applies a variable metric + * on the underlying search space. Unlike a quasi-Newton method, the + * CMA-ES neither estimates nor uses gradients, making it considerably more + * reliable in terms of finding a good, or even close to optimal, solution.

+ * + *

In general, on smooth objective functions the CMA-ES is roughly ten times + * slower than BFGS (counting objective function evaluations, no gradients provided). + * For up to N=10 variables also the derivative-free simplex + * direct search method (Nelder and Mead) can be faster, but it is + * far less reliable than CMA-ES.

+ * + *

The CMA-ES is particularly well suited for non-separable + * and/or badly conditioned problems. To observe the advantage of CMA compared + * to a conventional evolution strategy, it will usually take about + * 30 N function evaluations. On difficult problems the complete + * optimization (a single run) is expected to take roughly between + * 30 N and 300 N2 + * function evaluations.

+ * + *

This implementation is translated and adapted from the Matlab version + * of the CMA-ES algorithm as implemented in module {@code cmaes.m} version 3.51.

+ * + * For more information, please refer to the following links: + * + * + * @version $Id: CMAESOptimizer.java 1400108 2012-10-19 14:20:16Z erans $ + * @since 3.0 + */ +public class CMAESOptimizer + extends MultivariateOptimizer { + // global search parameters + /** + * Population size, offspring number. The primary strategy parameter to play + * with, which can be increased from its default value. Increasing the + * population size improves global search properties in exchange to speed. + * Speed decreases, as a rule, at most linearly with increasing population + * size. It is advisable to begin with the default small population size. + */ + private int lambda; // population size + /** + * Covariance update mechanism, default is active CMA. isActiveCMA = true + * turns on "active CMA" with a negative update of the covariance matrix and + * checks for positive definiteness. OPTS.CMA.active = 2 does not check for + * pos. def. and is numerically faster. Active CMA usually speeds up the + * adaptation. + */ + private final boolean isActiveCMA; + /** + * Determines how often a new random offspring is generated in case it is + * not feasible / beyond the defined limits, default is 0. + */ + private final int checkFeasableCount; + /** + * @see Sigma + */ + private double[] inputSigma; + /** Number of objective variables/problem dimension */ + private int dimension; + /** + * Defines the number of initial iterations, where the covariance matrix + * remains diagonal and the algorithm has internally linear time complexity. + * diagonalOnly = 1 means keeping the covariance matrix always diagonal and + * this setting also exhibits linear space complexity. This can be + * particularly useful for dimension > 100. + * @see A Simple Modification in CMA-ES + */ + private int diagonalOnly; + /** Number of objective variables/problem dimension */ + private boolean isMinimize = true; + /** Indicates whether statistic data is collected. */ + private final boolean generateStatistics; + + // termination criteria + /** Maximal number of iterations allowed. */ + private final int maxIterations; + /** Limit for fitness value. */ + private final double stopFitness; + /** Stop if x-changes larger stopTolUpX. */ + private double stopTolUpX; + /** Stop if x-change smaller stopTolX. */ + private double stopTolX; + /** Stop if fun-changes smaller stopTolFun. */ + private double stopTolFun; + /** Stop if back fun-changes smaller stopTolHistFun. */ + private double stopTolHistFun; + + // selection strategy parameters + /** Number of parents/points for recombination. */ + private int mu; // + /** log(mu + 0.5), stored for efficiency. */ + private double logMu2; + /** Array for weighted recombination. */ + private RealMatrix weights; + /** Variance-effectiveness of sum w_i x_i. */ + private double mueff; // + + // dynamic strategy parameters and constants + /** Overall standard deviation - search volume. */ + private double sigma; + /** Cumulation constant. */ + private double cc; + /** Cumulation constant for step-size. */ + private double cs; + /** Damping for step-size. */ + private double damps; + /** Learning rate for rank-one update. */ + private double ccov1; + /** Learning rate for rank-mu update' */ + private double ccovmu; + /** Expectation of ||N(0,I)|| == norm(randn(N,1)). */ + private double chiN; + /** Learning rate for rank-one update - diagonalOnly */ + private double ccov1Sep; + /** Learning rate for rank-mu update - diagonalOnly */ + private double ccovmuSep; + + // CMA internal values - updated each generation + /** Objective variables. */ + private RealMatrix xmean; + /** Evolution path. */ + private RealMatrix pc; + /** Evolution path for sigma. */ + private RealMatrix ps; + /** Norm of ps, stored for efficiency. */ + private double normps; + /** Coordinate system. */ + private RealMatrix B; + /** Scaling. */ + private RealMatrix D; + /** B*D, stored for efficiency. */ + private RealMatrix BD; + /** Diagonal of sqrt(D), stored for efficiency. */ + private RealMatrix diagD; + /** Covariance matrix. */ + private RealMatrix C; + /** Diagonal of C, used for diagonalOnly. */ + private RealMatrix diagC; + /** Number of iterations already performed. */ + private int iterations; + + /** History queue of best values. */ + private double[] fitnessHistory; + /** Size of history queue of best values. */ + private int historySize; + + /** Random generator. */ + private final RandomGenerator random; + + /** History of sigma values. */ + private final List statisticsSigmaHistory = new ArrayList(); + /** History of mean matrix. */ + private final List statisticsMeanHistory = new ArrayList(); + /** History of fitness values. */ + private final List statisticsFitnessHistory = new ArrayList(); + /** History of D matrix. */ + private final List statisticsDHistory = new ArrayList(); + + /** + * @param maxIterations Maximal number of iterations. + * @param stopFitness Whether to stop if objective function value is smaller than + * {@code stopFitness}. + * @param isActiveCMA Chooses the covariance matrix update method. + * @param diagonalOnly Number of initial iterations, where the covariance matrix + * remains diagonal. + * @param checkFeasableCount Determines how often new random objective variables are + * generated in case they are out of bounds. + * @param random Random generator. + * @param generateStatistics Whether statistic data is collected. + * @param checker Convergence checker. + * + * @since 3.1 + */ + public CMAESOptimizer(int maxIterations, + double stopFitness, + boolean isActiveCMA, + int diagonalOnly, + int checkFeasableCount, + RandomGenerator random, + boolean generateStatistics, + ConvergenceChecker checker) { + super(checker); + this.maxIterations = maxIterations; + this.stopFitness = stopFitness; + this.isActiveCMA = isActiveCMA; + this.diagonalOnly = diagonalOnly; + this.checkFeasableCount = checkFeasableCount; + this.random = random; + this.generateStatistics = generateStatistics; + } + + /** + * @return History of sigma values. + */ + public List getStatisticsSigmaHistory() { + return statisticsSigmaHistory; + } + + /** + * @return History of mean matrix. + */ + public List getStatisticsMeanHistory() { + return statisticsMeanHistory; + } + + /** + * @return History of fitness values. + */ + public List getStatisticsFitnessHistory() { + return statisticsFitnessHistory; + } + + /** + * @return History of D matrix. + */ + public List getStatisticsDHistory() { + return statisticsDHistory; + } + + /** + * Input sigma values. + * They define the initial coordinate-wise standard deviations for + * sampling new search points around the initial guess. + * It is suggested to set them to the estimated distance from the + * initial to the desired optimum. + * Small values induce the search to be more local (and very small + * values are more likely to find a local optimum close to the initial + * guess). + * Too small values might however lead to early termination. + */ + public static class Sigma implements OptimizationData { + /** Sigma values. */ + private final double[] sigma; + + /** + * @param s Sigma values. + * @throws NotPositiveException if any of the array entries is smaller + * than zero. + */ + public Sigma(double[] s) + throws NotPositiveException { + for (int i = 0; i < s.length; i++) { + if (s[i] < 0) { + throw new NotPositiveException(s[i]); + } + } + + sigma = s.clone(); + } + + /** + * @return the sigma values. + */ + public double[] getSigma() { + return sigma.clone(); + } + } + + /** + * Population size. + * The number of offspring is the primary strategy parameter. + * In the absence of better clues, a good default could be an + * integer close to {@code 4 + 3 ln(n)}, where {@code n} is the + * number of optimized parameters. + * Increasing the population size improves global search properties + * at the expense of speed (which in general decreases at most + * linearly with increasing population size). + */ + public static class PopulationSize implements OptimizationData { + /** Population size. */ + private final int lambda; + + /** + * @param size Population size. + * @throws NotStrictlyPositiveException if {@code size <= 0}. + */ + public PopulationSize(int size) + throws NotStrictlyPositiveException { + if (size <= 0) { + throw new NotStrictlyPositiveException(size); + } + lambda = size; + } + + /** + * @return the population size. + */ + public int getPopulationSize() { + return lambda; + } + } + + /** + * {@inheritDoc} + * + * @param optData Optimization data. The following data will be looked for: + *
    + *
  • {@link org.apache.commons.math3.optim.MaxEval}
  • + *
  • {@link org.apache.commons.math3.optim.InitialGuess}
  • + *
  • {@link org.apache.commons.math3.optim.SimpleBounds}
  • + *
  • {@link org.apache.commons.math3.optim.ObjectiveFunction}
  • + *
  • {@link Sigma}
  • + *
  • {@link PopulationSize}
  • + *
+ * @return {@inheritDoc} + * @throws TooManyEvaluationsException if the maximal number of + * evaluations is exceeded. + * @throws DimensionMismatchException if the initial guess, target, and weight + * arguments have inconsistent dimensions. + */ + @Override + public PointValuePair optimize(OptimizationData... optData) + throws TooManyEvaluationsException, + DimensionMismatchException { + // Retrieve settings. + parseOptimizationData(optData); + // Set up base class and perform computation. + return super.optimize(optData); + } + + /** {@inheritDoc} */ + @Override + protected PointValuePair doOptimize() { + checkParameters(); + // -------------------- Initialization -------------------------------- + isMinimize = getGoalType().equals(GoalType.MINIMIZE); + final FitnessFunction fitfun = new FitnessFunction(); + final double[] guess = getStartPoint(); + // number of objective variables/problem dimension + dimension = guess.length; + initializeCMA(guess); + iterations = 0; + double bestValue = fitfun.value(guess); + push(fitnessHistory, bestValue); + PointValuePair optimum + = new PointValuePair(getStartPoint(), + isMinimize ? bestValue : -bestValue); + PointValuePair lastResult = null; + + // -------------------- Generation Loop -------------------------------- + + generationLoop: + for (iterations = 1; iterations <= maxIterations; iterations++) { + // Generate and evaluate lambda offspring + final RealMatrix arz = randn1(dimension, lambda); + final RealMatrix arx = zeros(dimension, lambda); + final double[] fitness = new double[lambda]; + // generate random offspring + for (int k = 0; k < lambda; k++) { + RealMatrix arxk = null; + for (int i = 0; i < checkFeasableCount + 1; i++) { + if (diagonalOnly <= 0) { + arxk = xmean.add(BD.multiply(arz.getColumnMatrix(k)) + .scalarMultiply(sigma)); // m + sig * Normal(0,C) + } else { + arxk = xmean.add(times(diagD,arz.getColumnMatrix(k)) + .scalarMultiply(sigma)); + } + if (i >= checkFeasableCount || + fitfun.isFeasible(arxk.getColumn(0))) { + break; + } + // regenerate random arguments for row + arz.setColumn(k, randn(dimension)); + } + copyColumn(arxk, 0, arx, k); + try { + fitness[k] = fitfun.value(arx.getColumn(k)); // compute fitness + } catch (TooManyEvaluationsException e) { + break generationLoop; + } + } + // Sort by fitness and compute weighted mean into xmean + final int[] arindex = sortedIndices(fitness); + // Calculate new xmean, this is selection and recombination + final RealMatrix xold = xmean; // for speed up of Eq. (2) and (3) + final RealMatrix bestArx = selectColumns(arx, MathArrays.copyOf(arindex, mu)); + xmean = bestArx.multiply(weights); + final RealMatrix bestArz = selectColumns(arz, MathArrays.copyOf(arindex, mu)); + final RealMatrix zmean = bestArz.multiply(weights); + final boolean hsig = updateEvolutionPaths(zmean, xold); + if (diagonalOnly <= 0) { + updateCovariance(hsig, bestArx, arz, arindex, xold); + } else { + updateCovarianceDiagonalOnly(hsig, bestArz, xold); + } + // Adapt step size sigma - Eq. (5) + sigma *= Math.exp(Math.min(1, (normps/chiN - 1) * cs / damps)); + final double bestFitness = fitness[arindex[0]]; + final double worstFitness = fitness[arindex[arindex.length - 1]]; + if (bestValue > bestFitness) { + bestValue = bestFitness; + lastResult = optimum; + optimum = new PointValuePair(fitfun.repair(bestArx.getColumn(0)), + isMinimize ? bestFitness : -bestFitness); + if (getConvergenceChecker() != null && + lastResult != null) { + if (getConvergenceChecker().converged(iterations, optimum, lastResult)) { + break generationLoop; + } + } + } + // handle termination criteria + // Break, if fitness is good enough + if (stopFitness != 0) { // only if stopFitness is defined + if (bestFitness < (isMinimize ? stopFitness : -stopFitness)) { + break generationLoop; + } + } + final double[] sqrtDiagC = sqrt(diagC).getColumn(0); + final double[] pcCol = pc.getColumn(0); + for (int i = 0; i < dimension; i++) { + if (sigma * Math.max(Math.abs(pcCol[i]), sqrtDiagC[i]) > stopTolX) { + break; + } + if (i >= dimension - 1) { + break generationLoop; + } + } + for (int i = 0; i < dimension; i++) { + if (sigma * sqrtDiagC[i] > stopTolUpX) { + break generationLoop; + } + } + final double historyBest = min(fitnessHistory); + final double historyWorst = max(fitnessHistory); + if (iterations > 2 && + Math.max(historyWorst, worstFitness) - + Math.min(historyBest, bestFitness) < stopTolFun) { + break generationLoop; + } + if (iterations > fitnessHistory.length && + historyWorst - historyBest < stopTolHistFun) { + break generationLoop; + } + // condition number of the covariance matrix exceeds 1e14 + if (max(diagD) / min(diagD) > 1e7) { + break generationLoop; + } + // user defined termination + if (getConvergenceChecker() != null) { + final PointValuePair current + = new PointValuePair(bestArx.getColumn(0), + isMinimize ? bestFitness : -bestFitness); + if (lastResult != null && + getConvergenceChecker().converged(iterations, current, lastResult)) { + break generationLoop; + } + lastResult = current; + } + // Adjust step size in case of equal function values (flat fitness) + if (bestValue == fitness[arindex[(int)(0.1+lambda/4.)]]) { + sigma = sigma * Math.exp(0.2 + cs / damps); + } + if (iterations > 2 && Math.max(historyWorst, bestFitness) - + Math.min(historyBest, bestFitness) == 0) { + sigma = sigma * Math.exp(0.2 + cs / damps); + } + // store best in history + push(fitnessHistory,bestFitness); + fitfun.setValueRange(worstFitness-bestFitness); + if (generateStatistics) { + statisticsSigmaHistory.add(sigma); + statisticsFitnessHistory.add(bestFitness); + statisticsMeanHistory.add(xmean.transpose()); + statisticsDHistory.add(diagD.transpose().scalarMultiply(1E5)); + } + } + return optimum; + } + + /** + * Scans the list of (required and optional) optimization data that + * characterize the problem. + * + * @param optData Optimization data. The following data will be looked for: + *
    + *
  • {@link Sigma}
  • + *
  • {@link PopulationSize}
  • + *
+ */ + private void parseOptimizationData(OptimizationData... optData) { + // The existing values (as set by the previous call) are reused if + // not provided in the argument list. + for (OptimizationData data : optData) { + if (data instanceof Sigma) { + inputSigma = ((Sigma) data).getSigma(); + continue; + } + if (data instanceof PopulationSize) { + lambda = ((PopulationSize) data).getPopulationSize(); + continue; + } + } + } + + /** + * Checks dimensions and values of boundaries and inputSigma if defined. + */ + private void checkParameters() { + final double[] init = getStartPoint(); + final double[] lB = getLowerBound(); + final double[] uB = getUpperBound(); + + if (inputSigma != null) { + if (inputSigma.length != init.length) { + throw new DimensionMismatchException(inputSigma.length, init.length); + } + for (int i = 0; i < init.length; i++) { + if (inputSigma[i] > uB[i] - lB[i]) { + throw new OutOfRangeException(inputSigma[i], 0, uB[i] - lB[i]); + } + } + } + } + + /** + * Initialization of the dynamic search parameters + * + * @param guess Initial guess for the arguments of the fitness function. + */ + private void initializeCMA(double[] guess) { + if (lambda <= 0) { + throw new NotStrictlyPositiveException(lambda); + } + // initialize sigma + final double[][] sigmaArray = new double[guess.length][1]; + for (int i = 0; i < guess.length; i++) { + sigmaArray[i][0] = inputSigma[i]; + } + final RealMatrix insigma = new Array2DRowRealMatrix(sigmaArray, false); + sigma = max(insigma); // overall standard deviation + + // initialize termination criteria + stopTolUpX = 1e3 * max(insigma); + stopTolX = 1e-11 * max(insigma); + stopTolFun = 1e-12; + stopTolHistFun = 1e-13; + + // initialize selection strategy parameters + mu = lambda / 2; // number of parents/points for recombination + logMu2 = Math.log(mu + 0.5); + weights = log(sequence(1, mu, 1)).scalarMultiply(-1).scalarAdd(logMu2); + double sumw = 0; + double sumwq = 0; + for (int i = 0; i < mu; i++) { + double w = weights.getEntry(i, 0); + sumw += w; + sumwq += w * w; + } + weights = weights.scalarMultiply(1 / sumw); + mueff = sumw * sumw / sumwq; // variance-effectiveness of sum w_i x_i + + // initialize dynamic strategy parameters and constants + cc = (4 + mueff / dimension) / + (dimension + 4 + 2 * mueff / dimension); + cs = (mueff + 2) / (dimension + mueff + 3.); + damps = (1 + 2 * Math.max(0, Math.sqrt((mueff - 1) / + (dimension + 1)) - 1)) * + Math.max(0.3, + 1 - dimension / (1e-6 + maxIterations)) + cs; // minor increment + ccov1 = 2 / ((dimension + 1.3) * (dimension + 1.3) + mueff); + ccovmu = Math.min(1 - ccov1, 2 * (mueff - 2 + 1 / mueff) / + ((dimension + 2) * (dimension + 2) + mueff)); + ccov1Sep = Math.min(1, ccov1 * (dimension + 1.5) / 3); + ccovmuSep = Math.min(1 - ccov1, ccovmu * (dimension + 1.5) / 3); + chiN = Math.sqrt(dimension) * + (1 - 1 / ((double) 4 * dimension) + 1 / ((double) 21 * dimension * dimension)); + // intialize CMA internal values - updated each generation + xmean = MatrixUtils.createColumnRealMatrix(guess); // objective variables + diagD = insigma.scalarMultiply(1 / sigma); + diagC = square(diagD); + pc = zeros(dimension, 1); // evolution paths for C and sigma + ps = zeros(dimension, 1); // B defines the coordinate system + normps = ps.getFrobeniusNorm(); + + B = eye(dimension, dimension); + D = ones(dimension, 1); // diagonal D defines the scaling + BD = times(B, repmat(diagD.transpose(), dimension, 1)); + C = B.multiply(diag(square(D)).multiply(B.transpose())); // covariance + historySize = 10 + (int) (3 * 10 * dimension / (double) lambda); + fitnessHistory = new double[historySize]; // history of fitness values + for (int i = 0; i < historySize; i++) { + fitnessHistory[i] = Double.MAX_VALUE; + } + } + + /** + * Update of the evolution paths ps and pc. + * + * @param zmean Weighted row matrix of the gaussian random numbers generating + * the current offspring. + * @param xold xmean matrix of the previous generation. + * @return hsig flag indicating a small correction. + */ + private boolean updateEvolutionPaths(RealMatrix zmean, RealMatrix xold) { + ps = ps.scalarMultiply(1 - cs).add( + B.multiply(zmean).scalarMultiply( + Math.sqrt(cs * (2 - cs) * mueff))); + normps = ps.getFrobeniusNorm(); + final boolean hsig = normps / + Math.sqrt(1 - Math.pow(1 - cs, 2 * iterations)) / + chiN < 1.4 + 2 / ((double) dimension + 1); + pc = pc.scalarMultiply(1 - cc); + if (hsig) { + pc = pc.add(xmean.subtract(xold).scalarMultiply(Math.sqrt(cc * (2 - cc) * mueff) / sigma)); + } + return hsig; + } + + /** + * Update of the covariance matrix C for diagonalOnly > 0 + * + * @param hsig Flag indicating a small correction. + * @param bestArz Fitness-sorted matrix of the gaussian random values of the + * current offspring. + * @param xold xmean matrix of the previous generation. + */ + private void updateCovarianceDiagonalOnly(boolean hsig, + final RealMatrix bestArz, + final RealMatrix xold) { + // minor correction if hsig==false + double oldFac = hsig ? 0 : ccov1Sep * cc * (2 - cc); + oldFac += 1 - ccov1Sep - ccovmuSep; + diagC = diagC.scalarMultiply(oldFac) // regard old matrix + .add(square(pc).scalarMultiply(ccov1Sep)) // plus rank one update + .add((times(diagC, square(bestArz).multiply(weights))) // plus rank mu update + .scalarMultiply(ccovmuSep)); + diagD = sqrt(diagC); // replaces eig(C) + if (diagonalOnly > 1 && + iterations > diagonalOnly) { + // full covariance matrix from now on + diagonalOnly = 0; + B = eye(dimension, dimension); + BD = diag(diagD); + C = diag(diagC); + } + } + + /** + * Update of the covariance matrix C. + * + * @param hsig Flag indicating a small correction. + * @param bestArx Fitness-sorted matrix of the argument vectors producing the + * current offspring. + * @param arz Unsorted matrix containing the gaussian random values of the + * current offspring. + * @param arindex Indices indicating the fitness-order of the current offspring. + * @param xold xmean matrix of the previous generation. + */ + private void updateCovariance(boolean hsig, final RealMatrix bestArx, + final RealMatrix arz, final int[] arindex, + final RealMatrix xold) { + double negccov = 0; + if (ccov1 + ccovmu > 0) { + final RealMatrix arpos = bestArx.subtract(repmat(xold, 1, mu)) + .scalarMultiply(1 / sigma); // mu difference vectors + final RealMatrix roneu = pc.multiply(pc.transpose()) + .scalarMultiply(ccov1); // rank one update + // minor correction if hsig==false + double oldFac = hsig ? 0 : ccov1 * cc * (2 - cc); + oldFac += 1 - ccov1 - ccovmu; + if (isActiveCMA) { + // Adapt covariance matrix C active CMA + negccov = (1 - ccovmu) * 0.25 * mueff / + (Math.pow(dimension + 2, 1.5) + 2 * mueff); + // keep at least 0.66 in all directions, small popsize are most + // critical + final double negminresidualvariance = 0.66; + // where to make up for the variance loss + final double negalphaold = 0.5; + // prepare vectors, compute negative updating matrix Cneg + final int[] arReverseIndex = reverse(arindex); + RealMatrix arzneg = selectColumns(arz, MathArrays.copyOf(arReverseIndex, mu)); + RealMatrix arnorms = sqrt(sumRows(square(arzneg))); + final int[] idxnorms = sortedIndices(arnorms.getRow(0)); + final RealMatrix arnormsSorted = selectColumns(arnorms, idxnorms); + final int[] idxReverse = reverse(idxnorms); + final RealMatrix arnormsReverse = selectColumns(arnorms, idxReverse); + arnorms = divide(arnormsReverse, arnormsSorted); + final int[] idxInv = inverse(idxnorms); + final RealMatrix arnormsInv = selectColumns(arnorms, idxInv); + // check and set learning rate negccov + final double negcovMax = (1 - negminresidualvariance) / + square(arnormsInv).multiply(weights).getEntry(0, 0); + if (negccov > negcovMax) { + negccov = negcovMax; + } + arzneg = times(arzneg, repmat(arnormsInv, dimension, 1)); + final RealMatrix artmp = BD.multiply(arzneg); + final RealMatrix Cneg = artmp.multiply(diag(weights)).multiply(artmp.transpose()); + oldFac += negalphaold * negccov; + C = C.scalarMultiply(oldFac) + .add(roneu) // regard old matrix + .add(arpos.scalarMultiply( // plus rank one update + ccovmu + (1 - negalphaold) * negccov) // plus rank mu update + .multiply(times(repmat(weights, 1, dimension), + arpos.transpose()))) + .subtract(Cneg.scalarMultiply(negccov)); + } else { + // Adapt covariance matrix C - nonactive + C = C.scalarMultiply(oldFac) // regard old matrix + .add(roneu) // plus rank one update + .add(arpos.scalarMultiply(ccovmu) // plus rank mu update + .multiply(times(repmat(weights, 1, dimension), + arpos.transpose()))); + } + } + updateBD(negccov); + } + + /** + * Update B and D from C. + * + * @param negccov Negative covariance factor. + */ + private void updateBD(double negccov) { + if (ccov1 + ccovmu + negccov > 0 && + (iterations % 1. / (ccov1 + ccovmu + negccov) / dimension / 10.) < 1) { + // to achieve O(N^2) + C = triu(C, 0).add(triu(C, 1).transpose()); + // enforce symmetry to prevent complex numbers + final EigenDecomposition eig = new EigenDecomposition(C); + B = eig.getV(); // eigen decomposition, B==normalized eigenvectors + D = eig.getD(); + diagD = diag(D); + if (min(diagD) <= 0) { + for (int i = 0; i < dimension; i++) { + if (diagD.getEntry(i, 0) < 0) { + diagD.setEntry(i, 0, 0); + } + } + final double tfac = max(diagD) / 1e14; + C = C.add(eye(dimension, dimension).scalarMultiply(tfac)); + diagD = diagD.add(ones(dimension, 1).scalarMultiply(tfac)); + } + if (max(diagD) > 1e14 * min(diagD)) { + final double tfac = max(diagD) / 1e14 - min(diagD); + C = C.add(eye(dimension, dimension).scalarMultiply(tfac)); + diagD = diagD.add(ones(dimension, 1).scalarMultiply(tfac)); + } + diagC = diag(C); + diagD = sqrt(diagD); // D contains standard deviations now + BD = times(B, repmat(diagD.transpose(), dimension, 1)); // O(n^2) + } + } + + /** + * Pushes the current best fitness value in a history queue. + * + * @param vals History queue. + * @param val Current best fitness value. + */ + private static void push(double[] vals, double val) { + for (int i = vals.length-1; i > 0; i--) { + vals[i] = vals[i-1]; + } + vals[0] = val; + } + + /** + * Sorts fitness values. + * + * @param doubles Array of values to be sorted. + * @return a sorted array of indices pointing into doubles. + */ + private int[] sortedIndices(final double[] doubles) { + final DoubleIndex[] dis = new DoubleIndex[doubles.length]; + for (int i = 0; i < doubles.length; i++) { + dis[i] = new DoubleIndex(doubles[i], i); + } + Arrays.sort(dis); + final int[] indices = new int[doubles.length]; + for (int i = 0; i < doubles.length; i++) { + indices[i] = dis[i].index; + } + return indices; + } + + /** + * Used to sort fitness values. Sorting is always in lower value first + * order. + */ + private static class DoubleIndex implements Comparable { + /** Value to compare. */ + private final double value; + /** Index into sorted array. */ + private final int index; + + /** + * @param value Value to compare. + * @param index Index into sorted array. + */ + DoubleIndex(double value, int index) { + this.value = value; + this.index = index; + } + + /** {@inheritDoc} */ + public int compareTo(DoubleIndex o) { + return Double.compare(value, o.value); + } + + /** {@inheritDoc} */ + @Override + public boolean equals(Object other) { + + if (this == other) { + return true; + } + + if (other instanceof DoubleIndex) { + return Double.compare(value, ((DoubleIndex) other).value) == 0; + } + + return false; + } + + /** {@inheritDoc} */ + @Override + public int hashCode() { + long bits = Double.doubleToLongBits(value); + return (int) ((1438542 ^ (bits >>> 32) ^ bits) & 0xffffffff); + } + } + + /** + * Normalizes fitness values to the range [0,1]. Adds a penalty to the + * fitness value if out of range. The penalty is adjusted by calling + * setValueRange(). + */ + private class FitnessFunction { + /** Determines the penalty for boundary violations */ + private double valueRange; + /** + * Flag indicating whether the objective variables are forced into their + * bounds if defined + */ + private final boolean isRepairMode; + + /** Simple constructor. + */ + public FitnessFunction() { + valueRange = 1; + isRepairMode = true; + } + + /** + * @param point Normalized objective variables. + * @return the objective value + penalty for violated bounds. + */ + public double value(final double[] point) { + double value; + if (isRepairMode) { + double[] repaired = repair(point); + value = CMAESOptimizer.this.computeObjectiveValue(repaired) + + penalty(point, repaired); + } else { + value = CMAESOptimizer.this.computeObjectiveValue(point); + } + return isMinimize ? value : -value; + } + + /** + * @param x Normalized objective variables. + * @return {@code true} if in bounds. + */ + public boolean isFeasible(final double[] x) { + final double[] lB = CMAESOptimizer.this.getLowerBound(); + final double[] uB = CMAESOptimizer.this.getUpperBound(); + + for (int i = 0; i < x.length; i++) { + if (x[i] < lB[i]) { + return false; + } + if (x[i] > uB[i]) { + return false; + } + } + return true; + } + + /** + * @param valueRange Adjusts the penalty computation. + */ + public void setValueRange(double valueRange) { + this.valueRange = valueRange; + } + + /** + * @param x Normalized objective variables. + * @return the repaired (i.e. all in bounds) objective variables. + */ + private double[] repair(final double[] x) { + final double[] lB = CMAESOptimizer.this.getLowerBound(); + final double[] uB = CMAESOptimizer.this.getUpperBound(); + + final double[] repaired = new double[x.length]; + for (int i = 0; i < x.length; i++) { + if (x[i] < lB[i]) { + repaired[i] = lB[i]; + } else if (x[i] > uB[i]) { + repaired[i] = uB[i]; + } else { + repaired[i] = x[i]; + } + } + return repaired; + } + + /** + * @param x Normalized objective variables. + * @param repaired Repaired objective variables. + * @return Penalty value according to the violation of the bounds. + */ + private double penalty(final double[] x, final double[] repaired) { + double penalty = 0; + for (int i = 0; i < x.length; i++) { + double diff = Math.abs(x[i] - repaired[i]); + penalty += diff * valueRange; + } + return isMinimize ? penalty : -penalty; + } + } + + // -----Matrix utility functions similar to the Matlab build in functions------ + + /** + * @param m Input matrix + * @return Matrix representing the element-wise logarithm of m. + */ + private static RealMatrix log(final RealMatrix m) { + final double[][] d = new double[m.getRowDimension()][m.getColumnDimension()]; + for (int r = 0; r < m.getRowDimension(); r++) { + for (int c = 0; c < m.getColumnDimension(); c++) { + d[r][c] = Math.log(m.getEntry(r, c)); + } + } + return new Array2DRowRealMatrix(d, false); + } + + /** + * @param m Input matrix. + * @return Matrix representing the element-wise square root of m. + */ + private static RealMatrix sqrt(final RealMatrix m) { + final double[][] d = new double[m.getRowDimension()][m.getColumnDimension()]; + for (int r = 0; r < m.getRowDimension(); r++) { + for (int c = 0; c < m.getColumnDimension(); c++) { + d[r][c] = Math.sqrt(m.getEntry(r, c)); + } + } + return new Array2DRowRealMatrix(d, false); + } + + /** + * @param m Input matrix. + * @return Matrix representing the element-wise square of m. + */ + private static RealMatrix square(final RealMatrix m) { + final double[][] d = new double[m.getRowDimension()][m.getColumnDimension()]; + for (int r = 0; r < m.getRowDimension(); r++) { + for (int c = 0; c < m.getColumnDimension(); c++) { + double e = m.getEntry(r, c); + d[r][c] = e * e; + } + } + return new Array2DRowRealMatrix(d, false); + } + + /** + * @param m Input matrix 1. + * @param n Input matrix 2. + * @return the matrix where the elements of m and n are element-wise multiplied. + */ + private static RealMatrix times(final RealMatrix m, final RealMatrix n) { + final double[][] d = new double[m.getRowDimension()][m.getColumnDimension()]; + for (int r = 0; r < m.getRowDimension(); r++) { + for (int c = 0; c < m.getColumnDimension(); c++) { + d[r][c] = m.getEntry(r, c) * n.getEntry(r, c); + } + } + return new Array2DRowRealMatrix(d, false); + } + + /** + * @param m Input matrix 1. + * @param n Input matrix 2. + * @return Matrix where the elements of m and n are element-wise divided. + */ + private static RealMatrix divide(final RealMatrix m, final RealMatrix n) { + final double[][] d = new double[m.getRowDimension()][m.getColumnDimension()]; + for (int r = 0; r < m.getRowDimension(); r++) { + for (int c = 0; c < m.getColumnDimension(); c++) { + d[r][c] = m.getEntry(r, c) / n.getEntry(r, c); + } + } + return new Array2DRowRealMatrix(d, false); + } + + /** + * @param m Input matrix. + * @param cols Columns to select. + * @return Matrix representing the selected columns. + */ + private static RealMatrix selectColumns(final RealMatrix m, final int[] cols) { + final double[][] d = new double[m.getRowDimension()][cols.length]; + for (int r = 0; r < m.getRowDimension(); r++) { + for (int c = 0; c < cols.length; c++) { + d[r][c] = m.getEntry(r, cols[c]); + } + } + return new Array2DRowRealMatrix(d, false); + } + + /** + * @param m Input matrix. + * @param k Diagonal position. + * @return Upper triangular part of matrix. + */ + private static RealMatrix triu(final RealMatrix m, int k) { + final double[][] d = new double[m.getRowDimension()][m.getColumnDimension()]; + for (int r = 0; r < m.getRowDimension(); r++) { + for (int c = 0; c < m.getColumnDimension(); c++) { + d[r][c] = r <= c - k ? m.getEntry(r, c) : 0; + } + } + return new Array2DRowRealMatrix(d, false); + } + + /** + * @param m Input matrix. + * @return Row matrix representing the sums of the rows. + */ + private static RealMatrix sumRows(final RealMatrix m) { + final double[][] d = new double[1][m.getColumnDimension()]; + for (int c = 0; c < m.getColumnDimension(); c++) { + double sum = 0; + for (int r = 0; r < m.getRowDimension(); r++) { + sum += m.getEntry(r, c); + } + d[0][c] = sum; + } + return new Array2DRowRealMatrix(d, false); + } + + /** + * @param m Input matrix. + * @return the diagonal n-by-n matrix if m is a column matrix or the column + * matrix representing the diagonal if m is a n-by-n matrix. + */ + private static RealMatrix diag(final RealMatrix m) { + if (m.getColumnDimension() == 1) { + final double[][] d = new double[m.getRowDimension()][m.getRowDimension()]; + for (int i = 0; i < m.getRowDimension(); i++) { + d[i][i] = m.getEntry(i, 0); + } + return new Array2DRowRealMatrix(d, false); + } else { + final double[][] d = new double[m.getRowDimension()][1]; + for (int i = 0; i < m.getColumnDimension(); i++) { + d[i][0] = m.getEntry(i, i); + } + return new Array2DRowRealMatrix(d, false); + } + } + + /** + * Copies a column from m1 to m2. + * + * @param m1 Source matrix. + * @param col1 Source column. + * @param m2 Target matrix. + * @param col2 Target column. + */ + private static void copyColumn(final RealMatrix m1, int col1, + RealMatrix m2, int col2) { + for (int i = 0; i < m1.getRowDimension(); i++) { + m2.setEntry(i, col2, m1.getEntry(i, col1)); + } + } + + /** + * @param n Number of rows. + * @param m Number of columns. + * @return n-by-m matrix filled with 1. + */ + private static RealMatrix ones(int n, int m) { + final double[][] d = new double[n][m]; + for (int r = 0; r < n; r++) { + Arrays.fill(d[r], 1); + } + return new Array2DRowRealMatrix(d, false); + } + + /** + * @param n Number of rows. + * @param m Number of columns. + * @return n-by-m matrix of 0 values out of diagonal, and 1 values on + * the diagonal. + */ + private static RealMatrix eye(int n, int m) { + final double[][] d = new double[n][m]; + for (int r = 0; r < n; r++) { + if (r < m) { + d[r][r] = 1; + } + } + return new Array2DRowRealMatrix(d, false); + } + + /** + * @param n Number of rows. + * @param m Number of columns. + * @return n-by-m matrix of zero values. + */ + private static RealMatrix zeros(int n, int m) { + return new Array2DRowRealMatrix(n, m); + } + + /** + * @param mat Input matrix. + * @param n Number of row replicates. + * @param m Number of column replicates. + * @return a matrix which replicates the input matrix in both directions. + */ + private static RealMatrix repmat(final RealMatrix mat, int n, int m) { + final int rd = mat.getRowDimension(); + final int cd = mat.getColumnDimension(); + final double[][] d = new double[n * rd][m * cd]; + for (int r = 0; r < n * rd; r++) { + for (int c = 0; c < m * cd; c++) { + d[r][c] = mat.getEntry(r % rd, c % cd); + } + } + return new Array2DRowRealMatrix(d, false); + } + + /** + * @param start Start value. + * @param end End value. + * @param step Step size. + * @return a sequence as column matrix. + */ + private static RealMatrix sequence(double start, double end, double step) { + final int size = (int) ((end - start) / step + 1); + final double[][] d = new double[size][1]; + double value = start; + for (int r = 0; r < size; r++) { + d[r][0] = value; + value += step; + } + return new Array2DRowRealMatrix(d, false); + } + + /** + * @param m Input matrix. + * @return the maximum of the matrix element values. + */ + private static double max(final RealMatrix m) { + double max = -Double.MAX_VALUE; + for (int r = 0; r < m.getRowDimension(); r++) { + for (int c = 0; c < m.getColumnDimension(); c++) { + double e = m.getEntry(r, c); + if (max < e) { + max = e; + } + } + } + return max; + } + + /** + * @param m Input matrix. + * @return the minimum of the matrix element values. + */ + private static double min(final RealMatrix m) { + double min = Double.MAX_VALUE; + for (int r = 0; r < m.getRowDimension(); r++) { + for (int c = 0; c < m.getColumnDimension(); c++) { + double e = m.getEntry(r, c); + if (min > e) { + min = e; + } + } + } + return min; + } + + /** + * @param m Input array. + * @return the maximum of the array values. + */ + private static double max(final double[] m) { + double max = -Double.MAX_VALUE; + for (int r = 0; r < m.length; r++) { + if (max < m[r]) { + max = m[r]; + } + } + return max; + } + + /** + * @param m Input array. + * @return the minimum of the array values. + */ + private static double min(final double[] m) { + double min = Double.MAX_VALUE; + for (int r = 0; r < m.length; r++) { + if (min > m[r]) { + min = m[r]; + } + } + return min; + } + + /** + * @param indices Input index array. + * @return the inverse of the mapping defined by indices. + */ + private static int[] inverse(final int[] indices) { + final int[] inverse = new int[indices.length]; + for (int i = 0; i < indices.length; i++) { + inverse[indices[i]] = i; + } + return inverse; + } + + /** + * @param indices Input index array. + * @return the indices in inverse order (last is first). + */ + private static int[] reverse(final int[] indices) { + final int[] reverse = new int[indices.length]; + for (int i = 0; i < indices.length; i++) { + reverse[i] = indices[indices.length - i - 1]; + } + return reverse; + } + + /** + * @param size Length of random array. + * @return an array of Gaussian random numbers. + */ + private double[] randn(int size) { + final double[] randn = new double[size]; + for (int i = 0; i < size; i++) { + randn[i] = random.nextGaussian(); + } + return randn; + } + + /** + * @param size Number of rows. + * @param popSize Population size. + * @return a 2-dimensional matrix of Gaussian random numbers. + */ + private RealMatrix randn1(int size, int popSize) { + final double[][] d = new double[size][popSize]; + for (int r = 0; r < size; r++) { + for (int c = 0; c < popSize; c++) { + d[r][c] = random.nextGaussian(); + } + } + return new Array2DRowRealMatrix(d, false); + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/MultiDirectionalSimplex.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/MultiDirectionalSimplex.java new file mode 100644 index 000000000..0b06ab15a --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/MultiDirectionalSimplex.java @@ -0,0 +1,216 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.nonlinear.scalar.noderiv; + +import java.util.Comparator; + +import org.apache.commons.math3.analysis.MultivariateFunction; +import org.apache.commons.math3.optim.PointValuePair; + +/** + * This class implements the multi-directional direct search method. + * + * @version $Id: MultiDirectionalSimplex.java 1364392 2012-07-22 18:27:12Z tn $ + * @since 3.0 + */ +public class MultiDirectionalSimplex extends AbstractSimplex { + /** Default value for {@link #khi}: {@value}. */ + private static final double DEFAULT_KHI = 2; + /** Default value for {@link #gamma}: {@value}. */ + private static final double DEFAULT_GAMMA = 0.5; + /** Expansion coefficient. */ + private final double khi; + /** Contraction coefficient. */ + private final double gamma; + + /** + * Build a multi-directional simplex with default coefficients. + * The default values are 2.0 for khi and 0.5 for gamma. + * + * @param n Dimension of the simplex. + */ + public MultiDirectionalSimplex(final int n) { + this(n, 1d); + } + + /** + * Build a multi-directional simplex with default coefficients. + * The default values are 2.0 for khi and 0.5 for gamma. + * + * @param n Dimension of the simplex. + * @param sideLength Length of the sides of the default (hypercube) + * simplex. See {@link AbstractSimplex#AbstractSimplex(int,double)}. + */ + public MultiDirectionalSimplex(final int n, double sideLength) { + this(n, sideLength, DEFAULT_KHI, DEFAULT_GAMMA); + } + + /** + * Build a multi-directional simplex with specified coefficients. + * + * @param n Dimension of the simplex. See + * {@link AbstractSimplex#AbstractSimplex(int,double)}. + * @param khi Expansion coefficient. + * @param gamma Contraction coefficient. + */ + public MultiDirectionalSimplex(final int n, + final double khi, final double gamma) { + this(n, 1d, khi, gamma); + } + + /** + * Build a multi-directional simplex with specified coefficients. + * + * @param n Dimension of the simplex. See + * {@link AbstractSimplex#AbstractSimplex(int,double)}. + * @param sideLength Length of the sides of the default (hypercube) + * simplex. See {@link AbstractSimplex#AbstractSimplex(int,double)}. + * @param khi Expansion coefficient. + * @param gamma Contraction coefficient. + */ + public MultiDirectionalSimplex(final int n, double sideLength, + final double khi, final double gamma) { + super(n, sideLength); + + this.khi = khi; + this.gamma = gamma; + } + + /** + * Build a multi-directional simplex with default coefficients. + * The default values are 2.0 for khi and 0.5 for gamma. + * + * @param steps Steps along the canonical axes representing box edges. + * They may be negative but not zero. See + */ + public MultiDirectionalSimplex(final double[] steps) { + this(steps, DEFAULT_KHI, DEFAULT_GAMMA); + } + + /** + * Build a multi-directional simplex with specified coefficients. + * + * @param steps Steps along the canonical axes representing box edges. + * They may be negative but not zero. See + * {@link AbstractSimplex#AbstractSimplex(double[])}. + * @param khi Expansion coefficient. + * @param gamma Contraction coefficient. + */ + public MultiDirectionalSimplex(final double[] steps, + final double khi, final double gamma) { + super(steps); + + this.khi = khi; + this.gamma = gamma; + } + + /** + * Build a multi-directional simplex with default coefficients. + * The default values are 2.0 for khi and 0.5 for gamma. + * + * @param referenceSimplex Reference simplex. See + * {@link AbstractSimplex#AbstractSimplex(double[][])}. + */ + public MultiDirectionalSimplex(final double[][] referenceSimplex) { + this(referenceSimplex, DEFAULT_KHI, DEFAULT_GAMMA); + } + + /** + * Build a multi-directional simplex with specified coefficients. + * + * @param referenceSimplex Reference simplex. See + * {@link AbstractSimplex#AbstractSimplex(double[][])}. + * @param khi Expansion coefficient. + * @param gamma Contraction coefficient. + * @throws org.apache.commons.math3.exception.NotStrictlyPositiveException + * if the reference simplex does not contain at least one point. + * @throws org.apache.commons.math3.exception.DimensionMismatchException + * if there is a dimension mismatch in the reference simplex. + */ + public MultiDirectionalSimplex(final double[][] referenceSimplex, + final double khi, final double gamma) { + super(referenceSimplex); + + this.khi = khi; + this.gamma = gamma; + } + + /** {@inheritDoc} */ + @Override + public void iterate(final MultivariateFunction evaluationFunction, + final Comparator comparator) { + // Save the original simplex. + final PointValuePair[] original = getPoints(); + final PointValuePair best = original[0]; + + // Perform a reflection step. + final PointValuePair reflected = evaluateNewSimplex(evaluationFunction, + original, 1, comparator); + if (comparator.compare(reflected, best) < 0) { + // Compute the expanded simplex. + final PointValuePair[] reflectedSimplex = getPoints(); + final PointValuePair expanded = evaluateNewSimplex(evaluationFunction, + original, khi, comparator); + if (comparator.compare(reflected, expanded) <= 0) { + // Keep the reflected simplex. + setPoints(reflectedSimplex); + } + // Keep the expanded simplex. + return; + } + + // Compute the contracted simplex. + evaluateNewSimplex(evaluationFunction, original, gamma, comparator); + + } + + /** + * Compute and evaluate a new simplex. + * + * @param evaluationFunction Evaluation function. + * @param original Original simplex (to be preserved). + * @param coeff Linear coefficient. + * @param comparator Comparator to use to sort simplex vertices from best + * to poorest. + * @return the best point in the transformed simplex. + * @throws org.apache.commons.math3.exception.TooManyEvaluationsException + * if the maximal number of evaluations is exceeded. + */ + private PointValuePair evaluateNewSimplex(final MultivariateFunction evaluationFunction, + final PointValuePair[] original, + final double coeff, + final Comparator comparator) { + final double[] xSmallest = original[0].getPointRef(); + // Perform a linear transformation on all the simplex points, + // except the first one. + setPoint(0, original[0]); + final int dim = getDimension(); + for (int i = 1; i < getSize(); i++) { + final double[] xOriginal = original[i].getPointRef(); + final double[] xTransformed = new double[dim]; + for (int j = 0; j < dim; j++) { + xTransformed[j] = xSmallest[j] + coeff * (xSmallest[j] - xOriginal[j]); + } + setPoint(i, new PointValuePair(xTransformed, Double.NaN, false)); + } + + // Evaluate the simplex. + evaluate(evaluationFunction, comparator); + + return getPoint(0); + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/NelderMeadSimplex.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/NelderMeadSimplex.java new file mode 100644 index 000000000..ea76ab049 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/NelderMeadSimplex.java @@ -0,0 +1,281 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.nonlinear.scalar.noderiv; + +import java.util.Comparator; + +import org.apache.commons.math3.optim.PointValuePair; +import org.apache.commons.math3.analysis.MultivariateFunction; + +/** + * This class implements the Nelder-Mead simplex algorithm. + * + * @version $Id: NelderMeadSimplex.java 1364392 2012-07-22 18:27:12Z tn $ + * @since 3.0 + */ +public class NelderMeadSimplex extends AbstractSimplex { + /** Default value for {@link #rho}: {@value}. */ + private static final double DEFAULT_RHO = 1; + /** Default value for {@link #khi}: {@value}. */ + private static final double DEFAULT_KHI = 2; + /** Default value for {@link #gamma}: {@value}. */ + private static final double DEFAULT_GAMMA = 0.5; + /** Default value for {@link #sigma}: {@value}. */ + private static final double DEFAULT_SIGMA = 0.5; + /** Reflection coefficient. */ + private final double rho; + /** Expansion coefficient. */ + private final double khi; + /** Contraction coefficient. */ + private final double gamma; + /** Shrinkage coefficient. */ + private final double sigma; + + /** + * Build a Nelder-Mead simplex with default coefficients. + * The default coefficients are 1.0 for rho, 2.0 for khi and 0.5 + * for both gamma and sigma. + * + * @param n Dimension of the simplex. + */ + public NelderMeadSimplex(final int n) { + this(n, 1d); + } + + /** + * Build a Nelder-Mead simplex with default coefficients. + * The default coefficients are 1.0 for rho, 2.0 for khi and 0.5 + * for both gamma and sigma. + * + * @param n Dimension of the simplex. + * @param sideLength Length of the sides of the default (hypercube) + * simplex. See {@link AbstractSimplex#AbstractSimplex(int,double)}. + */ + public NelderMeadSimplex(final int n, double sideLength) { + this(n, sideLength, + DEFAULT_RHO, DEFAULT_KHI, DEFAULT_GAMMA, DEFAULT_SIGMA); + } + + /** + * Build a Nelder-Mead simplex with specified coefficients. + * + * @param n Dimension of the simplex. See + * {@link AbstractSimplex#AbstractSimplex(int,double)}. + * @param sideLength Length of the sides of the default (hypercube) + * simplex. See {@link AbstractSimplex#AbstractSimplex(int,double)}. + * @param rho Reflection coefficient. + * @param khi Expansion coefficient. + * @param gamma Contraction coefficient. + * @param sigma Shrinkage coefficient. + */ + public NelderMeadSimplex(final int n, double sideLength, + final double rho, final double khi, + final double gamma, final double sigma) { + super(n, sideLength); + + this.rho = rho; + this.khi = khi; + this.gamma = gamma; + this.sigma = sigma; + } + + /** + * Build a Nelder-Mead simplex with specified coefficients. + * + * @param n Dimension of the simplex. See + * {@link AbstractSimplex#AbstractSimplex(int)}. + * @param rho Reflection coefficient. + * @param khi Expansion coefficient. + * @param gamma Contraction coefficient. + * @param sigma Shrinkage coefficient. + */ + public NelderMeadSimplex(final int n, + final double rho, final double khi, + final double gamma, final double sigma) { + this(n, 1d, rho, khi, gamma, sigma); + } + + /** + * Build a Nelder-Mead simplex with default coefficients. + * The default coefficients are 1.0 for rho, 2.0 for khi and 0.5 + * for both gamma and sigma. + * + * @param steps Steps along the canonical axes representing box edges. + * They may be negative but not zero. See + */ + public NelderMeadSimplex(final double[] steps) { + this(steps, DEFAULT_RHO, DEFAULT_KHI, DEFAULT_GAMMA, DEFAULT_SIGMA); + } + + /** + * Build a Nelder-Mead simplex with specified coefficients. + * + * @param steps Steps along the canonical axes representing box edges. + * They may be negative but not zero. See + * {@link AbstractSimplex#AbstractSimplex(double[])}. + * @param rho Reflection coefficient. + * @param khi Expansion coefficient. + * @param gamma Contraction coefficient. + * @param sigma Shrinkage coefficient. + * @throws IllegalArgumentException if one of the steps is zero. + */ + public NelderMeadSimplex(final double[] steps, + final double rho, final double khi, + final double gamma, final double sigma) { + super(steps); + + this.rho = rho; + this.khi = khi; + this.gamma = gamma; + this.sigma = sigma; + } + + /** + * Build a Nelder-Mead simplex with default coefficients. + * The default coefficients are 1.0 for rho, 2.0 for khi and 0.5 + * for both gamma and sigma. + * + * @param referenceSimplex Reference simplex. See + * {@link AbstractSimplex#AbstractSimplex(double[][])}. + */ + public NelderMeadSimplex(final double[][] referenceSimplex) { + this(referenceSimplex, DEFAULT_RHO, DEFAULT_KHI, DEFAULT_GAMMA, DEFAULT_SIGMA); + } + + /** + * Build a Nelder-Mead simplex with specified coefficients. + * + * @param referenceSimplex Reference simplex. See + * {@link AbstractSimplex#AbstractSimplex(double[][])}. + * @param rho Reflection coefficient. + * @param khi Expansion coefficient. + * @param gamma Contraction coefficient. + * @param sigma Shrinkage coefficient. + * @throws org.apache.commons.math3.exception.NotStrictlyPositiveException + * if the reference simplex does not contain at least one point. + * @throws org.apache.commons.math3.exception.DimensionMismatchException + * if there is a dimension mismatch in the reference simplex. + */ + public NelderMeadSimplex(final double[][] referenceSimplex, + final double rho, final double khi, + final double gamma, final double sigma) { + super(referenceSimplex); + + this.rho = rho; + this.khi = khi; + this.gamma = gamma; + this.sigma = sigma; + } + + /** {@inheritDoc} */ + @Override + public void iterate(final MultivariateFunction evaluationFunction, + final Comparator comparator) { + // The simplex has n + 1 points if dimension is n. + final int n = getDimension(); + + // Interesting values. + final PointValuePair best = getPoint(0); + final PointValuePair secondBest = getPoint(n - 1); + final PointValuePair worst = getPoint(n); + final double[] xWorst = worst.getPointRef(); + + // Compute the centroid of the best vertices (dismissing the worst + // point at index n). + final double[] centroid = new double[n]; + for (int i = 0; i < n; i++) { + final double[] x = getPoint(i).getPointRef(); + for (int j = 0; j < n; j++) { + centroid[j] += x[j]; + } + } + final double scaling = 1.0 / n; + for (int j = 0; j < n; j++) { + centroid[j] *= scaling; + } + + // compute the reflection point + final double[] xR = new double[n]; + for (int j = 0; j < n; j++) { + xR[j] = centroid[j] + rho * (centroid[j] - xWorst[j]); + } + final PointValuePair reflected + = new PointValuePair(xR, evaluationFunction.value(xR), false); + + if (comparator.compare(best, reflected) <= 0 && + comparator.compare(reflected, secondBest) < 0) { + // Accept the reflected point. + replaceWorstPoint(reflected, comparator); + } else if (comparator.compare(reflected, best) < 0) { + // Compute the expansion point. + final double[] xE = new double[n]; + for (int j = 0; j < n; j++) { + xE[j] = centroid[j] + khi * (xR[j] - centroid[j]); + } + final PointValuePair expanded + = new PointValuePair(xE, evaluationFunction.value(xE), false); + + if (comparator.compare(expanded, reflected) < 0) { + // Accept the expansion point. + replaceWorstPoint(expanded, comparator); + } else { + // Accept the reflected point. + replaceWorstPoint(reflected, comparator); + } + } else { + if (comparator.compare(reflected, worst) < 0) { + // Perform an outside contraction. + final double[] xC = new double[n]; + for (int j = 0; j < n; j++) { + xC[j] = centroid[j] + gamma * (xR[j] - centroid[j]); + } + final PointValuePair outContracted + = new PointValuePair(xC, evaluationFunction.value(xC), false); + if (comparator.compare(outContracted, reflected) <= 0) { + // Accept the contraction point. + replaceWorstPoint(outContracted, comparator); + return; + } + } else { + // Perform an inside contraction. + final double[] xC = new double[n]; + for (int j = 0; j < n; j++) { + xC[j] = centroid[j] - gamma * (centroid[j] - xWorst[j]); + } + final PointValuePair inContracted + = new PointValuePair(xC, evaluationFunction.value(xC), false); + + if (comparator.compare(inContracted, worst) < 0) { + // Accept the contraction point. + replaceWorstPoint(inContracted, comparator); + return; + } + } + + // Perform a shrink. + final double[] xSmallest = getPoint(0).getPointRef(); + for (int i = 1; i <= n; i++) { + final double[] x = getPoint(i).getPoint(); + for (int j = 0; j < n; j++) { + x[j] = xSmallest[j] + sigma * (x[j] - xSmallest[j]); + } + setPoint(i, new PointValuePair(x, Double.NaN, false)); + } + evaluate(evaluationFunction, comparator); + } + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/PowellOptimizer.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/PowellOptimizer.java new file mode 100644 index 000000000..11625a128 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/PowellOptimizer.java @@ -0,0 +1,356 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.nonlinear.scalar.noderiv; + +import org.apache.commons.math3.util.FastMath; +import org.apache.commons.math3.util.MathArrays; +import org.apache.commons.math3.analysis.UnivariateFunction; +import org.apache.commons.math3.exception.NumberIsTooSmallException; +import org.apache.commons.math3.exception.NotStrictlyPositiveException; +import org.apache.commons.math3.optim.MaxEval; +import org.apache.commons.math3.optim.GoalType; +import org.apache.commons.math3.optim.PointValuePair; +import org.apache.commons.math3.optim.ConvergenceChecker; +import org.apache.commons.math3.optim.nonlinear.scalar.MultivariateOptimizer; +import org.apache.commons.math3.optim.univariate.BracketFinder; +import org.apache.commons.math3.optim.univariate.BrentOptimizer; +import org.apache.commons.math3.optim.univariate.UnivariatePointValuePair; +import org.apache.commons.math3.optim.univariate.SimpleUnivariateValueChecker; +import org.apache.commons.math3.optim.univariate.SearchInterval; +import org.apache.commons.math3.optim.univariate.UnivariateObjectiveFunction; + +/** + * Powell algorithm. + * This code is translated and adapted from the Python version of this + * algorithm (as implemented in module {@code optimize.py} v0.5 of + * SciPy). + *
+ * The default stopping criterion is based on the differences of the + * function value between two successive iterations. It is however possible + * to define a custom convergence checker that might terminate the algorithm + * earlier. + *
+ * The internal line search optimizer is a {@link BrentOptimizer} with a + * convergence checker set to {@link SimpleUnivariateValueChecker}. + * + * @version $Id: PowellOptimizer.java 1413594 2012-11-26 13:16:39Z erans $ + * @since 2.2 + */ +public class PowellOptimizer + extends MultivariateOptimizer { + /** + * Minimum relative tolerance. + */ + private static final double MIN_RELATIVE_TOLERANCE = 2 * FastMath.ulp(1d); + /** + * Relative threshold. + */ + private final double relativeThreshold; + /** + * Absolute threshold. + */ + private final double absoluteThreshold; + /** + * Line search. + */ + private final LineSearch line; + + /** + * This constructor allows to specify a user-defined convergence checker, + * in addition to the parameters that control the default convergence + * checking procedure. + *
+ * The internal line search tolerances are set to the square-root of their + * corresponding value in the multivariate optimizer. + * + * @param rel Relative threshold. + * @param abs Absolute threshold. + * @param checker Convergence checker. + * @throws NotStrictlyPositiveException if {@code abs <= 0}. + * @throws NumberIsTooSmallException if {@code rel < 2 * Math.ulp(1d)}. + */ + public PowellOptimizer(double rel, + double abs, + ConvergenceChecker checker) { + this(rel, abs, FastMath.sqrt(rel), FastMath.sqrt(abs), checker); + } + + /** + * This constructor allows to specify a user-defined convergence checker, + * in addition to the parameters that control the default convergence + * checking procedure and the line search tolerances. + * + * @param rel Relative threshold for this optimizer. + * @param abs Absolute threshold for this optimizer. + * @param lineRel Relative threshold for the internal line search optimizer. + * @param lineAbs Absolute threshold for the internal line search optimizer. + * @param checker Convergence checker. + * @throws NotStrictlyPositiveException if {@code abs <= 0}. + * @throws NumberIsTooSmallException if {@code rel < 2 * Math.ulp(1d)}. + */ + public PowellOptimizer(double rel, + double abs, + double lineRel, + double lineAbs, + ConvergenceChecker checker) { + super(checker); + + if (rel < MIN_RELATIVE_TOLERANCE) { + throw new NumberIsTooSmallException(rel, MIN_RELATIVE_TOLERANCE, true); + } + if (abs <= 0) { + throw new NotStrictlyPositiveException(abs); + } + relativeThreshold = rel; + absoluteThreshold = abs; + + // Create the line search optimizer. + line = new LineSearch(lineRel, + lineAbs); + } + + /** + * The parameters control the default convergence checking procedure. + *
+ * The internal line search tolerances are set to the square-root of their + * corresponding value in the multivariate optimizer. + * + * @param rel Relative threshold. + * @param abs Absolute threshold. + * @throws NotStrictlyPositiveException if {@code abs <= 0}. + * @throws NumberIsTooSmallException if {@code rel < 2 * Math.ulp(1d)}. + */ + public PowellOptimizer(double rel, + double abs) { + this(rel, abs, null); + } + + /** + * Builds an instance with the default convergence checking procedure. + * + * @param rel Relative threshold. + * @param abs Absolute threshold. + * @param lineRel Relative threshold for the internal line search optimizer. + * @param lineAbs Absolute threshold for the internal line search optimizer. + * @throws NotStrictlyPositiveException if {@code abs <= 0}. + * @throws NumberIsTooSmallException if {@code rel < 2 * Math.ulp(1d)}. + */ + public PowellOptimizer(double rel, + double abs, + double lineRel, + double lineAbs) { + this(rel, abs, lineRel, lineAbs, null); + } + + /** {@inheritDoc} */ + @Override + protected PointValuePair doOptimize() { + final GoalType goal = getGoalType(); + final double[] guess = getStartPoint(); + final int n = guess.length; + + final double[][] direc = new double[n][n]; + for (int i = 0; i < n; i++) { + direc[i][i] = 1; + } + + final ConvergenceChecker checker + = getConvergenceChecker(); + + double[] x = guess; + double fVal = computeObjectiveValue(x); + double[] x1 = x.clone(); + int iter = 0; + while (true) { + ++iter; + + double fX = fVal; + double fX2 = 0; + double delta = 0; + int bigInd = 0; + double alphaMin = 0; + + for (int i = 0; i < n; i++) { + final double[] d = MathArrays.copyOf(direc[i]); + + fX2 = fVal; + + final UnivariatePointValuePair optimum = line.search(x, d); + fVal = optimum.getValue(); + alphaMin = optimum.getPoint(); + final double[][] result = newPointAndDirection(x, d, alphaMin); + x = result[0]; + + if ((fX2 - fVal) > delta) { + delta = fX2 - fVal; + bigInd = i; + } + } + + // Default convergence check. + boolean stop = 2 * (fX - fVal) <= + (relativeThreshold * (FastMath.abs(fX) + FastMath.abs(fVal)) + + absoluteThreshold); + + final PointValuePair previous = new PointValuePair(x1, fX); + final PointValuePair current = new PointValuePair(x, fVal); + if (!stop) { // User-defined stopping criteria. + if (checker != null) { + stop = checker.converged(iter, previous, current); + } + } + if (stop) { + if (goal == GoalType.MINIMIZE) { + return (fVal < fX) ? current : previous; + } else { + return (fVal > fX) ? current : previous; + } + } + + final double[] d = new double[n]; + final double[] x2 = new double[n]; + for (int i = 0; i < n; i++) { + d[i] = x[i] - x1[i]; + x2[i] = 2 * x[i] - x1[i]; + } + + x1 = x.clone(); + fX2 = computeObjectiveValue(x2); + + if (fX > fX2) { + double t = 2 * (fX + fX2 - 2 * fVal); + double temp = fX - fVal - delta; + t *= temp * temp; + temp = fX - fX2; + t -= delta * temp * temp; + + if (t < 0.0) { + final UnivariatePointValuePair optimum = line.search(x, d); + fVal = optimum.getValue(); + alphaMin = optimum.getPoint(); + final double[][] result = newPointAndDirection(x, d, alphaMin); + x = result[0]; + + final int lastInd = n - 1; + direc[bigInd] = direc[lastInd]; + direc[lastInd] = result[1]; + } + } + } + } + + /** + * Compute a new point (in the original space) and a new direction + * vector, resulting from the line search. + * + * @param p Point used in the line search. + * @param d Direction used in the line search. + * @param optimum Optimum found by the line search. + * @return a 2-element array containing the new point (at index 0) and + * the new direction (at index 1). + */ + private double[][] newPointAndDirection(double[] p, + double[] d, + double optimum) { + final int n = p.length; + final double[] nP = new double[n]; + final double[] nD = new double[n]; + for (int i = 0; i < n; i++) { + nD[i] = d[i] * optimum; + nP[i] = p[i] + nD[i]; + } + + final double[][] result = new double[2][]; + result[0] = nP; + result[1] = nD; + + return result; + } + + /** + * Class for finding the minimum of the objective function along a given + * direction. + */ + private class LineSearch extends BrentOptimizer { + /** + * Value that will pass the precondition check for {@link BrentOptimizer} + * but will not pass the convergence check, so that the custom checker + * will always decide when to stop the line search. + */ + private static final double REL_TOL_UNUSED = 1e-15; + /** + * Value that will pass the precondition check for {@link BrentOptimizer} + * but will not pass the convergence check, so that the custom checker + * will always decide when to stop the line search. + */ + private static final double ABS_TOL_UNUSED = Double.MIN_VALUE; + /** + * Automatic bracketing. + */ + private final BracketFinder bracket = new BracketFinder(); + + /** + * The "BrentOptimizer" default stopping criterion uses the tolerances + * to check the domain (point) values, not the function values. + * We thus create a custom checker to use function values. + * + * @param rel Relative threshold. + * @param abs Absolute threshold. + */ + LineSearch(double rel, + double abs) { + super(REL_TOL_UNUSED, + ABS_TOL_UNUSED, + new SimpleUnivariateValueChecker(rel, abs)); + } + + /** + * Find the minimum of the function {@code f(p + alpha * d)}. + * + * @param p Starting point. + * @param d Search direction. + * @return the optimum. + * @throws org.apache.commons.math3.exception.TooManyEvaluationsException + * if the number of evaluations is exceeded. + */ + public UnivariatePointValuePair search(final double[] p, final double[] d) { + final int n = p.length; + final UnivariateFunction f = new UnivariateFunction() { + public double value(double alpha) { + final double[] x = new double[n]; + for (int i = 0; i < n; i++) { + x[i] = p[i] + alpha * d[i]; + } + final double obj = PowellOptimizer.this.computeObjectiveValue(x); + return obj; + } + }; + + final GoalType goal = PowellOptimizer.this.getGoalType(); + bracket.search(f, goal, 0, 1); + // Passing "MAX_VALUE" as a dummy value because it is the enclosing + // class that counts the number of evaluations (and will eventually + // generate the exception). + return optimize(new MaxEval(Integer.MAX_VALUE), + new UnivariateObjectiveFunction(f), + goal, + new SearchInterval(bracket.getLo(), + bracket.getHi(), + bracket.getMid())); + } + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/SimplexOptimizer.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/SimplexOptimizer.java new file mode 100644 index 000000000..04d80d154 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/SimplexOptimizer.java @@ -0,0 +1,201 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.nonlinear.scalar.noderiv; + +import java.util.Comparator; +import org.apache.commons.math3.analysis.MultivariateFunction; +import org.apache.commons.math3.exception.NullArgumentException; +import org.apache.commons.math3.optim.GoalType; +import org.apache.commons.math3.optim.ConvergenceChecker; +import org.apache.commons.math3.optim.PointValuePair; +import org.apache.commons.math3.optim.SimpleValueChecker; +import org.apache.commons.math3.optim.OptimizationData; +import org.apache.commons.math3.optim.nonlinear.scalar.MultivariateOptimizer; + +/** + * This class implements simplex-based direct search optimization. + * + *

+ * Direct search methods only use objective function values, they do + * not need derivatives and don't either try to compute approximation + * of the derivatives. According to a 1996 paper by Margaret H. Wright + * (Direct + * Search Methods: Once Scorned, Now Respectable), they are used + * when either the computation of the derivative is impossible (noisy + * functions, unpredictable discontinuities) or difficult (complexity, + * computation cost). In the first cases, rather than an optimum, a + * not too bad point is desired. In the latter cases, an + * optimum is desired but cannot be reasonably found. In all cases + * direct search methods can be useful. + *

+ *

+ * Simplex-based direct search methods are based on comparison of + * the objective function values at the vertices of a simplex (which is a + * set of n+1 points in dimension n) that is updated by the algorithms + * steps. + *

+ *

+ * The simplex update procedure ({@link NelderMeadSimplex} or + * {@link MultiDirectionalSimplex}) must be passed to the + * {@code optimize} method. + *

+ *

+ * Each call to {@code optimize} will re-use the start configuration of + * the current simplex and move it such that its first vertex is at the + * provided start point of the optimization. + * If the {@code optimize} method is called to solve a different problem + * and the number of parameters change, the simplex must be re-initialized + * to one with the appropriate dimensions. + *

+ *

+ * Convergence is checked by providing the worst points of + * previous and current simplex to the convergence checker, not the best + * ones. + *

+ *

+ * This simplex optimizer implementation does not directly support constrained + * optimization with simple bounds; so, for such optimizations, either a more + * dedicated algorithm must be used like + * {@link CMAESOptimizer} or {@link BOBYQAOptimizer}, or the objective + * function must be wrapped in an adapter like + * {@link org.apache.commons.math3.optim.nonlinear.scalar.MultivariateFunctionMappingAdapter + * MultivariateFunctionMappingAdapter} or + * {@link org.apache.commons.math3.optim.nonlinear.scalar.MultivariateFunctionPenaltyAdapter + * MultivariateFunctionPenaltyAdapter}. + *

+ * + * @version $Id: SimplexOptimizer.java 1397759 2012-10-13 01:12:58Z erans $ + * @since 3.0 + */ +public class SimplexOptimizer extends MultivariateOptimizer { + /** Simplex update rule. */ + private AbstractSimplex simplex; + + /** + * @param checker Convergence checker. + */ + public SimplexOptimizer(ConvergenceChecker checker) { + super(checker); + } + + /** + * @param rel Relative threshold. + * @param abs Absolute threshold. + */ + public SimplexOptimizer(double rel, double abs) { + this(new SimpleValueChecker(rel, abs)); + } + + /** + * {@inheritDoc} + * + * @param optData Optimization data. + * The following data will be looked for: + *
    + *
  • {@link org.apache.commons.math3.optim.MaxEval}
  • + *
  • {@link org.apache.commons.math3.optim.InitialGuess}
  • + *
  • {@link org.apache.commons.math3.optim.SimpleBounds}
  • + *
  • {@link AbstractSimplex}
  • + *
+ * @return {@inheritDoc} + */ + @Override + public PointValuePair optimize(OptimizationData... optData) { + // Retrieve settings + parseOptimizationData(optData); + // Set up base class and perform computation. + return super.optimize(optData); + } + + /** {@inheritDoc} */ + @Override + protected PointValuePair doOptimize() { + if (simplex == null) { + throw new NullArgumentException(); + } + + // Indirect call to "computeObjectiveValue" in order to update the + // evaluations counter. + final MultivariateFunction evalFunc + = new MultivariateFunction() { + public double value(double[] point) { + return computeObjectiveValue(point); + } + }; + + final boolean isMinim = getGoalType() == GoalType.MINIMIZE; + final Comparator comparator + = new Comparator() { + public int compare(final PointValuePair o1, + final PointValuePair o2) { + final double v1 = o1.getValue(); + final double v2 = o2.getValue(); + return isMinim ? Double.compare(v1, v2) : Double.compare(v2, v1); + } + }; + + // Initialize search. + simplex.build(getStartPoint()); + simplex.evaluate(evalFunc, comparator); + + PointValuePair[] previous = null; + int iteration = 0; + final ConvergenceChecker checker = getConvergenceChecker(); + while (true) { + if (iteration > 0) { + boolean converged = true; + for (int i = 0; i < simplex.getSize(); i++) { + PointValuePair prev = previous[i]; + converged = converged && + checker.converged(iteration, prev, simplex.getPoint(i)); + } + if (converged) { + // We have found an optimum. + return simplex.getPoint(0); + } + } + + // We still need to search. + previous = simplex.getPoints(); + simplex.iterate(evalFunc, comparator); + ++iteration; + } + } + + /** + * Scans the list of (required and optional) optimization data that + * characterize the problem. + * + * @param optData Optimization data. + * The following data will be looked for: + *
    + *
  • {@link AbstractSimplex}
  • + *
+ */ + private void parseOptimizationData(OptimizationData... optData) { + // The existing values (as set by the previous call) are reused if + // not provided in the argument list. + for (OptimizationData data : optData) { + if (data instanceof AbstractSimplex) { + simplex = (AbstractSimplex) data; + // If more data must be parsed, this statement _must_ be + // changed to "continue". + break; + } + } + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/package-info.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/package-info.java new file mode 100644 index 000000000..25af94bc3 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/package-info.java @@ -0,0 +1,21 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.nonlinear.scalar.noderiv; + +/** + * This package provides optimization algorithms that do not require derivatives. + */ diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/package-info.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/package-info.java new file mode 100644 index 000000000..a3ee653ae --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/package-info.java @@ -0,0 +1,21 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.nonlinear.scalar; + +/** + * Algorithms for optimizing a scalar function. + */ diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/vector/JacobianMultivariateVectorOptimizer.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/vector/JacobianMultivariateVectorOptimizer.java new file mode 100644 index 000000000..0997c6667 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/vector/JacobianMultivariateVectorOptimizer.java @@ -0,0 +1,114 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.nonlinear.vector; + +import org.apache.commons.math3.analysis.MultivariateMatrixFunction; +import org.apache.commons.math3.optim.ConvergenceChecker; +import org.apache.commons.math3.optim.OptimizationData; +import org.apache.commons.math3.optim.PointVectorValuePair; +import org.apache.commons.math3.exception.TooManyEvaluationsException; +import org.apache.commons.math3.exception.DimensionMismatchException; + +/** + * Base class for implementing optimizers for multivariate vector + * differentiable functions. + * It contains boiler-plate code for dealing with Jacobian evaluation. + * It assumes that the rows of the Jacobian matrix iterate on the model + * functions while the columns iterate on the parameters; thus, the numbers + * of rows is equal to the dimension of the {@link Target} while the + * number of columns is equal to the dimension of the + * {@link org.apache.commons.math3.optim.InitialGuess InitialGuess}. + * + * @version $Id$ + * @since 3.1 + */ +public abstract class JacobianMultivariateVectorOptimizer + extends MultivariateVectorOptimizer { + /** + * Jacobian of the model function. + */ + private MultivariateMatrixFunction jacobian; + + /** + * @param checker Convergence checker. + */ + protected JacobianMultivariateVectorOptimizer(ConvergenceChecker checker) { + super(checker); + } + + /** + * Computes the Jacobian matrix. + * + * @param params Point at which the Jacobian must be evaluated. + * @return the Jacobian at the specified point. + */ + protected double[][] computeJacobian(final double[] params) { + return jacobian.value(params); + } + + /** + * {@inheritDoc} + * + * @param optData Optimization data. The following data will be looked for: + *
    + *
  • {@link org.apache.commons.math3.optim.MaxEval}
  • + *
  • {@link org.apache.commons.math3.optim.InitialGuess}
  • + *
  • {@link org.apache.commons.math3.optim.SimpleBounds}
  • + *
  • {@link Target}
  • + *
  • {@link Weight}
  • + *
  • {@link ModelFunction}
  • + *
  • {@link ModelFunctionJacobian}
  • + *
+ * @return {@inheritDoc} + * @throws TooManyEvaluationsException if the maximal number of + * evaluations is exceeded. + * @throws DimensionMismatchException if the initial guess, target, and weight + * arguments have inconsistent dimensions. + */ + @Override + public PointVectorValuePair optimize(OptimizationData... optData) + throws TooManyEvaluationsException, + DimensionMismatchException { + // Retrieve settings. + parseOptimizationData(optData); + // Set up base class and perform computation. + return super.optimize(optData); + } + + /** + * Scans the list of (required and optional) optimization data that + * characterize the problem. + * + * @param optData Optimization data. + * The following data will be looked for: + *
    + *
  • {@link ModelFunctionJacobian}
  • + *
+ */ + private void parseOptimizationData(OptimizationData... optData) { + // The existing values (as set by the previous call) are reused if + // not provided in the argument list. + for (OptimizationData data : optData) { + if (data instanceof ModelFunctionJacobian) { + jacobian = ((ModelFunctionJacobian) data).getModelFunctionJacobian(); + // If more data must be parsed, this statement _must_ be + // changed to "continue". + break; + } + } + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/vector/ModelFunction.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/vector/ModelFunction.java new file mode 100644 index 000000000..586997ae0 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/vector/ModelFunction.java @@ -0,0 +1,47 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.nonlinear.vector; + +import org.apache.commons.math3.analysis.MultivariateVectorFunction; +import org.apache.commons.math3.optim.OptimizationData; + +/** + * Model (vector) function to be optimized. + * + * @version $Id$ + * @since 3.1 + */ +public class ModelFunction implements OptimizationData { + /** Function to be optimized. */ + private final MultivariateVectorFunction model; + + /** + * @param m Model function to be optimized. + */ + public ModelFunction(MultivariateVectorFunction m) { + model = m; + } + + /** + * Gets the model function to be optimized. + * + * @return the model function. + */ + public MultivariateVectorFunction getModelFunction() { + return model; + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/vector/ModelFunctionJacobian.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/vector/ModelFunctionJacobian.java new file mode 100644 index 000000000..774f06cd6 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/vector/ModelFunctionJacobian.java @@ -0,0 +1,47 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.nonlinear.vector; + +import org.apache.commons.math3.analysis.MultivariateMatrixFunction; +import org.apache.commons.math3.optim.OptimizationData; + +/** + * Jacobian of the model (vector) function to be optimized. + * + * @version $Id$ + * @since 3.1 + */ +public class ModelFunctionJacobian implements OptimizationData { + /** Function to be optimized. */ + private final MultivariateMatrixFunction jacobian; + + /** + * @param j Jacobian of the model function to be optimized. + */ + public ModelFunctionJacobian(MultivariateMatrixFunction j) { + jacobian = j; + } + + /** + * Gets the Jacobian of the model function to be optimized. + * + * @return the model function Jacobian. + */ + public MultivariateMatrixFunction getModelFunctionJacobian() { + return jacobian; + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/vector/MultiStartMultivariateVectorOptimizer.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/vector/MultiStartMultivariateVectorOptimizer.java new file mode 100644 index 000000000..c90a5b373 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/vector/MultiStartMultivariateVectorOptimizer.java @@ -0,0 +1,121 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.nonlinear.vector; + +import java.util.Collections; +import java.util.List; +import java.util.ArrayList; +import java.util.Comparator; +import org.apache.commons.math3.exception.NotStrictlyPositiveException; +import org.apache.commons.math3.exception.NullArgumentException; +import org.apache.commons.math3.linear.RealMatrix; +import org.apache.commons.math3.linear.RealVector; +import org.apache.commons.math3.linear.ArrayRealVector; +import org.apache.commons.math3.random.RandomVectorGenerator; +import org.apache.commons.math3.optim.BaseMultiStartMultivariateOptimizer; +import org.apache.commons.math3.optim.PointVectorValuePair; + +/** + * Multi-start optimizer for a (vector) model function. + * + * This class wraps an optimizer in order to use it several times in + * turn with different starting points (trying to avoid being trapped + * in a local extremum when looking for a global one). + * + * @version $Id$ + * @since 3.0 + */ +public class MultiStartMultivariateVectorOptimizer + extends BaseMultiStartMultivariateOptimizer { + /** Underlying optimizer. */ + private final MultivariateVectorOptimizer optimizer; + /** Found optima. */ + private final List optima = new ArrayList(); + + /** + * Create a multi-start optimizer from a single-start optimizer. + * + * @param optimizer Single-start optimizer to wrap. + * @param starts Number of starts to perform. + * If {@code starts == 1}, the result will be same as if {@code optimizer} + * is called directly. + * @param generator Random vector generator to use for restarts. + * @throws NullArgumentException if {@code optimizer} or {@code generator} + * is {@code null}. + * @throws NotStrictlyPositiveException if {@code starts < 1}. + */ + public MultiStartMultivariateVectorOptimizer(final MultivariateVectorOptimizer optimizer, + final int starts, + final RandomVectorGenerator generator) + throws NullArgumentException, + NotStrictlyPositiveException { + super(optimizer, starts, generator); + this.optimizer = optimizer; + } + + /** + * {@inheritDoc} + */ + @Override + public PointVectorValuePair[] getOptima() { + Collections.sort(optima, getPairComparator()); + return optima.toArray(new PointVectorValuePair[0]); + } + + /** + * {@inheritDoc} + */ + @Override + protected void store(PointVectorValuePair optimum) { + optima.add(optimum); + } + + /** + * {@inheritDoc} + */ + @Override + protected void clear() { + optima.clear(); + } + + /** + * @return a comparator for sorting the optima. + */ + private Comparator getPairComparator() { + return new Comparator() { + private final RealVector target = new ArrayRealVector(optimizer.getTarget(), false); + private final RealMatrix weight = optimizer.getWeight(); + + public int compare(final PointVectorValuePair o1, + final PointVectorValuePair o2) { + if (o1 == null) { + return (o2 == null) ? 0 : 1; + } else if (o2 == null) { + return -1; + } + return Double.compare(weightedResidual(o1), + weightedResidual(o2)); + } + + private double weightedResidual(final PointVectorValuePair pv) { + final RealVector v = new ArrayRealVector(pv.getValueRef(), false); + final RealVector r = target.subtract(v); + return r.dotProduct(weight.operate(r)); + } + }; + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/vector/MultivariateVectorOptimizer.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/vector/MultivariateVectorOptimizer.java new file mode 100644 index 000000000..f43d387e9 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/vector/MultivariateVectorOptimizer.java @@ -0,0 +1,164 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.commons.math3.optim.nonlinear.vector; + +import org.apache.commons.math3.exception.TooManyEvaluationsException; +import org.apache.commons.math3.exception.DimensionMismatchException; +import org.apache.commons.math3.analysis.MultivariateVectorFunction; +import org.apache.commons.math3.optim.OptimizationData; +import org.apache.commons.math3.optim.BaseMultivariateOptimizer; +import org.apache.commons.math3.optim.ConvergenceChecker; +import org.apache.commons.math3.optim.PointVectorValuePair; +import org.apache.commons.math3.linear.RealMatrix; + +/** + * Base class for a multivariate vector function optimizer. + * + * @version $Id$ + * @since 3.1 + */ +public abstract class MultivariateVectorOptimizer + extends BaseMultivariateOptimizer { + /** Target values for the model function at optimum. */ + private double[] target; + /** Weight matrix. */ + private RealMatrix weightMatrix; + /** Model function. */ + private MultivariateVectorFunction model; + + /** + * @param checker Convergence checker. + */ + protected MultivariateVectorOptimizer(ConvergenceChecker checker) { + super(checker); + } + + /** + * Computes the objective function value. + * This method must be called by subclasses to enforce the + * evaluation counter limit. + * + * @param params Point at which the objective function must be evaluated. + * @return the objective function value at the specified point. + * @throws TooManyEvaluationsException if the maximal number of evaluations + * (of the model vector function) is exceeded. + */ + protected double[] computeObjectiveValue(double[] params) { + super.incrementEvaluationCount(); + return model.value(params); + } + + /** + * {@inheritDoc} + * + * @param optData Optimization data. The following data will be looked for: + *
    + *
  • {@link org.apache.commons.math3.optim.MaxEval}
  • + *
  • {@link org.apache.commons.math3.optim.InitialGuess}
  • + *
  • {@link org.apache.commons.math3.optim.SimpleBounds}
  • + *
  • {@link Target}
  • + *
  • {@link Weight}
  • + *
  • {@link ModelFunction}
  • + *
+ * @return {@inheritDoc} + * @throws TooManyEvaluationsException if the maximal number of + * evaluations is exceeded. + * @throws DimensionMismatchException if the initial guess, target, and weight + * arguments have inconsistent dimensions. + */ + public PointVectorValuePair optimize(OptimizationData... optData) + throws TooManyEvaluationsException, + DimensionMismatchException { + // Retrieve settings. + parseOptimizationData(optData); + // Check input consistency. + checkParameters(); + // Set up base class and perform computation. + return super.optimize(optData); + } + + /** + * Gets the weight matrix of the observations. + * + * @return the weight matrix. + */ + public RealMatrix getWeight() { + return weightMatrix.copy(); + } + /** + * Gets the observed values to be matched by the objective vector + * function. + * + * @return the target values. + */ + public double[] getTarget() { + return target.clone(); + } + + /** + * Gets the number of observed values. + * + * @return the length of the target vector. + */ + public int getTargetSize() { + return target.length; + } + + /** + * Scans the list of (required and optional) optimization data that + * characterize the problem. + * + * @param optData Optimization data. The following data will be looked for: + *
    + *
  • {@link Target}
  • + *
  • {@link Weight}
  • + *
  • {@link ModelFunction}
  • + *
+ */ + private void parseOptimizationData(OptimizationData... optData) { + // The existing values (as set by the previous call) are reused if + // not provided in the argument list. + for (OptimizationData data : optData) { + if (data instanceof ModelFunction) { + model = ((ModelFunction) data).getModelFunction(); + continue; + } + if (data instanceof Target) { + target = ((Target) data).getTarget(); + continue; + } + if (data instanceof Weight) { + weightMatrix = ((Weight) data).getWeight(); + continue; + } + } + } + + /** + * Check parameters consistency. + * + * @throws DimensionMismatchException if {@link #target} and + * {@link #weightMatrix} have inconsistent dimensions. + */ + private void checkParameters() { + if (target.length != weightMatrix.getColumnDimension()) { + throw new DimensionMismatchException(target.length, + weightMatrix.getColumnDimension()); + } + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/vector/Target.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/vector/Target.java new file mode 100644 index 000000000..d6fe12d6a --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/vector/Target.java @@ -0,0 +1,50 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.nonlinear.vector; + +import org.apache.commons.math3.optim.OptimizationData; + +/** + * Target of the optimization procedure. + * They are the values which the objective vector function must reproduce + * When the parameters of the model have been optimized. + *
+ * Immutable class. + * + * @version $Id: Target.java 1416643 2012-12-03 19:37:14Z tn $ + * @since 3.1 + */ +public class Target implements OptimizationData { + /** Target values (of the objective vector function). */ + private final double[] target; + + /** + * @param observations Target values. + */ + public Target(double[] observations) { + target = observations.clone(); + } + + /** + * Gets the initial guess. + * + * @return the initial guess. + */ + public double[] getTarget() { + return target.clone(); + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/vector/Weight.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/vector/Weight.java new file mode 100644 index 000000000..789bc256d --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/vector/Weight.java @@ -0,0 +1,71 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.nonlinear.vector; + +import org.apache.commons.math3.optim.OptimizationData; +import org.apache.commons.math3.linear.RealMatrix; +import org.apache.commons.math3.linear.MatrixUtils; +import org.apache.commons.math3.linear.NonSquareMatrixException; + +/** + * Weight matrix of the residuals between model and observations. + *
+ * Immutable class. + * + * @version $Id: Weight.java 1416643 2012-12-03 19:37:14Z tn $ + * @since 3.1 + */ +public class Weight implements OptimizationData { + /** Weight matrix. */ + private final RealMatrix weightMatrix; + + /** + * Creates a diagonal weight matrix. + * + * @param weight List of the values of the diagonal. + */ + public Weight(double[] weight) { + final int dim = weight.length; + weightMatrix = MatrixUtils.createRealMatrix(dim, dim); + for (int i = 0; i < dim; i++) { + weightMatrix.setEntry(i, i, weight[i]); + } + } + + /** + * @param weight Weight matrix. + * @throws NonSquareMatrixException if the argument is not + * a square matrix. + */ + public Weight(RealMatrix weight) { + if (weight.getColumnDimension() != weight.getRowDimension()) { + throw new NonSquareMatrixException(weight.getColumnDimension(), + weight.getRowDimension()); + } + + weightMatrix = weight.copy(); + } + + /** + * Gets the initial guess. + * + * @return the initial guess. + */ + public RealMatrix getWeight() { + return weightMatrix.copy(); + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/AbstractLeastSquaresOptimizer.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/AbstractLeastSquaresOptimizer.java new file mode 100644 index 000000000..b7bb6f575 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/AbstractLeastSquaresOptimizer.java @@ -0,0 +1,269 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.nonlinear.vector.jacobian; + +import org.apache.commons.math3.exception.DimensionMismatchException; +import org.apache.commons.math3.exception.TooManyEvaluationsException; +import org.apache.commons.math3.linear.ArrayRealVector; +import org.apache.commons.math3.linear.RealMatrix; +import org.apache.commons.math3.linear.DecompositionSolver; +import org.apache.commons.math3.linear.MatrixUtils; +import org.apache.commons.math3.linear.QRDecomposition; +import org.apache.commons.math3.linear.EigenDecomposition; +import org.apache.commons.math3.optim.OptimizationData; +import org.apache.commons.math3.optim.ConvergenceChecker; +import org.apache.commons.math3.optim.PointVectorValuePair; +import org.apache.commons.math3.optim.nonlinear.vector.Weight; +import org.apache.commons.math3.optim.nonlinear.vector.JacobianMultivariateVectorOptimizer; +import org.apache.commons.math3.util.FastMath; + +/** + * Base class for implementing least-squares optimizers. + * It provides methods for error estimation. + * + * @version $Id$ + * @since 3.1 + */ +public abstract class AbstractLeastSquaresOptimizer + extends JacobianMultivariateVectorOptimizer { + /** Square-root of the weight matrix. */ + private RealMatrix weightMatrixSqrt; + /** Cost value (square root of the sum of the residuals). */ + private double cost; + + /** + * @param checker Convergence checker. + */ + protected AbstractLeastSquaresOptimizer(ConvergenceChecker checker) { + super(checker); + } + + /** + * Computes the weighted Jacobian matrix. + * + * @param params Model parameters at which to compute the Jacobian. + * @return the weighted Jacobian: W1/2 J. + * @throws DimensionMismatchException if the Jacobian dimension does not + * match problem dimension. + */ + protected RealMatrix computeWeightedJacobian(double[] params) { + return weightMatrixSqrt.multiply(MatrixUtils.createRealMatrix(computeJacobian(params))); + } + + /** + * Computes the cost. + * + * @param residuals Residuals. + * @return the cost. + * @see #computeResiduals(double[]) + */ + protected double computeCost(double[] residuals) { + final ArrayRealVector r = new ArrayRealVector(residuals); + return FastMath.sqrt(r.dotProduct(getWeight().operate(r))); + } + + /** + * Gets the root-mean-square (RMS) value. + * + * The RMS the root of the arithmetic mean of the square of all weighted + * residuals. + * This is related to the criterion that is minimized by the optimizer + * as follows: If c if the criterion, and n is the + * number of measurements, then the RMS is sqrt (c/n). + * + * @return the RMS value. + */ + public double getRMS() { + return FastMath.sqrt(getChiSquare() / getTargetSize()); + } + + /** + * Get a Chi-Square-like value assuming the N residuals follow N + * distinct normal distributions centered on 0 and whose variances are + * the reciprocal of the weights. + * @return chi-square value + */ + public double getChiSquare() { + return cost * cost; + } + + /** + * Gets the square-root of the weight matrix. + * + * @return the square-root of the weight matrix. + */ + public RealMatrix getWeightSquareRoot() { + return weightMatrixSqrt.copy(); + } + + /** + * Sets the cost. + * + * @param cost Cost value. + */ + protected void setCost(double cost) { + this.cost = cost; + } + + /** + * Get the covariance matrix of the optimized parameters. + *
+ * Note that this operation involves the inversion of the + * JTJ matrix, where {@code J} is the + * Jacobian matrix. + * The {@code threshold} parameter is a way for the caller to specify + * that the result of this computation should be considered meaningless, + * and thus trigger an exception. + * + * @param params Model parameters. + * @param threshold Singularity threshold. + * @return the covariance matrix. + * @throws org.apache.commons.math3.linear.SingularMatrixException + * if the covariance matrix cannot be computed (singular problem). + */ + public double[][] computeCovariances(double[] params, + double threshold) { + // Set up the Jacobian. + final RealMatrix j = computeWeightedJacobian(params); + + // Compute transpose(J)J. + final RealMatrix jTj = j.transpose().multiply(j); + + // Compute the covariances matrix. + final DecompositionSolver solver + = new QRDecomposition(jTj, threshold).getSolver(); + return solver.getInverse().getData(); + } + + /** + * Computes an estimate of the standard deviation of the parameters. The + * returned values are the square root of the diagonal coefficients of the + * covariance matrix, {@code sd(a[i]) ~= sqrt(C[i][i])}, where {@code a[i]} + * is the optimized value of the {@code i}-th parameter, and {@code C} is + * the covariance matrix. + * + * @param params Model parameters. + * @param covarianceSingularityThreshold Singularity threshold (see + * {@link #computeCovariances(double[],double) computeCovariances}). + * @return an estimate of the standard deviation of the optimized parameters + * @throws org.apache.commons.math3.linear.SingularMatrixException + * if the covariance matrix cannot be computed. + */ + public double[] computeSigma(double[] params, + double covarianceSingularityThreshold) { + final int nC = params.length; + final double[] sig = new double[nC]; + final double[][] cov = computeCovariances(params, covarianceSingularityThreshold); + for (int i = 0; i < nC; ++i) { + sig[i] = FastMath.sqrt(cov[i][i]); + } + return sig; + } + + /** + * {@inheritDoc} + * + * @param optData Optimization data. The following data will be looked for: + *
    + *
  • {@link org.apache.commons.math3.optim.MaxEval}
  • + *
  • {@link org.apache.commons.math3.optim.InitialGuess}
  • + *
  • {@link org.apache.commons.math3.optim.SimpleBounds}
  • + *
  • {@link org.apache.commons.math3.optim.nonlinear.vector.Target}
  • + *
  • {@link org.apache.commons.math3.optim.nonlinear.vector.Weight}
  • + *
  • {@link org.apache.commons.math3.optim.nonlinear.vector.ModelFunction}
  • + *
  • {@link org.apache.commons.math3.optim.nonlinear.vector.ModelFunctionJacobian}
  • + *
+ * @return {@inheritDoc} + * @throws TooManyEvaluationsException if the maximal number of + * evaluations is exceeded. + * @throws DimensionMismatchException if the initial guess, target, and weight + * arguments have inconsistent dimensions. + */ + @Override + public PointVectorValuePair optimize(OptimizationData... optData) + throws TooManyEvaluationsException { + // Retrieve settings. + parseOptimizationData(optData); + // Set up base class and perform computation. + return super.optimize(optData); + } + + /** + * Computes the residuals. + * The residual is the difference between the observed (target) + * values and the model (objective function) value. + * There is one residual for each element of the vector-valued + * function. + * + * @param objectiveValue Value of the the objective function. This is + * the value returned from a call to + * {@link #computeObjectiveValue(double[]) computeObjectiveValue} + * (whose array argument contains the model parameters). + * @return the residuals. + * @throws DimensionMismatchException if {@code params} has a wrong + * length. + */ + protected double[] computeResiduals(double[] objectiveValue) { + final double[] target = getTarget(); + if (objectiveValue.length != target.length) { + throw new DimensionMismatchException(target.length, + objectiveValue.length); + } + + final double[] residuals = new double[target.length]; + for (int i = 0; i < target.length; i++) { + residuals[i] = target[i] - objectiveValue[i]; + } + + return residuals; + } + + /** + * Scans the list of (required and optional) optimization data that + * characterize the problem. + * If the weight matrix is specified, the {@link #weightMatrixSqrt} + * field is recomputed. + * + * @param optData Optimization data. The following data will be looked for: + *
    + *
  • {@link Weight}
  • + *
+ */ + private void parseOptimizationData(OptimizationData... optData) { + // The existing values (as set by the previous call) are reused if + // not provided in the argument list. + for (OptimizationData data : optData) { + if (data instanceof Weight) { + weightMatrixSqrt = squareRoot(((Weight) data).getWeight()); + // If more data must be parsed, this statement _must_ be + // changed to "continue". + break; + } + } + } + + /** + * Computes the square-root of the weight matrix. + * + * @param m Symmetric, positive-definite (weight) matrix. + * @return the square-root of the weight matrix. + */ + private RealMatrix squareRoot(RealMatrix m) { + final EigenDecomposition dec = new EigenDecomposition(m); + return dec.getSquareRoot(); + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/GaussNewtonOptimizer.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/GaussNewtonOptimizer.java new file mode 100644 index 000000000..6aa684dd5 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/GaussNewtonOptimizer.java @@ -0,0 +1,162 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.nonlinear.vector.jacobian; + +import org.apache.commons.math3.exception.ConvergenceException; +import org.apache.commons.math3.exception.NullArgumentException; +import org.apache.commons.math3.exception.MathInternalError; +import org.apache.commons.math3.exception.util.LocalizedFormats; +import org.apache.commons.math3.linear.ArrayRealVector; +import org.apache.commons.math3.linear.BlockRealMatrix; +import org.apache.commons.math3.linear.DecompositionSolver; +import org.apache.commons.math3.linear.LUDecomposition; +import org.apache.commons.math3.linear.QRDecomposition; +import org.apache.commons.math3.linear.RealMatrix; +import org.apache.commons.math3.linear.SingularMatrixException; +import org.apache.commons.math3.optim.ConvergenceChecker; +import org.apache.commons.math3.optim.PointVectorValuePair; + +/** + * Gauss-Newton least-squares solver. + *

+ * This class solve a least-square problem by solving the normal equations + * of the linearized problem at each iteration. Either LU decomposition or + * QR decomposition can be used to solve the normal equations. LU decomposition + * is faster but QR decomposition is more robust for difficult problems. + *

+ * + * @version $Id: GaussNewtonOptimizer.java 1416643 2012-12-03 19:37:14Z tn $ + * @since 2.0 + * + */ +public class GaussNewtonOptimizer extends AbstractLeastSquaresOptimizer { + /** Indicator for using LU decomposition. */ + private final boolean useLU; + + /** + * Simple constructor with default settings. + * The normal equations will be solved using LU decomposition. + * + * @param checker Convergence checker. + */ + public GaussNewtonOptimizer(ConvergenceChecker checker) { + this(true, checker); + } + + /** + * @param useLU If {@code true}, the normal equations will be solved + * using LU decomposition, otherwise they will be solved using QR + * decomposition. + * @param checker Convergence checker. + */ + public GaussNewtonOptimizer(final boolean useLU, + ConvergenceChecker checker) { + super(checker); + this.useLU = useLU; + } + + /** {@inheritDoc} */ + @Override + public PointVectorValuePair doOptimize() { + final ConvergenceChecker checker + = getConvergenceChecker(); + + // Computation will be useless without a checker (see "for-loop"). + if (checker == null) { + throw new NullArgumentException(); + } + + final double[] targetValues = getTarget(); + final int nR = targetValues.length; // Number of observed data. + + final RealMatrix weightMatrix = getWeight(); + // Diagonal of the weight matrix. + final double[] residualsWeights = new double[nR]; + for (int i = 0; i < nR; i++) { + residualsWeights[i] = weightMatrix.getEntry(i, i); + } + + final double[] currentPoint = getStartPoint(); + final int nC = currentPoint.length; + + // iterate until convergence is reached + PointVectorValuePair current = null; + int iter = 0; + for (boolean converged = false; !converged;) { + ++iter; + + // evaluate the objective function and its jacobian + PointVectorValuePair previous = current; + // Value of the objective function at "currentPoint". + final double[] currentObjective = computeObjectiveValue(currentPoint); + final double[] currentResiduals = computeResiduals(currentObjective); + final RealMatrix weightedJacobian = computeWeightedJacobian(currentPoint); + current = new PointVectorValuePair(currentPoint, currentObjective); + + // build the linear problem + final double[] b = new double[nC]; + final double[][] a = new double[nC][nC]; + for (int i = 0; i < nR; ++i) { + + final double[] grad = weightedJacobian.getRow(i); + final double weight = residualsWeights[i]; + final double residual = currentResiduals[i]; + + // compute the normal equation + final double wr = weight * residual; + for (int j = 0; j < nC; ++j) { + b[j] += wr * grad[j]; + } + + // build the contribution matrix for measurement i + for (int k = 0; k < nC; ++k) { + double[] ak = a[k]; + double wgk = weight * grad[k]; + for (int l = 0; l < nC; ++l) { + ak[l] += wgk * grad[l]; + } + } + } + + try { + // solve the linearized least squares problem + RealMatrix mA = new BlockRealMatrix(a); + DecompositionSolver solver = useLU ? + new LUDecomposition(mA).getSolver() : + new QRDecomposition(mA).getSolver(); + final double[] dX = solver.solve(new ArrayRealVector(b, false)).toArray(); + // update the estimated parameters + for (int i = 0; i < nC; ++i) { + currentPoint[i] += dX[i]; + } + } catch (SingularMatrixException e) { + throw new ConvergenceException(LocalizedFormats.UNABLE_TO_SOLVE_SINGULAR_PROBLEM); + } + + // Check convergence. + if (previous != null) { + converged = checker.converged(iter, previous, current); + if (converged) { + setCost(computeCost(currentResiduals)); + return current; + } + } + } + // Must never happen. + throw new MathInternalError(); + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/LevenbergMarquardtOptimizer.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/LevenbergMarquardtOptimizer.java new file mode 100644 index 000000000..e3b2a3fa5 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/LevenbergMarquardtOptimizer.java @@ -0,0 +1,939 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.nonlinear.vector.jacobian; + +import java.util.Arrays; +import org.apache.commons.math3.exception.ConvergenceException; +import org.apache.commons.math3.exception.util.LocalizedFormats; +import org.apache.commons.math3.optim.PointVectorValuePair; +import org.apache.commons.math3.optim.ConvergenceChecker; +import org.apache.commons.math3.linear.RealMatrix; +import org.apache.commons.math3.util.Precision; +import org.apache.commons.math3.util.FastMath; + + +/** + * This class solves a least-squares problem using the Levenberg-Marquardt algorithm. + * + *

This implementation should work even for over-determined systems + * (i.e. systems having more point than equations). Over-determined systems + * are solved by ignoring the point which have the smallest impact according + * to their jacobian column norm. Only the rank of the matrix and some loop bounds + * are changed to implement this.

+ * + *

The resolution engine is a simple translation of the MINPACK lmder routine with minor + * changes. The changes include the over-determined resolution, the use of + * inherited convergence checker and the Q.R. decomposition which has been + * rewritten following the algorithm described in the + * P. Lascaux and R. Theodor book Analyse numérique matricielle + * appliquée à l'art de l'ingénieur, Masson 1986.

+ *

The authors of the original fortran version are: + *

    + *
  • Argonne National Laboratory. MINPACK project. March 1980
  • + *
  • Burton S. Garbow
  • + *
  • Kenneth E. Hillstrom
  • + *
  • Jorge J. More
  • + *
+ * The redistribution policy for MINPACK is available here, for convenience, it + * is reproduced below.

+ * + * + * + * + *
+ * Minpack Copyright Notice (1999) University of Chicago. + * All rights reserved + *
+ * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + *
    + *
  1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer.
  2. + *
  3. Redistributions in binary form must reproduce the above + * copyright notice, this list of conditions and the following + * disclaimer in the documentation and/or other materials provided + * with the distribution.
  4. + *
  5. The end-user documentation included with the redistribution, if any, + * must include the following acknowledgment: + * This product includes software developed by the University of + * Chicago, as Operator of Argonne National Laboratory. + * Alternately, this acknowledgment may appear in the software itself, + * if and wherever such third-party acknowledgments normally appear.
  6. + *
  7. WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS" + * WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER, THE + * UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND + * THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES + * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE + * OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY + * OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR + * USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF + * THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4) + * DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION + * UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL + * BE CORRECTED.
  8. + *
  9. LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT + * HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF + * ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT, + * INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF + * ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF + * PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER + * SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT + * (INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE, + * EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE + * POSSIBILITY OF SUCH LOSS OR DAMAGES.
  10. + *
    + * + * @version $Id: LevenbergMarquardtOptimizer.java 1416643 2012-12-03 19:37:14Z tn $ + * @since 2.0 + */ +public class LevenbergMarquardtOptimizer + extends AbstractLeastSquaresOptimizer { + /** Number of solved point. */ + private int solvedCols; + /** Diagonal elements of the R matrix in the Q.R. decomposition. */ + private double[] diagR; + /** Norms of the columns of the jacobian matrix. */ + private double[] jacNorm; + /** Coefficients of the Householder transforms vectors. */ + private double[] beta; + /** Columns permutation array. */ + private int[] permutation; + /** Rank of the jacobian matrix. */ + private int rank; + /** Levenberg-Marquardt parameter. */ + private double lmPar; + /** Parameters evolution direction associated with lmPar. */ + private double[] lmDir; + /** Positive input variable used in determining the initial step bound. */ + private final double initialStepBoundFactor; + /** Desired relative error in the sum of squares. */ + private final double costRelativeTolerance; + /** Desired relative error in the approximate solution parameters. */ + private final double parRelativeTolerance; + /** Desired max cosine on the orthogonality between the function vector + * and the columns of the jacobian. */ + private final double orthoTolerance; + /** Threshold for QR ranking. */ + private final double qrRankingThreshold; + /** Weighted residuals. */ + private double[] weightedResidual; + /** Weighted Jacobian. */ + private double[][] weightedJacobian; + + /** + * Build an optimizer for least squares problems with default values + * for all the tuning parameters (see the {@link + * #LevenbergMarquardtOptimizer(double,double,double,double,double) + * other contructor}. + * The default values for the algorithm settings are: + *
      + *
    • Initial step bound factor: 100
    • + *
    • Cost relative tolerance: 1e-10
    • + *
    • Parameters relative tolerance: 1e-10
    • + *
    • Orthogonality tolerance: 1e-10
    • + *
    • QR ranking threshold: {@link Precision#SAFE_MIN}
    • + *
    + */ + public LevenbergMarquardtOptimizer() { + this(100, 1e-10, 1e-10, 1e-10, Precision.SAFE_MIN); + } + + /** + * Constructor that allows the specification of a custom convergence + * checker. + * Note that all the usual convergence checks will be disabled. + * The default values for the algorithm settings are: + *
      + *
    • Initial step bound factor: 100
    • + *
    • Cost relative tolerance: 1e-10
    • + *
    • Parameters relative tolerance: 1e-10
    • + *
    • Orthogonality tolerance: 1e-10
    • + *
    • QR ranking threshold: {@link Precision#SAFE_MIN}
    • + *
    + * + * @param checker Convergence checker. + */ + public LevenbergMarquardtOptimizer(ConvergenceChecker checker) { + this(100, checker, 1e-10, 1e-10, 1e-10, Precision.SAFE_MIN); + } + + /** + * Constructor that allows the specification of a custom convergence + * checker, in addition to the standard ones. + * + * @param initialStepBoundFactor Positive input variable used in + * determining the initial step bound. This bound is set to the + * product of initialStepBoundFactor and the euclidean norm of + * {@code diag * x} if non-zero, or else to {@code initialStepBoundFactor} + * itself. In most cases factor should lie in the interval + * {@code (0.1, 100.0)}. {@code 100} is a generally recommended value. + * @param checker Convergence checker. + * @param costRelativeTolerance Desired relative error in the sum of + * squares. + * @param parRelativeTolerance Desired relative error in the approximate + * solution parameters. + * @param orthoTolerance Desired max cosine on the orthogonality between + * the function vector and the columns of the Jacobian. + * @param threshold Desired threshold for QR ranking. If the squared norm + * of a column vector is smaller or equal to this threshold during QR + * decomposition, it is considered to be a zero vector and hence the rank + * of the matrix is reduced. + */ + public LevenbergMarquardtOptimizer(double initialStepBoundFactor, + ConvergenceChecker checker, + double costRelativeTolerance, + double parRelativeTolerance, + double orthoTolerance, + double threshold) { + super(checker); + this.initialStepBoundFactor = initialStepBoundFactor; + this.costRelativeTolerance = costRelativeTolerance; + this.parRelativeTolerance = parRelativeTolerance; + this.orthoTolerance = orthoTolerance; + this.qrRankingThreshold = threshold; + } + + /** + * Build an optimizer for least squares problems with default values + * for some of the tuning parameters (see the {@link + * #LevenbergMarquardtOptimizer(double,double,double,double,double) + * other contructor}. + * The default values for the algorithm settings are: + *
      + *
    • Initial step bound factor}: 100
    • + *
    • QR ranking threshold}: {@link Precision#SAFE_MIN}
    • + *
    + * + * @param costRelativeTolerance Desired relative error in the sum of + * squares. + * @param parRelativeTolerance Desired relative error in the approximate + * solution parameters. + * @param orthoTolerance Desired max cosine on the orthogonality between + * the function vector and the columns of the Jacobian. + */ + public LevenbergMarquardtOptimizer(double costRelativeTolerance, + double parRelativeTolerance, + double orthoTolerance) { + this(100, + costRelativeTolerance, parRelativeTolerance, orthoTolerance, + Precision.SAFE_MIN); + } + + /** + * The arguments control the behaviour of the default convergence checking + * procedure. + * Additional criteria can defined through the setting of a {@link + * ConvergenceChecker}. + * + * @param initialStepBoundFactor Positive input variable used in + * determining the initial step bound. This bound is set to the + * product of initialStepBoundFactor and the euclidean norm of + * {@code diag * x} if non-zero, or else to {@code initialStepBoundFactor} + * itself. In most cases factor should lie in the interval + * {@code (0.1, 100.0)}. {@code 100} is a generally recommended value. + * @param costRelativeTolerance Desired relative error in the sum of + * squares. + * @param parRelativeTolerance Desired relative error in the approximate + * solution parameters. + * @param orthoTolerance Desired max cosine on the orthogonality between + * the function vector and the columns of the Jacobian. + * @param threshold Desired threshold for QR ranking. If the squared norm + * of a column vector is smaller or equal to this threshold during QR + * decomposition, it is considered to be a zero vector and hence the rank + * of the matrix is reduced. + */ + public LevenbergMarquardtOptimizer(double initialStepBoundFactor, + double costRelativeTolerance, + double parRelativeTolerance, + double orthoTolerance, + double threshold) { + super(null); // No custom convergence criterion. + this.initialStepBoundFactor = initialStepBoundFactor; + this.costRelativeTolerance = costRelativeTolerance; + this.parRelativeTolerance = parRelativeTolerance; + this.orthoTolerance = orthoTolerance; + this.qrRankingThreshold = threshold; + } + + /** {@inheritDoc} */ + @Override + protected PointVectorValuePair doOptimize() { + final int nR = getTarget().length; // Number of observed data. + final double[] currentPoint = getStartPoint(); + final int nC = currentPoint.length; // Number of parameters. + + // arrays shared with the other private methods + solvedCols = FastMath.min(nR, nC); + diagR = new double[nC]; + jacNorm = new double[nC]; + beta = new double[nC]; + permutation = new int[nC]; + lmDir = new double[nC]; + + // local point + double delta = 0; + double xNorm = 0; + double[] diag = new double[nC]; + double[] oldX = new double[nC]; + double[] oldRes = new double[nR]; + double[] oldObj = new double[nR]; + double[] qtf = new double[nR]; + double[] work1 = new double[nC]; + double[] work2 = new double[nC]; + double[] work3 = new double[nC]; + + final RealMatrix weightMatrixSqrt = getWeightSquareRoot(); + + // Evaluate the function at the starting point and calculate its norm. + double[] currentObjective = computeObjectiveValue(currentPoint); + double[] currentResiduals = computeResiduals(currentObjective); + PointVectorValuePair current = new PointVectorValuePair(currentPoint, currentObjective); + double currentCost = computeCost(currentResiduals); + + // Outer loop. + lmPar = 0; + boolean firstIteration = true; + int iter = 0; + final ConvergenceChecker checker = getConvergenceChecker(); + while (true) { + ++iter; + final PointVectorValuePair previous = current; + + // QR decomposition of the jacobian matrix + qrDecomposition(computeWeightedJacobian(currentPoint)); + + weightedResidual = weightMatrixSqrt.operate(currentResiduals); + for (int i = 0; i < nR; i++) { + qtf[i] = weightedResidual[i]; + } + + // compute Qt.res + qTy(qtf); + + // now we don't need Q anymore, + // so let jacobian contain the R matrix with its diagonal elements + for (int k = 0; k < solvedCols; ++k) { + int pk = permutation[k]; + weightedJacobian[k][pk] = diagR[pk]; + } + + if (firstIteration) { + // scale the point according to the norms of the columns + // of the initial jacobian + xNorm = 0; + for (int k = 0; k < nC; ++k) { + double dk = jacNorm[k]; + if (dk == 0) { + dk = 1.0; + } + double xk = dk * currentPoint[k]; + xNorm += xk * xk; + diag[k] = dk; + } + xNorm = FastMath.sqrt(xNorm); + + // initialize the step bound delta + delta = (xNorm == 0) ? initialStepBoundFactor : (initialStepBoundFactor * xNorm); + } + + // check orthogonality between function vector and jacobian columns + double maxCosine = 0; + if (currentCost != 0) { + for (int j = 0; j < solvedCols; ++j) { + int pj = permutation[j]; + double s = jacNorm[pj]; + if (s != 0) { + double sum = 0; + for (int i = 0; i <= j; ++i) { + sum += weightedJacobian[i][pj] * qtf[i]; + } + maxCosine = FastMath.max(maxCosine, FastMath.abs(sum) / (s * currentCost)); + } + } + } + if (maxCosine <= orthoTolerance) { + // Convergence has been reached. + setCost(currentCost); + return current; + } + + // rescale if necessary + for (int j = 0; j < nC; ++j) { + diag[j] = FastMath.max(diag[j], jacNorm[j]); + } + + // Inner loop. + for (double ratio = 0; ratio < 1.0e-4;) { + + // save the state + for (int j = 0; j < solvedCols; ++j) { + int pj = permutation[j]; + oldX[pj] = currentPoint[pj]; + } + final double previousCost = currentCost; + double[] tmpVec = weightedResidual; + weightedResidual = oldRes; + oldRes = tmpVec; + tmpVec = currentObjective; + currentObjective = oldObj; + oldObj = tmpVec; + + // determine the Levenberg-Marquardt parameter + determineLMParameter(qtf, delta, diag, work1, work2, work3); + + // compute the new point and the norm of the evolution direction + double lmNorm = 0; + for (int j = 0; j < solvedCols; ++j) { + int pj = permutation[j]; + lmDir[pj] = -lmDir[pj]; + currentPoint[pj] = oldX[pj] + lmDir[pj]; + double s = diag[pj] * lmDir[pj]; + lmNorm += s * s; + } + lmNorm = FastMath.sqrt(lmNorm); + // on the first iteration, adjust the initial step bound. + if (firstIteration) { + delta = FastMath.min(delta, lmNorm); + } + + // Evaluate the function at x + p and calculate its norm. + currentObjective = computeObjectiveValue(currentPoint); + currentResiduals = computeResiduals(currentObjective); + current = new PointVectorValuePair(currentPoint, currentObjective); + currentCost = computeCost(currentResiduals); + + // compute the scaled actual reduction + double actRed = -1.0; + if (0.1 * currentCost < previousCost) { + double r = currentCost / previousCost; + actRed = 1.0 - r * r; + } + + // compute the scaled predicted reduction + // and the scaled directional derivative + for (int j = 0; j < solvedCols; ++j) { + int pj = permutation[j]; + double dirJ = lmDir[pj]; + work1[j] = 0; + for (int i = 0; i <= j; ++i) { + work1[i] += weightedJacobian[i][pj] * dirJ; + } + } + double coeff1 = 0; + for (int j = 0; j < solvedCols; ++j) { + coeff1 += work1[j] * work1[j]; + } + double pc2 = previousCost * previousCost; + coeff1 = coeff1 / pc2; + double coeff2 = lmPar * lmNorm * lmNorm / pc2; + double preRed = coeff1 + 2 * coeff2; + double dirDer = -(coeff1 + coeff2); + + // ratio of the actual to the predicted reduction + ratio = (preRed == 0) ? 0 : (actRed / preRed); + + // update the step bound + if (ratio <= 0.25) { + double tmp = + (actRed < 0) ? (0.5 * dirDer / (dirDer + 0.5 * actRed)) : 0.5; + if ((0.1 * currentCost >= previousCost) || (tmp < 0.1)) { + tmp = 0.1; + } + delta = tmp * FastMath.min(delta, 10.0 * lmNorm); + lmPar /= tmp; + } else if ((lmPar == 0) || (ratio >= 0.75)) { + delta = 2 * lmNorm; + lmPar *= 0.5; + } + + // test for successful iteration. + if (ratio >= 1.0e-4) { + // successful iteration, update the norm + firstIteration = false; + xNorm = 0; + for (int k = 0; k < nC; ++k) { + double xK = diag[k] * currentPoint[k]; + xNorm += xK * xK; + } + xNorm = FastMath.sqrt(xNorm); + + // tests for convergence. + if (checker != null) { + // we use the vectorial convergence checker + if (checker.converged(iter, previous, current)) { + setCost(currentCost); + return current; + } + } + } else { + // failed iteration, reset the previous values + currentCost = previousCost; + for (int j = 0; j < solvedCols; ++j) { + int pj = permutation[j]; + currentPoint[pj] = oldX[pj]; + } + tmpVec = weightedResidual; + weightedResidual = oldRes; + oldRes = tmpVec; + tmpVec = currentObjective; + currentObjective = oldObj; + oldObj = tmpVec; + // Reset "current" to previous values. + current = new PointVectorValuePair(currentPoint, currentObjective); + } + + // Default convergence criteria. + if ((FastMath.abs(actRed) <= costRelativeTolerance && + preRed <= costRelativeTolerance && + ratio <= 2.0) || + delta <= parRelativeTolerance * xNorm) { + setCost(currentCost); + return current; + } + + // tests for termination and stringent tolerances + // (2.2204e-16 is the machine epsilon for IEEE754) + if ((FastMath.abs(actRed) <= 2.2204e-16) && (preRed <= 2.2204e-16) && (ratio <= 2.0)) { + throw new ConvergenceException(LocalizedFormats.TOO_SMALL_COST_RELATIVE_TOLERANCE, + costRelativeTolerance); + } else if (delta <= 2.2204e-16 * xNorm) { + throw new ConvergenceException(LocalizedFormats.TOO_SMALL_PARAMETERS_RELATIVE_TOLERANCE, + parRelativeTolerance); + } else if (maxCosine <= 2.2204e-16) { + throw new ConvergenceException(LocalizedFormats.TOO_SMALL_ORTHOGONALITY_TOLERANCE, + orthoTolerance); + } + } + } + } + + /** + * Determine the Levenberg-Marquardt parameter. + *

    This implementation is a translation in Java of the MINPACK + * lmpar + * routine.

    + *

    This method sets the lmPar and lmDir attributes.

    + *

    The authors of the original fortran function are:

    + *
      + *
    • Argonne National Laboratory. MINPACK project. March 1980
    • + *
    • Burton S. Garbow
    • + *
    • Kenneth E. Hillstrom
    • + *
    • Jorge J. More
    • + *
    + *

    Luc Maisonobe did the Java translation.

    + * + * @param qy array containing qTy + * @param delta upper bound on the euclidean norm of diagR * lmDir + * @param diag diagonal matrix + * @param work1 work array + * @param work2 work array + * @param work3 work array + */ + private void determineLMParameter(double[] qy, double delta, double[] diag, + double[] work1, double[] work2, double[] work3) { + final int nC = weightedJacobian[0].length; + + // compute and store in x the gauss-newton direction, if the + // jacobian is rank-deficient, obtain a least squares solution + for (int j = 0; j < rank; ++j) { + lmDir[permutation[j]] = qy[j]; + } + for (int j = rank; j < nC; ++j) { + lmDir[permutation[j]] = 0; + } + for (int k = rank - 1; k >= 0; --k) { + int pk = permutation[k]; + double ypk = lmDir[pk] / diagR[pk]; + for (int i = 0; i < k; ++i) { + lmDir[permutation[i]] -= ypk * weightedJacobian[i][pk]; + } + lmDir[pk] = ypk; + } + + // evaluate the function at the origin, and test + // for acceptance of the Gauss-Newton direction + double dxNorm = 0; + for (int j = 0; j < solvedCols; ++j) { + int pj = permutation[j]; + double s = diag[pj] * lmDir[pj]; + work1[pj] = s; + dxNorm += s * s; + } + dxNorm = FastMath.sqrt(dxNorm); + double fp = dxNorm - delta; + if (fp <= 0.1 * delta) { + lmPar = 0; + return; + } + + // if the jacobian is not rank deficient, the Newton step provides + // a lower bound, parl, for the zero of the function, + // otherwise set this bound to zero + double sum2; + double parl = 0; + if (rank == solvedCols) { + for (int j = 0; j < solvedCols; ++j) { + int pj = permutation[j]; + work1[pj] *= diag[pj] / dxNorm; + } + sum2 = 0; + for (int j = 0; j < solvedCols; ++j) { + int pj = permutation[j]; + double sum = 0; + for (int i = 0; i < j; ++i) { + sum += weightedJacobian[i][pj] * work1[permutation[i]]; + } + double s = (work1[pj] - sum) / diagR[pj]; + work1[pj] = s; + sum2 += s * s; + } + parl = fp / (delta * sum2); + } + + // calculate an upper bound, paru, for the zero of the function + sum2 = 0; + for (int j = 0; j < solvedCols; ++j) { + int pj = permutation[j]; + double sum = 0; + for (int i = 0; i <= j; ++i) { + sum += weightedJacobian[i][pj] * qy[i]; + } + sum /= diag[pj]; + sum2 += sum * sum; + } + double gNorm = FastMath.sqrt(sum2); + double paru = gNorm / delta; + if (paru == 0) { + // 2.2251e-308 is the smallest positive real for IEE754 + paru = 2.2251e-308 / FastMath.min(delta, 0.1); + } + + // if the input par lies outside of the interval (parl,paru), + // set par to the closer endpoint + lmPar = FastMath.min(paru, FastMath.max(lmPar, parl)); + if (lmPar == 0) { + lmPar = gNorm / dxNorm; + } + + for (int countdown = 10; countdown >= 0; --countdown) { + + // evaluate the function at the current value of lmPar + if (lmPar == 0) { + lmPar = FastMath.max(2.2251e-308, 0.001 * paru); + } + double sPar = FastMath.sqrt(lmPar); + for (int j = 0; j < solvedCols; ++j) { + int pj = permutation[j]; + work1[pj] = sPar * diag[pj]; + } + determineLMDirection(qy, work1, work2, work3); + + dxNorm = 0; + for (int j = 0; j < solvedCols; ++j) { + int pj = permutation[j]; + double s = diag[pj] * lmDir[pj]; + work3[pj] = s; + dxNorm += s * s; + } + dxNorm = FastMath.sqrt(dxNorm); + double previousFP = fp; + fp = dxNorm - delta; + + // if the function is small enough, accept the current value + // of lmPar, also test for the exceptional cases where parl is zero + if ((FastMath.abs(fp) <= 0.1 * delta) || + ((parl == 0) && (fp <= previousFP) && (previousFP < 0))) { + return; + } + + // compute the Newton correction + for (int j = 0; j < solvedCols; ++j) { + int pj = permutation[j]; + work1[pj] = work3[pj] * diag[pj] / dxNorm; + } + for (int j = 0; j < solvedCols; ++j) { + int pj = permutation[j]; + work1[pj] /= work2[j]; + double tmp = work1[pj]; + for (int i = j + 1; i < solvedCols; ++i) { + work1[permutation[i]] -= weightedJacobian[i][pj] * tmp; + } + } + sum2 = 0; + for (int j = 0; j < solvedCols; ++j) { + double s = work1[permutation[j]]; + sum2 += s * s; + } + double correction = fp / (delta * sum2); + + // depending on the sign of the function, update parl or paru. + if (fp > 0) { + parl = FastMath.max(parl, lmPar); + } else if (fp < 0) { + paru = FastMath.min(paru, lmPar); + } + + // compute an improved estimate for lmPar + lmPar = FastMath.max(parl, lmPar + correction); + + } + } + + /** + * Solve a*x = b and d*x = 0 in the least squares sense. + *

    This implementation is a translation in Java of the MINPACK + * qrsolv + * routine.

    + *

    This method sets the lmDir and lmDiag attributes.

    + *

    The authors of the original fortran function are:

    + *
      + *
    • Argonne National Laboratory. MINPACK project. March 1980
    • + *
    • Burton S. Garbow
    • + *
    • Kenneth E. Hillstrom
    • + *
    • Jorge J. More
    • + *
    + *

    Luc Maisonobe did the Java translation.

    + * + * @param qy array containing qTy + * @param diag diagonal matrix + * @param lmDiag diagonal elements associated with lmDir + * @param work work array + */ + private void determineLMDirection(double[] qy, double[] diag, + double[] lmDiag, double[] work) { + + // copy R and Qty to preserve input and initialize s + // in particular, save the diagonal elements of R in lmDir + for (int j = 0; j < solvedCols; ++j) { + int pj = permutation[j]; + for (int i = j + 1; i < solvedCols; ++i) { + weightedJacobian[i][pj] = weightedJacobian[j][permutation[i]]; + } + lmDir[j] = diagR[pj]; + work[j] = qy[j]; + } + + // eliminate the diagonal matrix d using a Givens rotation + for (int j = 0; j < solvedCols; ++j) { + + // prepare the row of d to be eliminated, locating the + // diagonal element using p from the Q.R. factorization + int pj = permutation[j]; + double dpj = diag[pj]; + if (dpj != 0) { + Arrays.fill(lmDiag, j + 1, lmDiag.length, 0); + } + lmDiag[j] = dpj; + + // the transformations to eliminate the row of d + // modify only a single element of Qty + // beyond the first n, which is initially zero. + double qtbpj = 0; + for (int k = j; k < solvedCols; ++k) { + int pk = permutation[k]; + + // determine a Givens rotation which eliminates the + // appropriate element in the current row of d + if (lmDiag[k] != 0) { + + final double sin; + final double cos; + double rkk = weightedJacobian[k][pk]; + if (FastMath.abs(rkk) < FastMath.abs(lmDiag[k])) { + final double cotan = rkk / lmDiag[k]; + sin = 1.0 / FastMath.sqrt(1.0 + cotan * cotan); + cos = sin * cotan; + } else { + final double tan = lmDiag[k] / rkk; + cos = 1.0 / FastMath.sqrt(1.0 + tan * tan); + sin = cos * tan; + } + + // compute the modified diagonal element of R and + // the modified element of (Qty,0) + weightedJacobian[k][pk] = cos * rkk + sin * lmDiag[k]; + final double temp = cos * work[k] + sin * qtbpj; + qtbpj = -sin * work[k] + cos * qtbpj; + work[k] = temp; + + // accumulate the tranformation in the row of s + for (int i = k + 1; i < solvedCols; ++i) { + double rik = weightedJacobian[i][pk]; + final double temp2 = cos * rik + sin * lmDiag[i]; + lmDiag[i] = -sin * rik + cos * lmDiag[i]; + weightedJacobian[i][pk] = temp2; + } + } + } + + // store the diagonal element of s and restore + // the corresponding diagonal element of R + lmDiag[j] = weightedJacobian[j][permutation[j]]; + weightedJacobian[j][permutation[j]] = lmDir[j]; + } + + // solve the triangular system for z, if the system is + // singular, then obtain a least squares solution + int nSing = solvedCols; + for (int j = 0; j < solvedCols; ++j) { + if ((lmDiag[j] == 0) && (nSing == solvedCols)) { + nSing = j; + } + if (nSing < solvedCols) { + work[j] = 0; + } + } + if (nSing > 0) { + for (int j = nSing - 1; j >= 0; --j) { + int pj = permutation[j]; + double sum = 0; + for (int i = j + 1; i < nSing; ++i) { + sum += weightedJacobian[i][pj] * work[i]; + } + work[j] = (work[j] - sum) / lmDiag[j]; + } + } + + // permute the components of z back to components of lmDir + for (int j = 0; j < lmDir.length; ++j) { + lmDir[permutation[j]] = work[j]; + } + } + + /** + * Decompose a matrix A as A.P = Q.R using Householder transforms. + *

    As suggested in the P. Lascaux and R. Theodor book + * Analyse numérique matricielle appliquée à + * l'art de l'ingénieur (Masson, 1986), instead of representing + * the Householder transforms with uk unit vectors such that: + *

    +     * Hk = I - 2uk.ukt
    +     * 
    + * we use k non-unit vectors such that: + *
    +     * Hk = I - betakvk.vkt
    +     * 
    + * where vk = ak - alphak ek. + * The betak coefficients are provided upon exit as recomputing + * them from the vk vectors would be costly.

    + *

    This decomposition handles rank deficient cases since the tranformations + * are performed in non-increasing columns norms order thanks to columns + * pivoting. The diagonal elements of the R matrix are therefore also in + * non-increasing absolute values order.

    + * + * @param jacobian Weighted Jacobian matrix at the current point. + * @exception ConvergenceException if the decomposition cannot be performed + */ + private void qrDecomposition(RealMatrix jacobian) throws ConvergenceException { + // Code in this class assumes that the weighted Jacobian is -(W^(1/2) J), + // hence the multiplication by -1. + weightedJacobian = jacobian.scalarMultiply(-1).getData(); + + final int nR = weightedJacobian.length; + final int nC = weightedJacobian[0].length; + + // initializations + for (int k = 0; k < nC; ++k) { + permutation[k] = k; + double norm2 = 0; + for (int i = 0; i < nR; ++i) { + double akk = weightedJacobian[i][k]; + norm2 += akk * akk; + } + jacNorm[k] = FastMath.sqrt(norm2); + } + + // transform the matrix column after column + for (int k = 0; k < nC; ++k) { + + // select the column with the greatest norm on active components + int nextColumn = -1; + double ak2 = Double.NEGATIVE_INFINITY; + for (int i = k; i < nC; ++i) { + double norm2 = 0; + for (int j = k; j < nR; ++j) { + double aki = weightedJacobian[j][permutation[i]]; + norm2 += aki * aki; + } + if (Double.isInfinite(norm2) || Double.isNaN(norm2)) { + throw new ConvergenceException(LocalizedFormats.UNABLE_TO_PERFORM_QR_DECOMPOSITION_ON_JACOBIAN, + nR, nC); + } + if (norm2 > ak2) { + nextColumn = i; + ak2 = norm2; + } + } + if (ak2 <= qrRankingThreshold) { + rank = k; + return; + } + int pk = permutation[nextColumn]; + permutation[nextColumn] = permutation[k]; + permutation[k] = pk; + + // choose alpha such that Hk.u = alpha ek + double akk = weightedJacobian[k][pk]; + double alpha = (akk > 0) ? -FastMath.sqrt(ak2) : FastMath.sqrt(ak2); + double betak = 1.0 / (ak2 - akk * alpha); + beta[pk] = betak; + + // transform the current column + diagR[pk] = alpha; + weightedJacobian[k][pk] -= alpha; + + // transform the remaining columns + for (int dk = nC - 1 - k; dk > 0; --dk) { + double gamma = 0; + for (int j = k; j < nR; ++j) { + gamma += weightedJacobian[j][pk] * weightedJacobian[j][permutation[k + dk]]; + } + gamma *= betak; + for (int j = k; j < nR; ++j) { + weightedJacobian[j][permutation[k + dk]] -= gamma * weightedJacobian[j][pk]; + } + } + } + rank = solvedCols; + } + + /** + * Compute the product Qt.y for some Q.R. decomposition. + * + * @param y vector to multiply (will be overwritten with the result) + */ + private void qTy(double[] y) { + final int nR = weightedJacobian.length; + final int nC = weightedJacobian[0].length; + + for (int k = 0; k < nC; ++k) { + int pk = permutation[k]; + double gamma = 0; + for (int i = k; i < nR; ++i) { + gamma += weightedJacobian[i][pk] * y[i]; + } + gamma *= beta[pk]; + for (int i = k; i < nR; ++i) { + y[i] -= gamma * weightedJacobian[i][pk]; + } + } + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/package-info.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/package-info.java new file mode 100644 index 000000000..169914711 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/package-info.java @@ -0,0 +1,21 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.nonlinear.vector.jacobian; + +/** + * This package provides optimization algorithms that require derivatives. + */ diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/vector/package-info.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/vector/package-info.java new file mode 100644 index 000000000..75e3585c3 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/vector/package-info.java @@ -0,0 +1,21 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.nonlinear.vector; + +/** + * Algorithms for optimizing a vector function. + */ diff --git a/src/main/java/org/apache/commons/math3/optim/package-info.java b/src/main/java/org/apache/commons/math3/optim/package-info.java new file mode 100644 index 000000000..080eb1b8c --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/package-info.java @@ -0,0 +1,73 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim; + +/** + *

    + * Generally, optimizers are algorithms that will either + * {@link GoalType#MINIMIZE minimize} or {@link GoalType#MAXIMIZE maximize} + * a scalar function, called the {@link ObjectiveFunction objective + * function}. + *
    + * For some scalar objective functions the gradient can be computed (analytically + * or numerically). Algorithms that use this knowledge are defined in the + * {@link org.apache.commons.math3.optim.nonlinear.scalar.gradient} package. + * The algorithms that do not need this additional information are located in + * the {@link org.apache.commons.math3.optim.nonlinear.scalar.noderiv} package. + *

    + * + *

    + * Some problems are solved more efficiently by algorithms that, instead of an + * objective function, need access to a + * {@link org.apache.commons.math3.optim.nonlinear.vector.ModelFunction + * model function}: such a model predicts a set of values which the + * algorithm tries to match with a set of given + * {@link org.apache.commons.math3.optim.nonlinear.vector.Target target values}. + * Those algorithms are located in the + * {@link org.apache.commons.math3.optim.nonlinear.vector} package. + *
    + * Algorithms that also require the + * {@link org.apache.commons.math3.optim.nonlinear.vector.ModelFunctionJacobian + * Jacobian matrix of the model} are located in the + * {@link org.apache.commons.math3.optim.nonlinear.vector.jacobian} package. + *
    + * The {@link org.apache.commons.math3.optim.nonlinear.vector.jacobian.AbstractLeastSquaresOptimizer + * non-linear least-squares optimizers} are a specialization of the the latter, + * that minimize the distance (called cost or χ2) + * between model and observations. + *
    + * For cases where the Jacobian cannot be provided, a utility class will + * {@link org.apache.commons.math3.optim.nonlinear.scalar.LeastSquaresConverter + * convert} a (vector) model into a (scalar) objective function. + *

    + * + *

    + * This package provides common functionality for the optimization algorithms. + * Abstract classes ({@link BaseOptimizer} and {@link BaseMultivariateOptimizer}) + * define boiler-plate code for storing {@link MaxEval evaluations} and + * {@link MaxIter iterations} counters and a user-defined + * {@link ConvergenceChecker convergence checker}. + *

    + * + *

    + * For each of the optimizer types, there is a special implementation that + * wraps an optimizer instance and provides a "multi-start" feature: it calls + * the underlying optimizer several times with different starting points and + * returns the best optimum found, or all optima if so desired. + * This could be useful to avoid being trapped in a local extremum. + *

    + */ diff --git a/src/main/java/org/apache/commons/math3/optim/univariate/BracketFinder.java b/src/main/java/org/apache/commons/math3/optim/univariate/BracketFinder.java new file mode 100644 index 000000000..7dabfa949 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/univariate/BracketFinder.java @@ -0,0 +1,287 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.univariate; + +import org.apache.commons.math3.util.Incrementor; +import org.apache.commons.math3.exception.NotStrictlyPositiveException; +import org.apache.commons.math3.exception.TooManyEvaluationsException; +import org.apache.commons.math3.exception.MaxCountExceededException; +import org.apache.commons.math3.analysis.UnivariateFunction; +import org.apache.commons.math3.optim.GoalType; + +/** + * Provide an interval that brackets a local optimum of a function. + * This code is based on a Python implementation (from SciPy, + * module {@code optimize.py} v0.5). + * + * @version $Id: BracketFinder.java 1413186 2012-11-24 13:47:59Z erans $ + * @since 2.2 + */ +public class BracketFinder { + /** Tolerance to avoid division by zero. */ + private static final double EPS_MIN = 1e-21; + /** + * Golden section. + */ + private static final double GOLD = 1.618034; + /** + * Factor for expanding the interval. + */ + private final double growLimit; + /** + * Counter for function evaluations. + */ + private final Incrementor evaluations = new Incrementor(); + /** + * Lower bound of the bracket. + */ + private double lo; + /** + * Higher bound of the bracket. + */ + private double hi; + /** + * Point inside the bracket. + */ + private double mid; + /** + * Function value at {@link #lo}. + */ + private double fLo; + /** + * Function value at {@link #hi}. + */ + private double fHi; + /** + * Function value at {@link #mid}. + */ + private double fMid; + + /** + * Constructor with default values {@code 100, 50} (see the + * {@link #BracketFinder(double,int) other constructor}). + */ + public BracketFinder() { + this(100, 50); + } + + /** + * Create a bracketing interval finder. + * + * @param growLimit Expanding factor. + * @param maxEvaluations Maximum number of evaluations allowed for finding + * a bracketing interval. + */ + public BracketFinder(double growLimit, + int maxEvaluations) { + if (growLimit <= 0) { + throw new NotStrictlyPositiveException(growLimit); + } + if (maxEvaluations <= 0) { + throw new NotStrictlyPositiveException(maxEvaluations); + } + + this.growLimit = growLimit; + evaluations.setMaximalCount(maxEvaluations); + } + + /** + * Search new points that bracket a local optimum of the function. + * + * @param func Function whose optimum should be bracketed. + * @param goal {@link GoalType Goal type}. + * @param xA Initial point. + * @param xB Initial point. + * @throws TooManyEvaluationsException if the maximum number of evaluations + * is exceeded. + */ + public void search(UnivariateFunction func, GoalType goal, double xA, double xB) { + evaluations.resetCount(); + final boolean isMinim = goal == GoalType.MINIMIZE; + + double fA = eval(func, xA); + double fB = eval(func, xB); + if (isMinim ? + fA < fB : + fA > fB) { + + double tmp = xA; + xA = xB; + xB = tmp; + + tmp = fA; + fA = fB; + fB = tmp; + } + + double xC = xB + GOLD * (xB - xA); + double fC = eval(func, xC); + + while (isMinim ? fC < fB : fC > fB) { + double tmp1 = (xB - xA) * (fB - fC); + double tmp2 = (xB - xC) * (fB - fA); + + double val = tmp2 - tmp1; + double denom = Math.abs(val) < EPS_MIN ? 2 * EPS_MIN : 2 * val; + + double w = xB - ((xB - xC) * tmp2 - (xB - xA) * tmp1) / denom; + double wLim = xB + growLimit * (xC - xB); + + double fW; + if ((w - xC) * (xB - w) > 0) { + fW = eval(func, w); + if (isMinim ? + fW < fC : + fW > fC) { + xA = xB; + xB = w; + fA = fB; + fB = fW; + break; + } else if (isMinim ? + fW > fB : + fW < fB) { + xC = w; + fC = fW; + break; + } + w = xC + GOLD * (xC - xB); + fW = eval(func, w); + } else if ((w - wLim) * (wLim - xC) >= 0) { + w = wLim; + fW = eval(func, w); + } else if ((w - wLim) * (xC - w) > 0) { + fW = eval(func, w); + if (isMinim ? + fW < fC : + fW > fC) { + xB = xC; + xC = w; + w = xC + GOLD * (xC - xB); + fB = fC; + fC =fW; + fW = eval(func, w); + } + } else { + w = xC + GOLD * (xC - xB); + fW = eval(func, w); + } + + xA = xB; + fA = fB; + xB = xC; + fB = fC; + xC = w; + fC = fW; + } + + lo = xA; + fLo = fA; + mid = xB; + fMid = fB; + hi = xC; + fHi = fC; + + if (lo > hi) { + double tmp = lo; + lo = hi; + hi = tmp; + + tmp = fLo; + fLo = fHi; + fHi = tmp; + } + } + + /** + * @return the number of evalutations. + */ + public int getMaxEvaluations() { + return evaluations.getMaximalCount(); + } + + /** + * @return the number of evalutations. + */ + public int getEvaluations() { + return evaluations.getCount(); + } + + /** + * @return the lower bound of the bracket. + * @see #getFLo() + */ + public double getLo() { + return lo; + } + + /** + * Get function value at {@link #getLo()}. + * @return function value at {@link #getLo()} + */ + public double getFLo() { + return fLo; + } + + /** + * @return the higher bound of the bracket. + * @see #getFHi() + */ + public double getHi() { + return hi; + } + + /** + * Get function value at {@link #getHi()}. + * @return function value at {@link #getHi()} + */ + public double getFHi() { + return fHi; + } + + /** + * @return a point in the middle of the bracket. + * @see #getFMid() + */ + public double getMid() { + return mid; + } + + /** + * Get function value at {@link #getMid()}. + * @return function value at {@link #getMid()} + */ + public double getFMid() { + return fMid; + } + + /** + * @param f Function. + * @param x Argument. + * @return {@code f(x)} + * @throws TooManyEvaluationsException if the maximal number of evaluations is + * exceeded. + */ + private double eval(UnivariateFunction f, double x) { + try { + evaluations.incrementCount(); + } catch (MaxCountExceededException e) { + throw new TooManyEvaluationsException(e.getMax()); + } + return f.value(x); + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/univariate/BrentOptimizer.java b/src/main/java/org/apache/commons/math3/optim/univariate/BrentOptimizer.java new file mode 100644 index 000000000..5ca957e0f --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/univariate/BrentOptimizer.java @@ -0,0 +1,317 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.univariate; + +import org.apache.commons.math3.util.Precision; +import org.apache.commons.math3.util.FastMath; +import org.apache.commons.math3.exception.NumberIsTooSmallException; +import org.apache.commons.math3.exception.NotStrictlyPositiveException; +import org.apache.commons.math3.optim.ConvergenceChecker; +import org.apache.commons.math3.optim.GoalType; + +/** + * For a function defined on some interval {@code (lo, hi)}, this class + * finds an approximation {@code x} to the point at which the function + * attains its minimum. + * It implements Richard Brent's algorithm (from his book "Algorithms for + * Minimization without Derivatives", p. 79) for finding minima of real + * univariate functions. + *
    + * This code is an adaptation, partly based on the Python code from SciPy + * (module "optimize.py" v0.5); the original algorithm is also modified + *
      + *
    • to use an initial guess provided by the user,
    • + *
    • to ensure that the best point encountered is the one returned.
    • + *
    + * + * @version $Id: BrentOptimizer.java 1416643 2012-12-03 19:37:14Z tn $ + * @since 2.0 + */ +public class BrentOptimizer extends UnivariateOptimizer { + /** + * Golden section. + */ + private static final double GOLDEN_SECTION = 0.5 * (3 - FastMath.sqrt(5)); + /** + * Minimum relative tolerance. + */ + private static final double MIN_RELATIVE_TOLERANCE = 2 * FastMath.ulp(1d); + /** + * Relative threshold. + */ + private final double relativeThreshold; + /** + * Absolute threshold. + */ + private final double absoluteThreshold; + + /** + * The arguments are used implement the original stopping criterion + * of Brent's algorithm. + * {@code abs} and {@code rel} define a tolerance + * {@code tol = rel |x| + abs}. {@code rel} should be no smaller than + * 2 macheps and preferably not much less than sqrt(macheps), + * where macheps is the relative machine precision. {@code abs} must + * be positive. + * + * @param rel Relative threshold. + * @param abs Absolute threshold. + * @param checker Additional, user-defined, convergence checking + * procedure. + * @throws NotStrictlyPositiveException if {@code abs <= 0}. + * @throws NumberIsTooSmallException if {@code rel < 2 * Math.ulp(1d)}. + */ + public BrentOptimizer(double rel, + double abs, + ConvergenceChecker checker) { + super(checker); + + if (rel < MIN_RELATIVE_TOLERANCE) { + throw new NumberIsTooSmallException(rel, MIN_RELATIVE_TOLERANCE, true); + } + if (abs <= 0) { + throw new NotStrictlyPositiveException(abs); + } + + relativeThreshold = rel; + absoluteThreshold = abs; + } + + /** + * The arguments are used for implementing the original stopping criterion + * of Brent's algorithm. + * {@code abs} and {@code rel} define a tolerance + * {@code tol = rel |x| + abs}. {@code rel} should be no smaller than + * 2 macheps and preferably not much less than sqrt(macheps), + * where macheps is the relative machine precision. {@code abs} must + * be positive. + * + * @param rel Relative threshold. + * @param abs Absolute threshold. + * @throws NotStrictlyPositiveException if {@code abs <= 0}. + * @throws NumberIsTooSmallException if {@code rel < 2 * Math.ulp(1d)}. + */ + public BrentOptimizer(double rel, + double abs) { + this(rel, abs, null); + } + + /** {@inheritDoc} */ + @Override + protected UnivariatePointValuePair doOptimize() { + final boolean isMinim = getGoalType() == GoalType.MINIMIZE; + final double lo = getMin(); + final double mid = getStartValue(); + final double hi = getMax(); + + // Optional additional convergence criteria. + final ConvergenceChecker checker + = getConvergenceChecker(); + + double a; + double b; + if (lo < hi) { + a = lo; + b = hi; + } else { + a = hi; + b = lo; + } + + double x = mid; + double v = x; + double w = x; + double d = 0; + double e = 0; + double fx = computeObjectiveValue(x); + if (!isMinim) { + fx = -fx; + } + double fv = fx; + double fw = fx; + + UnivariatePointValuePair previous = null; + UnivariatePointValuePair current + = new UnivariatePointValuePair(x, isMinim ? fx : -fx); + // Best point encountered so far (which is the initial guess). + UnivariatePointValuePair best = current; + + int iter = 0; + while (true) { + final double m = 0.5 * (a + b); + final double tol1 = relativeThreshold * FastMath.abs(x) + absoluteThreshold; + final double tol2 = 2 * tol1; + + // Default stopping criterion. + final boolean stop = FastMath.abs(x - m) <= tol2 - 0.5 * (b - a); + if (!stop) { + double p = 0; + double q = 0; + double r = 0; + double u = 0; + + if (FastMath.abs(e) > tol1) { // Fit parabola. + r = (x - w) * (fx - fv); + q = (x - v) * (fx - fw); + p = (x - v) * q - (x - w) * r; + q = 2 * (q - r); + + if (q > 0) { + p = -p; + } else { + q = -q; + } + + r = e; + e = d; + + if (p > q * (a - x) && + p < q * (b - x) && + FastMath.abs(p) < FastMath.abs(0.5 * q * r)) { + // Parabolic interpolation step. + d = p / q; + u = x + d; + + // f must not be evaluated too close to a or b. + if (u - a < tol2 || b - u < tol2) { + if (x <= m) { + d = tol1; + } else { + d = -tol1; + } + } + } else { + // Golden section step. + if (x < m) { + e = b - x; + } else { + e = a - x; + } + d = GOLDEN_SECTION * e; + } + } else { + // Golden section step. + if (x < m) { + e = b - x; + } else { + e = a - x; + } + d = GOLDEN_SECTION * e; + } + + // Update by at least "tol1". + if (FastMath.abs(d) < tol1) { + if (d >= 0) { + u = x + tol1; + } else { + u = x - tol1; + } + } else { + u = x + d; + } + + double fu = computeObjectiveValue(u); + if (!isMinim) { + fu = -fu; + } + + // User-defined convergence checker. + previous = current; + current = new UnivariatePointValuePair(u, isMinim ? fu : -fu); + best = best(best, + best(previous, + current, + isMinim), + isMinim); + + if (checker != null) { + if (checker.converged(iter, previous, current)) { + return best; + } + } + + // Update a, b, v, w and x. + if (fu <= fx) { + if (u < x) { + b = x; + } else { + a = x; + } + v = w; + fv = fw; + w = x; + fw = fx; + x = u; + fx = fu; + } else { + if (u < x) { + a = u; + } else { + b = u; + } + if (fu <= fw || + Precision.equals(w, x)) { + v = w; + fv = fw; + w = u; + fw = fu; + } else if (fu <= fv || + Precision.equals(v, x) || + Precision.equals(v, w)) { + v = u; + fv = fu; + } + } + } else { // Default termination (Brent's criterion). + return best(best, + best(previous, + current, + isMinim), + isMinim); + } + ++iter; + } + } + + /** + * Selects the best of two points. + * + * @param a Point and value. + * @param b Point and value. + * @param isMinim {@code true} if the selected point must be the one with + * the lowest value. + * @return the best point, or {@code null} if {@code a} and {@code b} are + * both {@code null}. When {@code a} and {@code b} have the same function + * value, {@code a} is returned. + */ + private UnivariatePointValuePair best(UnivariatePointValuePair a, + UnivariatePointValuePair b, + boolean isMinim) { + if (a == null) { + return b; + } + if (b == null) { + return a; + } + + if (isMinim) { + return a.getValue() <= b.getValue() ? a : b; + } else { + return a.getValue() >= b.getValue() ? a : b; + } + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/univariate/MultiStartUnivariateOptimizer.java b/src/main/java/org/apache/commons/math3/optim/univariate/MultiStartUnivariateOptimizer.java new file mode 100644 index 000000000..8a1692004 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/univariate/MultiStartUnivariateOptimizer.java @@ -0,0 +1,235 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.commons.math3.optim.univariate; + +import java.util.Arrays; +import java.util.Comparator; +import org.apache.commons.math3.exception.MathIllegalStateException; +import org.apache.commons.math3.exception.NotStrictlyPositiveException; +import org.apache.commons.math3.exception.NullArgumentException; +import org.apache.commons.math3.exception.util.LocalizedFormats; +import org.apache.commons.math3.random.RandomGenerator; +import org.apache.commons.math3.optim.MaxEval; +import org.apache.commons.math3.optim.GoalType; +import org.apache.commons.math3.optim.OptimizationData; + +/** + * Special implementation of the {@link UnivariateOptimizer} interface + * adding multi-start features to an existing optimizer. + *
    + * This class wraps an optimizer in order to use it several times in + * turn with different starting points (trying to avoid being trapped + * in a local extremum when looking for a global one). + * + * @version $Id$ + * @since 3.0 + */ +public class MultiStartUnivariateOptimizer + extends UnivariateOptimizer { + /** Underlying classical optimizer. */ + private final UnivariateOptimizer optimizer; + /** Number of evaluations already performed for all starts. */ + private int totalEvaluations; + /** Number of starts to go. */ + private int starts; + /** Random generator for multi-start. */ + private RandomGenerator generator; + /** Found optima. */ + private UnivariatePointValuePair[] optima; + /** Optimization data. */ + private OptimizationData[] optimData; + /** + * Location in {@link #optimData} where the updated maximum + * number of evaluations will be stored. + */ + private int maxEvalIndex = -1; + /** + * Location in {@link #optimData} where the updated start value + * will be stored. + */ + private int searchIntervalIndex = -1; + + /** + * Create a multi-start optimizer from a single-start optimizer. + * + * @param optimizer Single-start optimizer to wrap. + * @param starts Number of starts to perform. If {@code starts == 1}, + * the {@code optimize} methods will return the same solution as + * {@code optimizer} would. + * @param generator Random generator to use for restarts. + * @throws NullArgumentException if {@code optimizer} or {@code generator} + * is {@code null}. + * @throws NotStrictlyPositiveException if {@code starts < 1}. + */ + public MultiStartUnivariateOptimizer(final UnivariateOptimizer optimizer, + final int starts, + final RandomGenerator generator) { + super(optimizer.getConvergenceChecker()); + + if (optimizer == null || + generator == null) { + throw new NullArgumentException(); + } + if (starts < 1) { + throw new NotStrictlyPositiveException(starts); + } + + this.optimizer = optimizer; + this.starts = starts; + this.generator = generator; + } + + /** {@inheritDoc} */ + @Override + public int getEvaluations() { + return totalEvaluations; + } + + /** + * Gets all the optima found during the last call to {@code optimize}. + * The optimizer stores all the optima found during a set of + * restarts. The {@code optimize} method returns the best point only. + * This method returns all the points found at the end of each starts, + * including the best one already returned by the {@code optimize} method. + *
    + * The returned array as one element for each start as specified + * in the constructor. It is ordered with the results from the + * runs that did converge first, sorted from best to worst + * objective value (i.e in ascending order if minimizing and in + * descending order if maximizing), followed by {@code null} elements + * corresponding to the runs that did not converge. This means all + * elements will be {@code null} if the {@code optimize} method did throw + * an exception. + * This also means that if the first element is not {@code null}, it is + * the best point found across all starts. + * + * @return an array containing the optima. + * @throws MathIllegalStateException if {@link #optimize(OptimizationData[]) + * optimize} has not been called. + */ + public UnivariatePointValuePair[] getOptima() { + if (optima == null) { + throw new MathIllegalStateException(LocalizedFormats.NO_OPTIMUM_COMPUTED_YET); + } + return optima.clone(); + } + + /** + * {@inheritDoc} + * + * @throws MathIllegalStateException if {@code optData} does not contain an + * instance of {@link MaxEval} or {@link SearchInterval}. + */ + @Override + public UnivariatePointValuePair optimize(OptimizationData... optData) { + // Store arguments in order to pass them to the internal optimizer. + optimData = optData; + // Set up base class and perform computations. + return super.optimize(optData); + } + + /** {@inheritDoc} */ + @Override + protected UnivariatePointValuePair doOptimize() { + // Remove all instances of "MaxEval" and "SearchInterval" from the + // array that will be passed to the internal optimizer. + // The former is to enforce smaller numbers of allowed evaluations + // (according to how many have been used up already), and the latter + // to impose a different start value for each start. + for (int i = 0; i < optimData.length; i++) { + if (optimData[i] instanceof MaxEval) { + optimData[i] = null; + maxEvalIndex = i; + continue; + } + if (optimData[i] instanceof SearchInterval) { + optimData[i] = null; + searchIntervalIndex = i; + continue; + } + } + if (maxEvalIndex == -1) { + throw new MathIllegalStateException(); + } + if (searchIntervalIndex == -1) { + throw new MathIllegalStateException(); + } + + RuntimeException lastException = null; + optima = new UnivariatePointValuePair[starts]; + totalEvaluations = 0; + + final int maxEval = getMaxEvaluations(); + final double min = getMin(); + final double max = getMax(); + final double startValue = getStartValue(); + + // Multi-start loop. + for (int i = 0; i < starts; i++) { + // CHECKSTYLE: stop IllegalCatch + try { + // Decrease number of allowed evaluations. + optimData[maxEvalIndex] = new MaxEval(maxEval - totalEvaluations); + // New start value. + final double s = (i == 0) ? + startValue : + min + generator.nextDouble() * (max - min); + optimData[searchIntervalIndex] = new SearchInterval(min, max, s); + // Optimize. + optima[i] = optimizer.optimize(optimData); + } catch (RuntimeException mue) { + lastException = mue; + optima[i] = null; + } + // CHECKSTYLE: resume IllegalCatch + + totalEvaluations += optimizer.getEvaluations(); + } + + sortPairs(getGoalType()); + + if (optima[0] == null) { + throw lastException; // Cannot be null if starts >= 1. + } + + // Return the point with the best objective function value. + return optima[0]; + } + + /** + * Sort the optima from best to worst, followed by {@code null} elements. + * + * @param goal Goal type. + */ + private void sortPairs(final GoalType goal) { + Arrays.sort(optima, new Comparator() { + public int compare(final UnivariatePointValuePair o1, + final UnivariatePointValuePair o2) { + if (o1 == null) { + return (o2 == null) ? 0 : 1; + } else if (o2 == null) { + return -1; + } + final double v1 = o1.getValue(); + final double v2 = o2.getValue(); + return (goal == GoalType.MINIMIZE) ? + Double.compare(v1, v2) : Double.compare(v2, v1); + } + }); + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/univariate/SearchInterval.java b/src/main/java/org/apache/commons/math3/optim/univariate/SearchInterval.java new file mode 100644 index 000000000..f0b2c0955 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/univariate/SearchInterval.java @@ -0,0 +1,96 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.univariate; + +import org.apache.commons.math3.optim.OptimizationData; +import org.apache.commons.math3.exception.NumberIsTooLargeException; +import org.apache.commons.math3.exception.OutOfRangeException; + +/** + * Search interval and (optional) start value. + *
    + * Immutable class. + * + * @version $Id$ + * @since 3.1 + */ +public class SearchInterval implements OptimizationData { + /** Lower bound. */ + private final double lower; + /** Upper bound. */ + private final double upper; + /** Start value. */ + private final double start; + + /** + * @param lo Lower bound. + * @param hi Upper bound. + * @param init Start value. + * @throws NumberIsTooLargeException if {@code lo >= hi}. + * @throws OutOfRangeException if {@code init < lo} or {@code init > hi}. + */ + public SearchInterval(double lo, + double hi, + double init) { + if (lo >= hi) { + throw new NumberIsTooLargeException(lo, hi, false); + } + if (init < lo || + init > hi) { + throw new OutOfRangeException(init, lo, hi); + } + + lower = lo; + upper = hi; + start = init; + } + + /** + * @param lo Lower bound. + * @param hi Upper bound. + * @throws NumberIsTooLargeException if {@code lo >= hi}. + */ + public SearchInterval(double lo, + double hi) { + this(lo, hi, 0.5 * (lo + hi)); + } + + /** + * Gets the lower bound. + * + * @return the lower bound. + */ + public double getMin() { + return lower; + } + /** + * Gets the upper bound. + * + * @return the upper bound. + */ + public double getMax() { + return upper; + } + /** + * Gets the start value. + * + * @return the start value. + */ + public double getStartValue() { + return start; + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/univariate/SimpleUnivariateValueChecker.java b/src/main/java/org/apache/commons/math3/optim/univariate/SimpleUnivariateValueChecker.java new file mode 100644 index 000000000..3f8b87324 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/univariate/SimpleUnivariateValueChecker.java @@ -0,0 +1,130 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.univariate; + +import org.apache.commons.math3.util.FastMath; +import org.apache.commons.math3.exception.NotStrictlyPositiveException; +import org.apache.commons.math3.optim.AbstractConvergenceChecker; + +/** + * Simple implementation of the + * {@link org.apache.commons.math3.optimization.ConvergenceChecker} interface + * that uses only objective function values. + * + * Convergence is considered to have been reached if either the relative + * difference between the objective function values is smaller than a + * threshold or if either the absolute difference between the objective + * function values is smaller than another threshold. + *
    + * The {@link #converged(int,UnivariatePointValuePair,UnivariatePointValuePair) + * converged} method will also return {@code true} if the number of iterations + * has been set (see {@link #SimpleUnivariateValueChecker(double,double,int) + * this constructor}). + * + * @version $Id: SimpleUnivariateValueChecker.java 1413171 2012-11-24 11:11:10Z erans $ + * @since 3.1 + */ +public class SimpleUnivariateValueChecker + extends AbstractConvergenceChecker { + /** + * If {@link #maxIterationCount} is set to this value, the number of + * iterations will never cause + * {@link #converged(int,UnivariatePointValuePair,UnivariatePointValuePair)} + * to return {@code true}. + */ + private static final int ITERATION_CHECK_DISABLED = -1; + /** + * Number of iterations after which the + * {@link #converged(int,UnivariatePointValuePair,UnivariatePointValuePair)} + * method will return true (unless the check is disabled). + */ + private final int maxIterationCount; + + /** Build an instance with specified thresholds. + * + * In order to perform only relative checks, the absolute tolerance + * must be set to a negative value. In order to perform only absolute + * checks, the relative tolerance must be set to a negative value. + * + * @param relativeThreshold relative tolerance threshold + * @param absoluteThreshold absolute tolerance threshold + */ + public SimpleUnivariateValueChecker(final double relativeThreshold, + final double absoluteThreshold) { + super(relativeThreshold, absoluteThreshold); + maxIterationCount = ITERATION_CHECK_DISABLED; + } + + /** + * Builds an instance with specified thresholds. + * + * In order to perform only relative checks, the absolute tolerance + * must be set to a negative value. In order to perform only absolute + * checks, the relative tolerance must be set to a negative value. + * + * @param relativeThreshold relative tolerance threshold + * @param absoluteThreshold absolute tolerance threshold + * @param maxIter Maximum iteration count. + * @throws NotStrictlyPositiveException if {@code maxIter <= 0}. + * + * @since 3.1 + */ + public SimpleUnivariateValueChecker(final double relativeThreshold, + final double absoluteThreshold, + final int maxIter) { + super(relativeThreshold, absoluteThreshold); + + if (maxIter <= 0) { + throw new NotStrictlyPositiveException(maxIter); + } + maxIterationCount = maxIter; + } + + /** + * Check if the optimization algorithm has converged considering the + * last two points. + * This method may be called several time from the same algorithm + * iteration with different points. This can be detected by checking the + * iteration number at each call if needed. Each time this method is + * called, the previous and current point correspond to points with the + * same role at each iteration, so they can be compared. As an example, + * simplex-based algorithms call this method for all points of the simplex, + * not only for the best or worst ones. + * + * @param iteration Index of current iteration + * @param previous Best point in the previous iteration. + * @param current Best point in the current iteration. + * @return {@code true} if the algorithm has converged. + */ + @Override + public boolean converged(final int iteration, + final UnivariatePointValuePair previous, + final UnivariatePointValuePair current) { + if (maxIterationCount != ITERATION_CHECK_DISABLED) { + if (iteration >= maxIterationCount) { + return true; + } + } + + final double p = previous.getValue(); + final double c = current.getValue(); + final double difference = FastMath.abs(p - c); + final double size = FastMath.max(FastMath.abs(p), FastMath.abs(c)); + return difference <= size * getRelativeThreshold() || + difference <= getAbsoluteThreshold(); + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/univariate/UnivariateObjectiveFunction.java b/src/main/java/org/apache/commons/math3/optim/univariate/UnivariateObjectiveFunction.java new file mode 100644 index 000000000..d3a0d3e24 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/univariate/UnivariateObjectiveFunction.java @@ -0,0 +1,47 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.univariate; + +import org.apache.commons.math3.analysis.UnivariateFunction; +import org.apache.commons.math3.optim.OptimizationData; + +/** + * Scalar function to be optimized. + * + * @version $Id$ + * @since 3.1 + */ +public class UnivariateObjectiveFunction implements OptimizationData { + /** Function to be optimized. */ + private final UnivariateFunction function; + + /** + * @param f Function to be optimized. + */ + public UnivariateObjectiveFunction(UnivariateFunction f) { + function = f; + } + + /** + * Gets the function to be optimized. + * + * @return the objective function. + */ + public UnivariateFunction getObjectiveFunction() { + return function; + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/univariate/UnivariateOptimizer.java b/src/main/java/org/apache/commons/math3/optim/univariate/UnivariateOptimizer.java new file mode 100644 index 000000000..59d9fabaa --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/univariate/UnivariateOptimizer.java @@ -0,0 +1,148 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.univariate; + +import org.apache.commons.math3.analysis.UnivariateFunction; +import org.apache.commons.math3.optim.BaseOptimizer; +import org.apache.commons.math3.optim.OptimizationData; +import org.apache.commons.math3.optim.GoalType; +import org.apache.commons.math3.optim.ConvergenceChecker; +import org.apache.commons.math3.exception.TooManyEvaluationsException; + +/** + * Base class for a univariate scalar function optimizer. + * + * @version $Id$ + * @since 3.1 + */ +public abstract class UnivariateOptimizer + extends BaseOptimizer { + /** Objective function. */ + private UnivariateFunction function; + /** Type of optimization. */ + private GoalType goal; + /** Initial guess. */ + private double start; + /** Lower bound. */ + private double min; + /** Upper bound. */ + private double max; + + /** + * @param checker Convergence checker. + */ + protected UnivariateOptimizer(ConvergenceChecker checker) { + super(checker); + } + + /** + * {@inheritDoc} + * + * @param optData Optimization data. + * The following data will be looked for: + *
      + *
    • {@link GoalType}
    • + *
    • {@link SearchInterval}
    • + *
    • {@link UnivariateObjectiveFunction}
    • + *
    + * @return {@inheritDoc} + * @throws TooManyEvaluationsException if the maximal number of + * evaluations is exceeded. + */ + public UnivariatePointValuePair optimize(OptimizationData... optData) + throws TooManyEvaluationsException { + // Retrieve settings. + parseOptimizationData(optData); + // Perform computation. + return super.optimize(optData); + } + + /** + * @return the optimization type. + */ + public GoalType getGoalType() { + return goal; + } + + /** + * Scans the list of (required and optional) optimization data that + * characterize the problem. + * + * @param optData Optimization data. + * The following data will be looked for: + *
      + *
    • {@link GoalType}
    • + *
    • {@link SearchInterval}
    • + *
    • {@link UnivariateObjectiveFunction}
    • + *
    + */ + private void parseOptimizationData(OptimizationData... optData) { + // The existing values (as set by the previous call) are reused if + // not provided in the argument list. + for (OptimizationData data : optData) { + if (data instanceof SearchInterval) { + final SearchInterval interval = (SearchInterval) data; + min = interval.getMin(); + max = interval.getMax(); + start = interval.getStartValue(); + continue; + } + if (data instanceof UnivariateObjectiveFunction) { + function = ((UnivariateObjectiveFunction) data).getObjectiveFunction(); + continue; + } + if (data instanceof GoalType) { + goal = (GoalType) data; + continue; + } + } + } + + /** + * @return the initial guess. + */ + public double getStartValue() { + return start; + } + /** + * @return the lower bounds. + */ + public double getMin() { + return min; + } + /** + * @return the upper bounds. + */ + public double getMax() { + return max; + } + + /** + * Computes the objective function value. + * This method must be called by subclasses to enforce the + * evaluation counter limit. + * + * @param x Point at which the objective function must be evaluated. + * @return the objective function value at the specified point. + * @throws TooManyEvaluationsException if the maximal number of + * evaluations is exceeded. + */ + protected double computeObjectiveValue(double x) { + super.incrementEvaluationCount(); + return function.value(x); + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/univariate/UnivariatePointValuePair.java b/src/main/java/org/apache/commons/math3/optim/univariate/UnivariatePointValuePair.java new file mode 100644 index 000000000..12241a92e --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/univariate/UnivariatePointValuePair.java @@ -0,0 +1,67 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.commons.math3.optim.univariate; + +import java.io.Serializable; + +/** + * This class holds a point and the value of an objective function at this + * point. + * This is a simple immutable container. + * + * @version $Id: UnivariatePointValuePair.java 1364392 2012-07-22 18:27:12Z tn $ + * @since 3.0 + */ +public class UnivariatePointValuePair implements Serializable { + /** Serializable version identifier. */ + private static final long serialVersionUID = 1003888396256744753L; + /** Point. */ + private final double point; + /** Value of the objective function at the point. */ + private final double value; + + /** + * Build a point/objective function value pair. + * + * @param point Point. + * @param value Value of an objective function at the point + */ + public UnivariatePointValuePair(final double point, + final double value) { + this.point = point; + this.value = value; + } + + /** + * Get the point. + * + * @return the point. + */ + public double getPoint() { + return point; + } + + /** + * Get the value of the objective function. + * + * @return the stored value of the objective function. + */ + public double getValue() { + return value; + } +} diff --git a/src/main/java/org/apache/commons/math3/optim/univariate/package-info.java b/src/main/java/org/apache/commons/math3/optim/univariate/package-info.java new file mode 100644 index 000000000..e1532c6a3 --- /dev/null +++ b/src/main/java/org/apache/commons/math3/optim/univariate/package-info.java @@ -0,0 +1,21 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.univariate; + +/** + * One-dimensional optimization algorithms. + */ diff --git a/src/main/resources/assets/org/apache/commons/math3/exception/util/LocalizedFormats_fr.properties b/src/main/resources/assets/org/apache/commons/math3/exception/util/LocalizedFormats_fr.properties index 0cb7bba3c..118c6e00d 100644 --- a/src/main/resources/assets/org/apache/commons/math3/exception/util/LocalizedFormats_fr.properties +++ b/src/main/resources/assets/org/apache/commons/math3/exception/util/LocalizedFormats_fr.properties @@ -119,6 +119,7 @@ INVALID_REGRESSION_ARRAY= la longueur du tableau de donn\u00e9es = {0} ne corres INVALID_REGRESSION_OBSERVATION = la longueur du tableau de variables explicatives ({0}) ne correspond pas au nombre de variables dans le mod\u00e8le ({1}) INVALID_ROUNDING_METHOD = m\u00e9thode d''arondi {0} invalide, m\u00e9thodes valides : {1} ({2}), {3} ({4}), {5} ({6}), {7} ({8}), {9} ({10}), {11} ({12}), {13} ({14}), {15} ({16}) ITERATOR_EXHAUSTED = it\u00e9ration achev\u00e9e +ITERATIONS = it\u00e9rations LCM_OVERFLOW_32_BITS = d\u00e9passement de capacit\u00e9 : le MCM de {0} et {1} vaut 2^31 LCM_OVERFLOW_64_BITS = d\u00e9passement de capacit\u00e9 : le MCM de {0} et {1} vaut 2^63 LIST_OF_CHROMOSOMES_BIGGER_THAN_POPULATION_SIZE = la liste des chromosomes d\u00e9passe maxPopulationSize diff --git a/src/test/java/org/apache/commons/math3/exception/util/LocalizedFormatsTest.java b/src/test/java/org/apache/commons/math3/exception/util/LocalizedFormatsTest.java index 364453f98..195f44ffe 100644 --- a/src/test/java/org/apache/commons/math3/exception/util/LocalizedFormatsTest.java +++ b/src/test/java/org/apache/commons/math3/exception/util/LocalizedFormatsTest.java @@ -30,7 +30,7 @@ public class LocalizedFormatsTest { @Test public void testMessageNumber() { - Assert.assertEquals(311, LocalizedFormats.values().length); + Assert.assertEquals(312, LocalizedFormats.values().length); } @Test diff --git a/src/test/java/org/apache/commons/math3/fitting/CurveFitterTest.java b/src/test/java/org/apache/commons/math3/fitting/CurveFitterTest.java new file mode 100644 index 000000000..7f07e3de6 --- /dev/null +++ b/src/test/java/org/apache/commons/math3/fitting/CurveFitterTest.java @@ -0,0 +1,141 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.fitting; + +import org.apache.commons.math3.optim.nonlinear.vector.jacobian.LevenbergMarquardtOptimizer; +import org.apache.commons.math3.analysis.ParametricUnivariateFunction; +import org.apache.commons.math3.util.FastMath; +import org.junit.Assert; +import org.junit.Test; + +public class CurveFitterTest { + @Test + public void testMath303() { + LevenbergMarquardtOptimizer optimizer = new LevenbergMarquardtOptimizer(); + CurveFitter fitter = new CurveFitter(optimizer); + fitter.addObservedPoint(2.805d, 0.6934785852953367d); + fitter.addObservedPoint(2.74333333333333d, 0.6306772025518496d); + fitter.addObservedPoint(1.655d, 0.9474675497289684); + fitter.addObservedPoint(1.725d, 0.9013594835804194d); + + ParametricUnivariateFunction sif = new SimpleInverseFunction(); + + double[] initialguess1 = new double[1]; + initialguess1[0] = 1.0d; + Assert.assertEquals(1, fitter.fit(sif, initialguess1).length); + + double[] initialguess2 = new double[2]; + initialguess2[0] = 1.0d; + initialguess2[1] = .5d; + Assert.assertEquals(2, fitter.fit(sif, initialguess2).length); + } + + @Test + public void testMath304() { + LevenbergMarquardtOptimizer optimizer = new LevenbergMarquardtOptimizer(); + CurveFitter fitter = new CurveFitter(optimizer); + fitter.addObservedPoint(2.805d, 0.6934785852953367d); + fitter.addObservedPoint(2.74333333333333d, 0.6306772025518496d); + fitter.addObservedPoint(1.655d, 0.9474675497289684); + fitter.addObservedPoint(1.725d, 0.9013594835804194d); + + ParametricUnivariateFunction sif = new SimpleInverseFunction(); + + double[] initialguess1 = new double[1]; + initialguess1[0] = 1.0d; + Assert.assertEquals(1.6357215104109237, fitter.fit(sif, initialguess1)[0], 1.0e-14); + + double[] initialguess2 = new double[1]; + initialguess2[0] = 10.0d; + Assert.assertEquals(1.6357215104109237, fitter.fit(sif, initialguess1)[0], 1.0e-14); + } + + @Test + public void testMath372() { + LevenbergMarquardtOptimizer optimizer = new LevenbergMarquardtOptimizer(); + CurveFitter curveFitter = new CurveFitter(optimizer); + + curveFitter.addObservedPoint( 15, 4443); + curveFitter.addObservedPoint( 31, 8493); + curveFitter.addObservedPoint( 62, 17586); + curveFitter.addObservedPoint(125, 30582); + curveFitter.addObservedPoint(250, 45087); + curveFitter.addObservedPoint(500, 50683); + + ParametricUnivariateFunction f = new ParametricUnivariateFunction() { + public double value(double x, double ... parameters) { + double a = parameters[0]; + double b = parameters[1]; + double c = parameters[2]; + double d = parameters[3]; + + return d + ((a - d) / (1 + FastMath.pow(x / c, b))); + } + + public double[] gradient(double x, double ... parameters) { + double a = parameters[0]; + double b = parameters[1]; + double c = parameters[2]; + double d = parameters[3]; + + double[] gradients = new double[4]; + double den = 1 + FastMath.pow(x / c, b); + + // derivative with respect to a + gradients[0] = 1 / den; + + // derivative with respect to b + // in the reported (invalid) issue, there was a sign error here + gradients[1] = -((a - d) * FastMath.pow(x / c, b) * FastMath.log(x / c)) / (den * den); + + // derivative with respect to c + gradients[2] = (b * FastMath.pow(x / c, b - 1) * (x / (c * c)) * (a - d)) / (den * den); + + // derivative with respect to d + gradients[3] = 1 - (1 / den); + + return gradients; + + } + }; + + double[] initialGuess = new double[] { 1500, 0.95, 65, 35000 }; + double[] estimatedParameters = curveFitter.fit(f, initialGuess); + + Assert.assertEquals( 2411.00, estimatedParameters[0], 500.00); + Assert.assertEquals( 1.62, estimatedParameters[1], 0.04); + Assert.assertEquals( 111.22, estimatedParameters[2], 0.30); + Assert.assertEquals(55347.47, estimatedParameters[3], 300.00); + Assert.assertTrue(optimizer.getRMS() < 600.0); + } + + private static class SimpleInverseFunction implements ParametricUnivariateFunction { + + public double value(double x, double ... parameters) { + return parameters[0] / x + (parameters.length < 2 ? 0 : parameters[1]); + } + + public double[] gradient(double x, double ... doubles) { + double[] gradientVector = new double[doubles.length]; + gradientVector[0] = 1 / x; + if (doubles.length >= 2) { + gradientVector[1] = 1; + } + return gradientVector; + } + } +} diff --git a/src/test/java/org/apache/commons/math3/fitting/GaussianFitterTest.java b/src/test/java/org/apache/commons/math3/fitting/GaussianFitterTest.java new file mode 100644 index 000000000..8462fe1c6 --- /dev/null +++ b/src/test/java/org/apache/commons/math3/fitting/GaussianFitterTest.java @@ -0,0 +1,363 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.fitting; + +import org.apache.commons.math3.optim.nonlinear.vector.jacobian.LevenbergMarquardtOptimizer; +import org.apache.commons.math3.exception.MathIllegalArgumentException; +import org.junit.Assert; +import org.junit.Test; + +/** + * Tests {@link GaussianFitter}. + * + * @since 2.2 + * @version $Id: GaussianFitterTest.java 1349707 2012-06-13 09:30:56Z erans $ + */ +public class GaussianFitterTest { + /** Good data. */ + protected static final double[][] DATASET1 = new double[][] { + {4.0254623, 531026.0}, + {4.02804905, 664002.0}, + {4.02934242, 787079.0}, + {4.03128248, 984167.0}, + {4.03386923, 1294546.0}, + {4.03580929, 1560230.0}, + {4.03839603, 1887233.0}, + {4.0396894, 2113240.0}, + {4.04162946, 2375211.0}, + {4.04421621, 2687152.0}, + {4.04550958, 2862644.0}, + {4.04744964, 3078898.0}, + {4.05003639, 3327238.0}, + {4.05132976, 3461228.0}, + {4.05326982, 3580526.0}, + {4.05585657, 3576946.0}, + {4.05779662, 3439750.0}, + {4.06038337, 3220296.0}, + {4.06167674, 3070073.0}, + {4.0636168, 2877648.0}, + {4.06620355, 2595848.0}, + {4.06749692, 2390157.0}, + {4.06943698, 2175960.0}, + {4.07202373, 1895104.0}, + {4.0733171, 1687576.0}, + {4.07525716, 1447024.0}, + {4.0778439, 1130879.0}, + {4.07978396, 904900.0}, + {4.08237071, 717104.0}, + {4.08366408, 620014.0} + }; + /** Poor data: right of peak not symmetric with left of peak. */ + protected static final double[][] DATASET2 = new double[][] { + {-20.15, 1523.0}, + {-19.65, 1566.0}, + {-19.15, 1592.0}, + {-18.65, 1927.0}, + {-18.15, 3089.0}, + {-17.65, 6068.0}, + {-17.15, 14239.0}, + {-16.65, 34124.0}, + {-16.15, 64097.0}, + {-15.65, 110352.0}, + {-15.15, 164742.0}, + {-14.65, 209499.0}, + {-14.15, 267274.0}, + {-13.65, 283290.0}, + {-13.15, 275363.0}, + {-12.65, 258014.0}, + {-12.15, 225000.0}, + {-11.65, 200000.0}, + {-11.15, 190000.0}, + {-10.65, 185000.0}, + {-10.15, 180000.0}, + { -9.65, 179000.0}, + { -9.15, 178000.0}, + { -8.65, 177000.0}, + { -8.15, 176000.0}, + { -7.65, 175000.0}, + { -7.15, 174000.0}, + { -6.65, 173000.0}, + { -6.15, 172000.0}, + { -5.65, 171000.0}, + { -5.15, 170000.0} + }; + /** Poor data: long tails. */ + protected static final double[][] DATASET3 = new double[][] { + {-90.15, 1513.0}, + {-80.15, 1514.0}, + {-70.15, 1513.0}, + {-60.15, 1514.0}, + {-50.15, 1513.0}, + {-40.15, 1514.0}, + {-30.15, 1513.0}, + {-20.15, 1523.0}, + {-19.65, 1566.0}, + {-19.15, 1592.0}, + {-18.65, 1927.0}, + {-18.15, 3089.0}, + {-17.65, 6068.0}, + {-17.15, 14239.0}, + {-16.65, 34124.0}, + {-16.15, 64097.0}, + {-15.65, 110352.0}, + {-15.15, 164742.0}, + {-14.65, 209499.0}, + {-14.15, 267274.0}, + {-13.65, 283290.0}, + {-13.15, 275363.0}, + {-12.65, 258014.0}, + {-12.15, 214073.0}, + {-11.65, 182244.0}, + {-11.15, 136419.0}, + {-10.65, 97823.0}, + {-10.15, 58930.0}, + { -9.65, 35404.0}, + { -9.15, 16120.0}, + { -8.65, 9823.0}, + { -8.15, 5064.0}, + { -7.65, 2575.0}, + { -7.15, 1642.0}, + { -6.65, 1101.0}, + { -6.15, 812.0}, + { -5.65, 690.0}, + { -5.15, 565.0}, + { 5.15, 564.0}, + { 15.15, 565.0}, + { 25.15, 564.0}, + { 35.15, 565.0}, + { 45.15, 564.0}, + { 55.15, 565.0}, + { 65.15, 564.0}, + { 75.15, 565.0} + }; + /** Poor data: right of peak is missing. */ + protected static final double[][] DATASET4 = new double[][] { + {-20.15, 1523.0}, + {-19.65, 1566.0}, + {-19.15, 1592.0}, + {-18.65, 1927.0}, + {-18.15, 3089.0}, + {-17.65, 6068.0}, + {-17.15, 14239.0}, + {-16.65, 34124.0}, + {-16.15, 64097.0}, + {-15.65, 110352.0}, + {-15.15, 164742.0}, + {-14.65, 209499.0}, + {-14.15, 267274.0}, + {-13.65, 283290.0} + }; + /** Good data, but few points. */ + protected static final double[][] DATASET5 = new double[][] { + {4.0254623, 531026.0}, + {4.03128248, 984167.0}, + {4.03839603, 1887233.0}, + {4.04421621, 2687152.0}, + {4.05132976, 3461228.0}, + {4.05326982, 3580526.0}, + {4.05779662, 3439750.0}, + {4.0636168, 2877648.0}, + {4.06943698, 2175960.0}, + {4.07525716, 1447024.0}, + {4.08237071, 717104.0}, + {4.08366408, 620014.0} + }; + + /** + * Basic. + */ + @Test + public void testFit01() { + GaussianFitter fitter = new GaussianFitter(new LevenbergMarquardtOptimizer()); + addDatasetToGaussianFitter(DATASET1, fitter); + double[] parameters = fitter.fit(); + + Assert.assertEquals(3496978.1837704973, parameters[0], 1e-4); + Assert.assertEquals(4.054933085999146, parameters[1], 1e-4); + Assert.assertEquals(0.015039355620304326, parameters[2], 1e-4); + } + + /** + * Zero points is not enough observed points. + */ + @Test(expected=MathIllegalArgumentException.class) + public void testFit02() { + GaussianFitter fitter = new GaussianFitter(new LevenbergMarquardtOptimizer()); + fitter.fit(); + } + + /** + * Two points is not enough observed points. + */ + @Test(expected=MathIllegalArgumentException.class) + public void testFit03() { + GaussianFitter fitter = new GaussianFitter(new LevenbergMarquardtOptimizer()); + addDatasetToGaussianFitter(new double[][] { + {4.0254623, 531026.0}, + {4.02804905, 664002.0}}, + fitter); + fitter.fit(); + } + + /** + * Poor data: right of peak not symmetric with left of peak. + */ + @Test + public void testFit04() { + GaussianFitter fitter = new GaussianFitter(new LevenbergMarquardtOptimizer()); + addDatasetToGaussianFitter(DATASET2, fitter); + double[] parameters = fitter.fit(); + + Assert.assertEquals(233003.2967252038, parameters[0], 1e-4); + Assert.assertEquals(-10.654887521095983, parameters[1], 1e-4); + Assert.assertEquals(4.335937353196641, parameters[2], 1e-4); + } + + /** + * Poor data: long tails. + */ + @Test + public void testFit05() { + GaussianFitter fitter = new GaussianFitter(new LevenbergMarquardtOptimizer()); + addDatasetToGaussianFitter(DATASET3, fitter); + double[] parameters = fitter.fit(); + + Assert.assertEquals(283863.81929180305, parameters[0], 1e-4); + Assert.assertEquals(-13.29641995105174, parameters[1], 1e-4); + Assert.assertEquals(1.7297330293549908, parameters[2], 1e-4); + } + + /** + * Poor data: right of peak is missing. + */ + @Test + public void testFit06() { + GaussianFitter fitter = new GaussianFitter(new LevenbergMarquardtOptimizer()); + addDatasetToGaussianFitter(DATASET4, fitter); + double[] parameters = fitter.fit(); + + Assert.assertEquals(285250.66754309234, parameters[0], 1e-4); + Assert.assertEquals(-13.528375695228455, parameters[1], 1e-4); + Assert.assertEquals(1.5204344894331614, parameters[2], 1e-4); + } + + /** + * Basic with smaller dataset. + */ + @Test + public void testFit07() { + GaussianFitter fitter = new GaussianFitter(new LevenbergMarquardtOptimizer()); + addDatasetToGaussianFitter(DATASET5, fitter); + double[] parameters = fitter.fit(); + + Assert.assertEquals(3514384.729342235, parameters[0], 1e-4); + Assert.assertEquals(4.054970307455625, parameters[1], 1e-4); + Assert.assertEquals(0.015029412832160017, parameters[2], 1e-4); + } + + @Test + public void testMath519() { + // The optimizer will try negative sigma values but "GaussianFitter" + // will catch the raised exceptions and return NaN values instead. + + final double[] data = { + 1.1143831578403364E-29, + 4.95281403484594E-28, + 1.1171347211930288E-26, + 1.7044813962636277E-25, + 1.9784716574832164E-24, + 1.8630236407866774E-23, + 1.4820532905097742E-22, + 1.0241963854632831E-21, + 6.275077366673128E-21, + 3.461808994532493E-20, + 1.7407124684715706E-19, + 8.056687953553974E-19, + 3.460193945992071E-18, + 1.3883326374011525E-17, + 5.233894983671116E-17, + 1.8630791465263745E-16, + 6.288759227922111E-16, + 2.0204433920597856E-15, + 6.198768938576155E-15, + 1.821419346860626E-14, + 5.139176445538471E-14, + 1.3956427429045787E-13, + 3.655705706448139E-13, + 9.253753324779779E-13, + 2.267636001476696E-12, + 5.3880460095836855E-12, + 1.2431632654852931E-11 + }; + + GaussianFitter fitter = new GaussianFitter(new LevenbergMarquardtOptimizer()); + for (int i = 0; i < data.length; i++) { + fitter.addObservedPoint(i, data[i]); + } + final double[] p = fitter.fit(); + + Assert.assertEquals(53.1572792, p[1], 1e-7); + Assert.assertEquals(5.75214622, p[2], 1e-8); + } + + @Test + public void testMath798() { + final GaussianFitter fitter = new GaussianFitter(new LevenbergMarquardtOptimizer()); + + // When the data points are not commented out below, the fit stalls. + // This is expected however, since the whole dataset hardly looks like + // a Gaussian. + // When commented out, the fit proceeds fine. + + fitter.addObservedPoint(0.23, 395.0); + //fitter.addObservedPoint(0.68, 0.0); + fitter.addObservedPoint(1.14, 376.0); + //fitter.addObservedPoint(1.59, 0.0); + fitter.addObservedPoint(2.05, 163.0); + //fitter.addObservedPoint(2.50, 0.0); + fitter.addObservedPoint(2.95, 49.0); + //fitter.addObservedPoint(3.41, 0.0); + fitter.addObservedPoint(3.86, 16.0); + //fitter.addObservedPoint(4.32, 0.0); + fitter.addObservedPoint(4.77, 1.0); + + final double[] p = fitter.fit(); + + // Values are copied from a previous run of this test. + Assert.assertEquals(420.8397296167364, p[0], 1e-12); + Assert.assertEquals(0.603770729862231, p[1], 1e-15); + Assert.assertEquals(1.0786447936766612, p[2], 1e-14); + } + + /** + * Adds the specified points to specified GaussianFitter + * instance. + * + * @param points data points where first dimension is a point index and + * second dimension is an array of length two representing the point + * with the first value corresponding to X and the second value + * corresponding to Y + * @param fitter fitter to which the points in points should be + * added as observed points + */ + protected static void addDatasetToGaussianFitter(double[][] points, + GaussianFitter fitter) { + for (int i = 0; i < points.length; i++) { + fitter.addObservedPoint(points[i][0], points[i][1]); + } + } +} diff --git a/src/test/java/org/apache/commons/math3/fitting/HarmonicFitterTest.java b/src/test/java/org/apache/commons/math3/fitting/HarmonicFitterTest.java new file mode 100644 index 000000000..1c457612f --- /dev/null +++ b/src/test/java/org/apache/commons/math3/fitting/HarmonicFitterTest.java @@ -0,0 +1,185 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.fitting; + +import java.util.Random; +import org.apache.commons.math3.optim.nonlinear.vector.jacobian.LevenbergMarquardtOptimizer; +import org.apache.commons.math3.analysis.function.HarmonicOscillator; +import org.apache.commons.math3.exception.NumberIsTooSmallException; +import org.apache.commons.math3.exception.MathIllegalStateException; +import org.apache.commons.math3.util.FastMath; +import org.apache.commons.math3.util.MathUtils; + +import org.junit.Test; +import org.junit.Assert; + +public class HarmonicFitterTest { + @Test(expected=NumberIsTooSmallException.class) + public void testPreconditions1() { + HarmonicFitter fitter = + new HarmonicFitter(new LevenbergMarquardtOptimizer()); + + fitter.fit(); + } + + @Test + public void testNoError() { + final double a = 0.2; + final double w = 3.4; + final double p = 4.1; + HarmonicOscillator f = new HarmonicOscillator(a, w, p); + + HarmonicFitter fitter = + new HarmonicFitter(new LevenbergMarquardtOptimizer()); + for (double x = 0.0; x < 1.3; x += 0.01) { + fitter.addObservedPoint(1, x, f.value(x)); + } + + final double[] fitted = fitter.fit(); + Assert.assertEquals(a, fitted[0], 1.0e-13); + Assert.assertEquals(w, fitted[1], 1.0e-13); + Assert.assertEquals(p, MathUtils.normalizeAngle(fitted[2], p), 1e-13); + + HarmonicOscillator ff = new HarmonicOscillator(fitted[0], fitted[1], fitted[2]); + + for (double x = -1.0; x < 1.0; x += 0.01) { + Assert.assertTrue(FastMath.abs(f.value(x) - ff.value(x)) < 1e-13); + } + } + + @Test + public void test1PercentError() { + Random randomizer = new Random(64925784252l); + final double a = 0.2; + final double w = 3.4; + final double p = 4.1; + HarmonicOscillator f = new HarmonicOscillator(a, w, p); + + HarmonicFitter fitter = + new HarmonicFitter(new LevenbergMarquardtOptimizer()); + for (double x = 0.0; x < 10.0; x += 0.1) { + fitter.addObservedPoint(1, x, + f.value(x) + 0.01 * randomizer.nextGaussian()); + } + + final double[] fitted = fitter.fit(); + Assert.assertEquals(a, fitted[0], 7.6e-4); + Assert.assertEquals(w, fitted[1], 2.7e-3); + Assert.assertEquals(p, MathUtils.normalizeAngle(fitted[2], p), 1.3e-2); + } + + @Test + public void testTinyVariationsData() { + Random randomizer = new Random(64925784252l); + + HarmonicFitter fitter = + new HarmonicFitter(new LevenbergMarquardtOptimizer()); + for (double x = 0.0; x < 10.0; x += 0.1) { + fitter.addObservedPoint(1, x, 1e-7 * randomizer.nextGaussian()); + } + + fitter.fit(); + // This test serves to cover the part of the code of "guessAOmega" + // when the algorithm using integrals fails. + } + + @Test + public void testInitialGuess() { + Random randomizer = new Random(45314242l); + final double a = 0.2; + final double w = 3.4; + final double p = 4.1; + HarmonicOscillator f = new HarmonicOscillator(a, w, p); + + HarmonicFitter fitter = + new HarmonicFitter(new LevenbergMarquardtOptimizer()); + for (double x = 0.0; x < 10.0; x += 0.1) { + fitter.addObservedPoint(1, x, + f.value(x) + 0.01 * randomizer.nextGaussian()); + } + + final double[] fitted = fitter.fit(new double[] { 0.15, 3.6, 4.5 }); + Assert.assertEquals(a, fitted[0], 1.2e-3); + Assert.assertEquals(w, fitted[1], 3.3e-3); + Assert.assertEquals(p, MathUtils.normalizeAngle(fitted[2], p), 1.7e-2); + } + + @Test + public void testUnsorted() { + Random randomizer = new Random(64925784252l); + final double a = 0.2; + final double w = 3.4; + final double p = 4.1; + HarmonicOscillator f = new HarmonicOscillator(a, w, p); + + HarmonicFitter fitter = + new HarmonicFitter(new LevenbergMarquardtOptimizer()); + + // build a regularly spaced array of measurements + int size = 100; + double[] xTab = new double[size]; + double[] yTab = new double[size]; + for (int i = 0; i < size; ++i) { + xTab[i] = 0.1 * i; + yTab[i] = f.value(xTab[i]) + 0.01 * randomizer.nextGaussian(); + } + + // shake it + for (int i = 0; i < size; ++i) { + int i1 = randomizer.nextInt(size); + int i2 = randomizer.nextInt(size); + double xTmp = xTab[i1]; + double yTmp = yTab[i1]; + xTab[i1] = xTab[i2]; + yTab[i1] = yTab[i2]; + xTab[i2] = xTmp; + yTab[i2] = yTmp; + } + + // pass it to the fitter + for (int i = 0; i < size; ++i) { + fitter.addObservedPoint(1, xTab[i], yTab[i]); + } + + final double[] fitted = fitter.fit(); + Assert.assertEquals(a, fitted[0], 7.6e-4); + Assert.assertEquals(w, fitted[1], 3.5e-3); + Assert.assertEquals(p, MathUtils.normalizeAngle(fitted[2], p), 1.5e-2); + } + + @Test(expected=MathIllegalStateException.class) + public void testMath844() { + final double[] y = { 0, 1, 2, 3, 2, 1, + 0, -1, -2, -3, -2, -1, + 0, 1, 2, 3, 2, 1, + 0, -1, -2, -3, -2, -1, + 0, 1, 2, 3, 2, 1, 0 }; + final int len = y.length; + final WeightedObservedPoint[] points = new WeightedObservedPoint[len]; + for (int i = 0; i < len; i++) { + points[i] = new WeightedObservedPoint(1, i, y[i]); + } + + // The guesser fails because the function is far from an harmonic + // function: It is a triangular periodic function with amplitude 3 + // and period 12, and all sample points are taken at integer abscissae + // so function values all belong to the integer subset {-3, -2, -1, 0, + // 1, 2, 3}. + final HarmonicFitter.ParameterGuesser guesser + = new HarmonicFitter.ParameterGuesser(points); + } +} diff --git a/src/test/java/org/apache/commons/math3/fitting/PolynomialFitterTest.java b/src/test/java/org/apache/commons/math3/fitting/PolynomialFitterTest.java new file mode 100644 index 000000000..b695ee63e --- /dev/null +++ b/src/test/java/org/apache/commons/math3/fitting/PolynomialFitterTest.java @@ -0,0 +1,256 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.fitting; + +import java.util.Random; +import org.apache.commons.math3.analysis.polynomials.PolynomialFunction; +import org.apache.commons.math3.analysis.polynomials.PolynomialFunction.Parametric; +import org.apache.commons.math3.exception.ConvergenceException; +import org.apache.commons.math3.exception.TooManyEvaluationsException; +import org.apache.commons.math3.optim.nonlinear.vector.MultivariateVectorOptimizer; +import org.apache.commons.math3.optim.nonlinear.vector.jacobian.LevenbergMarquardtOptimizer; +import org.apache.commons.math3.optim.nonlinear.vector.jacobian.GaussNewtonOptimizer; +import org.apache.commons.math3.optim.SimpleVectorValueChecker; +import org.apache.commons.math3.util.FastMath; +import org.apache.commons.math3.distribution.RealDistribution; +import org.apache.commons.math3.distribution.UniformRealDistribution; +import org.apache.commons.math3.TestUtils; +import org.junit.Test; +import org.junit.Assert; + +/** + * Test for class {@link CurveFitter} where the function to fit is a + * polynomial. + */ +public class PolynomialFitterTest { + @Test + public void testFit() { + final RealDistribution rng = new UniformRealDistribution(-100, 100); + rng.reseedRandomGenerator(64925784252L); + + final LevenbergMarquardtOptimizer optim = new LevenbergMarquardtOptimizer(); + final PolynomialFitter fitter = new PolynomialFitter(optim); + final double[] coeff = { 12.9, -3.4, 2.1 }; // 12.9 - 3.4 x + 2.1 x^2 + final PolynomialFunction f = new PolynomialFunction(coeff); + + // Collect data from a known polynomial. + for (int i = 0; i < 100; i++) { + final double x = rng.sample(); + fitter.addObservedPoint(x, f.value(x)); + } + + // Start fit from initial guesses that are far from the optimal values. + final double[] best = fitter.fit(new double[] { -1e-20, 3e15, -5e25 }); + + TestUtils.assertEquals("best != coeff", coeff, best, 1e-12); + } + + @Test + public void testNoError() { + Random randomizer = new Random(64925784252l); + for (int degree = 1; degree < 10; ++degree) { + PolynomialFunction p = buildRandomPolynomial(degree, randomizer); + + PolynomialFitter fitter = new PolynomialFitter(new LevenbergMarquardtOptimizer()); + for (int i = 0; i <= degree; ++i) { + fitter.addObservedPoint(1.0, i, p.value(i)); + } + + final double[] init = new double[degree + 1]; + PolynomialFunction fitted = new PolynomialFunction(fitter.fit(init)); + + for (double x = -1.0; x < 1.0; x += 0.01) { + double error = FastMath.abs(p.value(x) - fitted.value(x)) / + (1.0 + FastMath.abs(p.value(x))); + Assert.assertEquals(0.0, error, 1.0e-6); + } + } + } + + @Test + public void testSmallError() { + Random randomizer = new Random(53882150042l); + double maxError = 0; + for (int degree = 0; degree < 10; ++degree) { + PolynomialFunction p = buildRandomPolynomial(degree, randomizer); + + PolynomialFitter fitter = new PolynomialFitter(new LevenbergMarquardtOptimizer()); + for (double x = -1.0; x < 1.0; x += 0.01) { + fitter.addObservedPoint(1.0, x, + p.value(x) + 0.1 * randomizer.nextGaussian()); + } + + final double[] init = new double[degree + 1]; + PolynomialFunction fitted = new PolynomialFunction(fitter.fit(init)); + + for (double x = -1.0; x < 1.0; x += 0.01) { + double error = FastMath.abs(p.value(x) - fitted.value(x)) / + (1.0 + FastMath.abs(p.value(x))); + maxError = FastMath.max(maxError, error); + Assert.assertTrue(FastMath.abs(error) < 0.1); + } + } + Assert.assertTrue(maxError > 0.01); + } + + @Test + public void testMath798() { + final double tol = 1e-14; + final SimpleVectorValueChecker checker = new SimpleVectorValueChecker(tol, tol); + final double[] init = new double[] { 0, 0 }; + final int maxEval = 3; + + final double[] lm = doMath798(new LevenbergMarquardtOptimizer(checker), maxEval, init); + final double[] gn = doMath798(new GaussNewtonOptimizer(checker), maxEval, init); + + for (int i = 0; i <= 1; i++) { + Assert.assertEquals(lm[i], gn[i], tol); + } + } + + /** + * This test shows that the user can set the maximum number of iterations + * to avoid running for too long. + * But in the test case, the real problem is that the tolerance is way too + * stringent. + */ + @Test(expected=TooManyEvaluationsException.class) + public void testMath798WithToleranceTooLow() { + final double tol = 1e-100; + final SimpleVectorValueChecker checker = new SimpleVectorValueChecker(tol, tol); + final double[] init = new double[] { 0, 0 }; + final int maxEval = 10000; // Trying hard to fit. + + final double[] gn = doMath798(new GaussNewtonOptimizer(checker), maxEval, init); + } + + /** + * This test shows that the user can set the maximum number of iterations + * to avoid running for too long. + * Even if the real problem is that the tolerance is way too stringent, it + * is possible to get the best solution so far, i.e. a checker will return + * the point when the maximum iteration count has been reached. + */ + @Test + public void testMath798WithToleranceTooLowButNoException() { + final double tol = 1e-100; + final double[] init = new double[] { 0, 0 }; + final int maxEval = 10000; // Trying hard to fit. + final SimpleVectorValueChecker checker = new SimpleVectorValueChecker(tol, tol, maxEval); + + final double[] lm = doMath798(new LevenbergMarquardtOptimizer(checker), maxEval, init); + final double[] gn = doMath798(new GaussNewtonOptimizer(checker), maxEval, init); + + for (int i = 0; i <= 1; i++) { + Assert.assertEquals(lm[i], gn[i], 1e-15); + } + } + + /** + * @param optimizer Optimizer. + * @param maxEval Maximum number of function evaluations. + * @param init First guess. + * @return the solution found by the given optimizer. + */ + private double[] doMath798(MultivariateVectorOptimizer optimizer, + int maxEval, + double[] init) { + final CurveFitter fitter = new CurveFitter(optimizer); + + fitter.addObservedPoint(-0.2, -7.12442E-13); + fitter.addObservedPoint(-0.199, -4.33397E-13); + fitter.addObservedPoint(-0.198, -2.823E-13); + fitter.addObservedPoint(-0.197, -1.40405E-13); + fitter.addObservedPoint(-0.196, -7.80821E-15); + fitter.addObservedPoint(-0.195, 6.20484E-14); + fitter.addObservedPoint(-0.194, 7.24673E-14); + fitter.addObservedPoint(-0.193, 1.47152E-13); + fitter.addObservedPoint(-0.192, 1.9629E-13); + fitter.addObservedPoint(-0.191, 2.12038E-13); + fitter.addObservedPoint(-0.19, 2.46906E-13); + fitter.addObservedPoint(-0.189, 2.77495E-13); + fitter.addObservedPoint(-0.188, 2.51281E-13); + fitter.addObservedPoint(-0.187, 2.64001E-13); + fitter.addObservedPoint(-0.186, 2.8882E-13); + fitter.addObservedPoint(-0.185, 3.13604E-13); + fitter.addObservedPoint(-0.184, 3.14248E-13); + fitter.addObservedPoint(-0.183, 3.1172E-13); + fitter.addObservedPoint(-0.182, 3.12912E-13); + fitter.addObservedPoint(-0.181, 3.06761E-13); + fitter.addObservedPoint(-0.18, 2.8559E-13); + fitter.addObservedPoint(-0.179, 2.86806E-13); + fitter.addObservedPoint(-0.178, 2.985E-13); + fitter.addObservedPoint(-0.177, 2.67148E-13); + fitter.addObservedPoint(-0.176, 2.94173E-13); + fitter.addObservedPoint(-0.175, 3.27528E-13); + fitter.addObservedPoint(-0.174, 3.33858E-13); + fitter.addObservedPoint(-0.173, 2.97511E-13); + fitter.addObservedPoint(-0.172, 2.8615E-13); + fitter.addObservedPoint(-0.171, 2.84624E-13); + + final double[] coeff = fitter.fit(maxEval, + new PolynomialFunction.Parametric(), + init); + return coeff; + } + + @Test + public void testRedundantSolvable() { + // Levenberg-Marquardt should handle redundant information gracefully + checkUnsolvableProblem(new LevenbergMarquardtOptimizer(), true); + } + + @Test + public void testRedundantUnsolvable() { + // Gauss-Newton should not be able to solve redundant information + checkUnsolvableProblem(new GaussNewtonOptimizer(true, new SimpleVectorValueChecker(1e-15, 1e-15)), false); + } + + private void checkUnsolvableProblem(MultivariateVectorOptimizer optimizer, + boolean solvable) { + Random randomizer = new Random(1248788532l); + for (int degree = 0; degree < 10; ++degree) { + PolynomialFunction p = buildRandomPolynomial(degree, randomizer); + + PolynomialFitter fitter = new PolynomialFitter(optimizer); + + // reusing the same point over and over again does not bring + // information, the problem cannot be solved in this case for + // degrees greater than 1 (but one point is sufficient for + // degree 0) + for (double x = -1.0; x < 1.0; x += 0.01) { + fitter.addObservedPoint(1.0, 0.0, p.value(0.0)); + } + + try { + final double[] init = new double[degree + 1]; + fitter.fit(init); + Assert.assertTrue(solvable || (degree == 0)); + } catch(ConvergenceException e) { + Assert.assertTrue((! solvable) && (degree > 0)); + } + } + } + + private PolynomialFunction buildRandomPolynomial(int degree, Random randomizer) { + final double[] coefficients = new double[degree + 1]; + for (int i = 0; i <= degree; ++i) { + coefficients[i] = randomizer.nextGaussian(); + } + return new PolynomialFunction(coefficients); + } +} diff --git a/src/test/java/org/apache/commons/math3/optim/PointValuePairTest.java b/src/test/java/org/apache/commons/math3/optim/PointValuePairTest.java new file mode 100644 index 000000000..7146d150d --- /dev/null +++ b/src/test/java/org/apache/commons/math3/optim/PointValuePairTest.java @@ -0,0 +1,35 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim; + +import org.apache.commons.math3.TestUtils; +import org.junit.Assert; +import org.junit.Test; + +public class PointValuePairTest { + @Test + public void testSerial() { + PointValuePair pv1 = new PointValuePair(new double[] { 1.0, 2.0, 3.0 }, 4.0); + PointValuePair pv2 = (PointValuePair) TestUtils.serializeAndRecover(pv1); + Assert.assertEquals(pv1.getKey().length, pv2.getKey().length); + for (int i = 0; i < pv1.getKey().length; ++i) { + Assert.assertEquals(pv1.getKey()[i], pv2.getKey()[i], 1.0e-15); + } + Assert.assertEquals(pv1.getValue(), pv2.getValue(), 1.0e-15); + } + +} diff --git a/src/test/java/org/apache/commons/math3/optim/PointVectorValuePairTest.java b/src/test/java/org/apache/commons/math3/optim/PointVectorValuePairTest.java new file mode 100644 index 000000000..427bac04f --- /dev/null +++ b/src/test/java/org/apache/commons/math3/optim/PointVectorValuePairTest.java @@ -0,0 +1,39 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.commons.math3.optim; + +import org.apache.commons.math3.TestUtils; +import org.junit.Assert; +import org.junit.Test; + +public class PointVectorValuePairTest { + @Test + public void testSerial() { + PointVectorValuePair pv1 = new PointVectorValuePair(new double[] { 1.0, 2.0, 3.0 }, + new double[] { 4.0, 5.0 }); + PointVectorValuePair pv2 = (PointVectorValuePair) TestUtils.serializeAndRecover(pv1); + Assert.assertEquals(pv1.getKey().length, pv2.getKey().length); + for (int i = 0; i < pv1.getKey().length; ++i) { + Assert.assertEquals(pv1.getKey()[i], pv2.getKey()[i], 1.0e-15); + } + Assert.assertEquals(pv1.getValue().length, pv2.getValue().length); + for (int i = 0; i < pv1.getValue().length; ++i) { + Assert.assertEquals(pv1.getValue()[i], pv2.getValue()[i], 1.0e-15); + } + } +} diff --git a/src/test/java/org/apache/commons/math3/optim/SimplePointCheckerTest.java b/src/test/java/org/apache/commons/math3/optim/SimplePointCheckerTest.java new file mode 100644 index 000000000..f5b057a1d --- /dev/null +++ b/src/test/java/org/apache/commons/math3/optim/SimplePointCheckerTest.java @@ -0,0 +1,53 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim; + +import org.apache.commons.math3.exception.NotStrictlyPositiveException; +import org.junit.Test; +import org.junit.Assert; + +public class SimplePointCheckerTest { + @Test(expected=NotStrictlyPositiveException.class) + public void testIterationCheckPrecondition() { + new SimplePointChecker(1e-1, 1e-2, 0); + } + + @Test + public void testIterationCheck() { + final int max = 10; + final SimplePointChecker checker + = new SimplePointChecker(1e-1, 1e-2, max); + Assert.assertTrue(checker.converged(max, null, null)); + Assert.assertTrue(checker.converged(max + 1, null, null)); + } + + @Test + public void testIterationCheckDisabled() { + final SimplePointChecker checker + = new SimplePointChecker(1e-8, 1e-8); + + final PointValuePair a = new PointValuePair(new double[] { 1d }, 1d); + final PointValuePair b = new PointValuePair(new double[] { 10d }, 10d); + + Assert.assertFalse(checker.converged(-1, a, b)); + Assert.assertFalse(checker.converged(0, a, b)); + Assert.assertFalse(checker.converged(1000000, a, b)); + + Assert.assertTrue(checker.converged(-1, a, a)); + Assert.assertTrue(checker.converged(-1, b, b)); + } +} diff --git a/src/test/java/org/apache/commons/math3/optim/SimpleValueCheckerTest.java b/src/test/java/org/apache/commons/math3/optim/SimpleValueCheckerTest.java new file mode 100644 index 000000000..f4b7f2f9d --- /dev/null +++ b/src/test/java/org/apache/commons/math3/optim/SimpleValueCheckerTest.java @@ -0,0 +1,52 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim; + +import org.apache.commons.math3.exception.NotStrictlyPositiveException; +import org.junit.Test; +import org.junit.Assert; + +public class SimpleValueCheckerTest { + @Test(expected=NotStrictlyPositiveException.class) + public void testIterationCheckPrecondition() { + new SimpleValueChecker(1e-1, 1e-2, 0); + } + + @Test + public void testIterationCheck() { + final int max = 10; + final SimpleValueChecker checker = new SimpleValueChecker(1e-1, 1e-2, max); + Assert.assertTrue(checker.converged(max, null, null)); + Assert.assertTrue(checker.converged(max + 1, null, null)); + } + + @Test + public void testIterationCheckDisabled() { + final SimpleValueChecker checker = new SimpleValueChecker(1e-8, 1e-8); + + final PointValuePair a = new PointValuePair(new double[] { 1d }, 1d); + final PointValuePair b = new PointValuePair(new double[] { 10d }, 10d); + + Assert.assertFalse(checker.converged(-1, a, b)); + Assert.assertFalse(checker.converged(0, a, b)); + Assert.assertFalse(checker.converged(1000000, a, b)); + + Assert.assertTrue(checker.converged(-1, a, a)); + Assert.assertTrue(checker.converged(-1, b, b)); + } + +} diff --git a/src/test/java/org/apache/commons/math3/optim/SimpleVectorValueCheckerTest.java b/src/test/java/org/apache/commons/math3/optim/SimpleVectorValueCheckerTest.java new file mode 100644 index 000000000..c9dcedc78 --- /dev/null +++ b/src/test/java/org/apache/commons/math3/optim/SimpleVectorValueCheckerTest.java @@ -0,0 +1,53 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim; + +import org.apache.commons.math3.exception.NotStrictlyPositiveException; +import org.junit.Test; +import org.junit.Assert; + +public class SimpleVectorValueCheckerTest { + @Test(expected=NotStrictlyPositiveException.class) + public void testIterationCheckPrecondition() { + new SimpleVectorValueChecker(1e-1, 1e-2, 0); + } + + @Test + public void testIterationCheck() { + final int max = 10; + final SimpleVectorValueChecker checker = new SimpleVectorValueChecker(1e-1, 1e-2, max); + Assert.assertTrue(checker.converged(max, null, null)); + Assert.assertTrue(checker.converged(max + 1, null, null)); + } + + @Test + public void testIterationCheckDisabled() { + final SimpleVectorValueChecker checker = new SimpleVectorValueChecker(1e-8, 1e-8); + + final PointVectorValuePair a = new PointVectorValuePair(new double[] { 1d }, + new double[] { 1d }); + final PointVectorValuePair b = new PointVectorValuePair(new double[] { 10d }, + new double[] { 10d }); + + Assert.assertFalse(checker.converged(-1, a, b)); + Assert.assertFalse(checker.converged(0, a, b)); + Assert.assertFalse(checker.converged(1000000, a, b)); + + Assert.assertTrue(checker.converged(-1, a, a)); + Assert.assertTrue(checker.converged(-1, b, b)); + } +} diff --git a/src/test/java/org/apache/commons/math3/optim/linear/SimplexSolverTest.java b/src/test/java/org/apache/commons/math3/optim/linear/SimplexSolverTest.java new file mode 100644 index 000000000..8f4031046 --- /dev/null +++ b/src/test/java/org/apache/commons/math3/optim/linear/SimplexSolverTest.java @@ -0,0 +1,664 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.linear; + +import java.util.ArrayList; +import java.util.Collection; +import java.util.List; +import org.apache.commons.math3.optim.MaxIter; +import org.apache.commons.math3.optim.GoalType; +import org.apache.commons.math3.optim.PointValuePair; +import org.apache.commons.math3.util.Precision; +import org.junit.Test; +import org.junit.Assert; + +public class SimplexSolverTest { + private static final MaxIter DEFAULT_MAX_ITER = new MaxIter(100); + + @Test + public void testMath828() { + LinearObjectiveFunction f = new LinearObjectiveFunction( + new double[] { 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, 0.0); + + ArrayList constraints = new ArrayList(); + + constraints.add(new LinearConstraint(new double[] {0.0, 39.0, 23.0, 96.0, 15.0, 48.0, 9.0, 21.0, 48.0, 36.0, 76.0, 19.0, 88.0, 17.0, 16.0, 36.0,}, Relationship.GEQ, 15.0)); + constraints.add(new LinearConstraint(new double[] {0.0, 59.0, 93.0, 12.0, 29.0, 78.0, 73.0, 87.0, 32.0, 70.0, 68.0, 24.0, 11.0, 26.0, 65.0, 25.0,}, Relationship.GEQ, 29.0)); + constraints.add(new LinearConstraint(new double[] {0.0, 74.0, 5.0, 82.0, 6.0, 97.0, 55.0, 44.0, 52.0, 54.0, 5.0, 93.0, 91.0, 8.0, 20.0, 97.0,}, Relationship.GEQ, 6.0)); + constraints.add(new LinearConstraint(new double[] {8.0, -3.0, -28.0, -72.0, -8.0, -31.0, -31.0, -74.0, -47.0, -59.0, -24.0, -57.0, -56.0, -16.0, -92.0, -59.0,}, Relationship.GEQ, 0.0)); + constraints.add(new LinearConstraint(new double[] {25.0, -7.0, -99.0, -78.0, -25.0, -14.0, -16.0, -89.0, -39.0, -56.0, -53.0, -9.0, -18.0, -26.0, -11.0, -61.0,}, Relationship.GEQ, 0.0)); + constraints.add(new LinearConstraint(new double[] {33.0, -95.0, -15.0, -4.0, -33.0, -3.0, -20.0, -96.0, -27.0, -13.0, -80.0, -24.0, -3.0, -13.0, -57.0, -76.0,}, Relationship.GEQ, 0.0)); + constraints.add(new LinearConstraint(new double[] {7.0, -95.0, -39.0, -93.0, -7.0, -94.0, -94.0, -62.0, -76.0, -26.0, -53.0, -57.0, -31.0, -76.0, -53.0, -52.0,}, Relationship.GEQ, 0.0)); + + double epsilon = 1e-6; + PointValuePair solution = new SimplexSolver().optimize(DEFAULT_MAX_ITER, f, new LinearConstraintSet(constraints), + GoalType.MINIMIZE, new NonNegativeConstraint(true)); + Assert.assertEquals(1.0d, solution.getValue(), epsilon); + Assert.assertTrue(validSolution(solution, constraints, epsilon)); + } + + @Test + public void testMath828Cycle() { + LinearObjectiveFunction f = new LinearObjectiveFunction( + new double[] { 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, 0.0); + + ArrayList constraints = new ArrayList(); + + constraints.add(new LinearConstraint(new double[] {0.0, 16.0, 14.0, 69.0, 1.0, 85.0, 52.0, 43.0, 64.0, 97.0, 14.0, 74.0, 89.0, 28.0, 94.0, 58.0, 13.0, 22.0, 21.0, 17.0, 30.0, 25.0, 1.0, 59.0, 91.0, 78.0, 12.0, 74.0, 56.0, 3.0, 88.0,}, Relationship.GEQ, 91.0)); + constraints.add(new LinearConstraint(new double[] {0.0, 60.0, 40.0, 81.0, 71.0, 72.0, 46.0, 45.0, 38.0, 48.0, 40.0, 17.0, 33.0, 85.0, 64.0, 32.0, 84.0, 3.0, 54.0, 44.0, 71.0, 67.0, 90.0, 95.0, 54.0, 99.0, 99.0, 29.0, 52.0, 98.0, 9.0,}, Relationship.GEQ, 54.0)); + constraints.add(new LinearConstraint(new double[] {0.0, 41.0, 12.0, 86.0, 90.0, 61.0, 31.0, 41.0, 23.0, 89.0, 17.0, 74.0, 44.0, 27.0, 16.0, 47.0, 80.0, 32.0, 11.0, 56.0, 68.0, 82.0, 11.0, 62.0, 62.0, 53.0, 39.0, 16.0, 48.0, 1.0, 63.0,}, Relationship.GEQ, 62.0)); + constraints.add(new LinearConstraint(new double[] {83.0, -76.0, -94.0, -19.0, -15.0, -70.0, -72.0, -57.0, -63.0, -65.0, -22.0, -94.0, -22.0, -88.0, -86.0, -89.0, -72.0, -16.0, -80.0, -49.0, -70.0, -93.0, -95.0, -17.0, -83.0, -97.0, -31.0, -47.0, -31.0, -13.0, -23.0,}, Relationship.GEQ, 0.0)); + constraints.add(new LinearConstraint(new double[] {41.0, -96.0, -41.0, -48.0, -70.0, -43.0, -43.0, -43.0, -97.0, -37.0, -85.0, -70.0, -45.0, -67.0, -87.0, -69.0, -94.0, -54.0, -54.0, -92.0, -79.0, -10.0, -35.0, -20.0, -41.0, -41.0, -65.0, -25.0, -12.0, -8.0, -46.0,}, Relationship.GEQ, 0.0)); + constraints.add(new LinearConstraint(new double[] {27.0, -42.0, -65.0, -49.0, -53.0, -42.0, -17.0, -2.0, -61.0, -31.0, -76.0, -47.0, -8.0, -93.0, -86.0, -62.0, -65.0, -63.0, -22.0, -43.0, -27.0, -23.0, -32.0, -74.0, -27.0, -63.0, -47.0, -78.0, -29.0, -95.0, -73.0,}, Relationship.GEQ, 0.0)); + constraints.add(new LinearConstraint(new double[] {15.0, -46.0, -41.0, -83.0, -98.0, -99.0, -21.0, -35.0, -7.0, -14.0, -80.0, -63.0, -18.0, -42.0, -5.0, -34.0, -56.0, -70.0, -16.0, -18.0, -74.0, -61.0, -47.0, -41.0, -15.0, -79.0, -18.0, -47.0, -88.0, -68.0, -55.0,}, Relationship.GEQ, 0.0)); + + double epsilon = 1e-6; + PointValuePair solution = new SimplexSolver().optimize(DEFAULT_MAX_ITER, f, new LinearConstraintSet(constraints), + GoalType.MINIMIZE, new NonNegativeConstraint(true)); + Assert.assertEquals(1.0d, solution.getValue(), epsilon); + Assert.assertTrue(validSolution(solution, constraints, epsilon)); + } + + @Test + public void testMath781() { + LinearObjectiveFunction f = new LinearObjectiveFunction(new double[] { 2, 6, 7 }, 0); + + ArrayList constraints = new ArrayList(); + constraints.add(new LinearConstraint(new double[] { 1, 2, 1 }, Relationship.LEQ, 2)); + constraints.add(new LinearConstraint(new double[] { -1, 1, 1 }, Relationship.LEQ, -1)); + constraints.add(new LinearConstraint(new double[] { 2, -3, 1 }, Relationship.LEQ, -1)); + + double epsilon = 1e-6; + SimplexSolver solver = new SimplexSolver(); + PointValuePair solution = solver.optimize(DEFAULT_MAX_ITER, f, new LinearConstraintSet(constraints), + GoalType.MAXIMIZE, new NonNegativeConstraint(false)); + + Assert.assertTrue(Precision.compareTo(solution.getPoint()[0], 0.0d, epsilon) > 0); + Assert.assertTrue(Precision.compareTo(solution.getPoint()[1], 0.0d, epsilon) > 0); + Assert.assertTrue(Precision.compareTo(solution.getPoint()[2], 0.0d, epsilon) < 0); + Assert.assertEquals(2.0d, solution.getValue(), epsilon); + } + + @Test + public void testMath713NegativeVariable() { + LinearObjectiveFunction f = new LinearObjectiveFunction(new double[] {1.0, 1.0}, 0.0d); + ArrayList constraints = new ArrayList(); + constraints.add(new LinearConstraint(new double[] {1, 0}, Relationship.EQ, 1)); + + double epsilon = 1e-6; + SimplexSolver solver = new SimplexSolver(); + PointValuePair solution = solver.optimize(DEFAULT_MAX_ITER, f, new LinearConstraintSet(constraints), + GoalType.MINIMIZE, new NonNegativeConstraint(true)); + + Assert.assertTrue(Precision.compareTo(solution.getPoint()[0], 0.0d, epsilon) >= 0); + Assert.assertTrue(Precision.compareTo(solution.getPoint()[1], 0.0d, epsilon) >= 0); + } + + @Test + public void testMath434NegativeVariable() { + LinearObjectiveFunction f = new LinearObjectiveFunction(new double[] {0.0, 0.0, 1.0}, 0.0d); + ArrayList constraints = new ArrayList(); + constraints.add(new LinearConstraint(new double[] {1, 1, 0}, Relationship.EQ, 5)); + constraints.add(new LinearConstraint(new double[] {0, 0, 1}, Relationship.GEQ, -10)); + + double epsilon = 1e-6; + SimplexSolver solver = new SimplexSolver(); + PointValuePair solution = solver.optimize(DEFAULT_MAX_ITER, f, new LinearConstraintSet(constraints), + GoalType.MINIMIZE, new NonNegativeConstraint(false)); + + Assert.assertEquals(5.0, solution.getPoint()[0] + solution.getPoint()[1], epsilon); + Assert.assertEquals(-10.0, solution.getPoint()[2], epsilon); + Assert.assertEquals(-10.0, solution.getValue(), epsilon); + + } + + @Test(expected = NoFeasibleSolutionException.class) + public void testMath434UnfeasibleSolution() { + double epsilon = 1e-6; + + LinearObjectiveFunction f = new LinearObjectiveFunction(new double[] {1.0, 0.0}, 0.0); + ArrayList constraints = new ArrayList(); + constraints.add(new LinearConstraint(new double[] {epsilon/2, 0.5}, Relationship.EQ, 0)); + constraints.add(new LinearConstraint(new double[] {1e-3, 0.1}, Relationship.EQ, 10)); + + SimplexSolver solver = new SimplexSolver(); + // allowing only non-negative values, no feasible solution shall be found + solver.optimize(DEFAULT_MAX_ITER, f, new LinearConstraintSet(constraints), + GoalType.MINIMIZE, new NonNegativeConstraint(true)); + } + + @Test + public void testMath434PivotRowSelection() { + LinearObjectiveFunction f = new LinearObjectiveFunction(new double[] {1.0}, 0.0); + + double epsilon = 1e-6; + ArrayList constraints = new ArrayList(); + constraints.add(new LinearConstraint(new double[] {200}, Relationship.GEQ, 1)); + constraints.add(new LinearConstraint(new double[] {100}, Relationship.GEQ, 0.499900001)); + + SimplexSolver solver = new SimplexSolver(); + PointValuePair solution = solver.optimize(DEFAULT_MAX_ITER, f, new LinearConstraintSet(constraints), + GoalType.MINIMIZE, new NonNegativeConstraint(false)); + + Assert.assertTrue(Precision.compareTo(solution.getPoint()[0] * 200.d, 1.d, epsilon) >= 0); + Assert.assertEquals(0.0050, solution.getValue(), epsilon); + } + + @Test + public void testMath434PivotRowSelection2() { + LinearObjectiveFunction f = new LinearObjectiveFunction(new double[] {0.0d, 1.0d, 1.0d, 0.0d, 0.0d, 0.0d, 0.0d}, 0.0d); + + ArrayList constraints = new ArrayList(); + constraints.add(new LinearConstraint(new double[] {1.0d, -0.1d, 0.0d, 0.0d, 0.0d, 0.0d, 0.0d}, Relationship.EQ, -0.1d)); + constraints.add(new LinearConstraint(new double[] {1.0d, 0.0d, 0.0d, 0.0d, 0.0d, 0.0d, 0.0d}, Relationship.GEQ, -1e-18d)); + constraints.add(new LinearConstraint(new double[] {0.0d, 1.0d, 0.0d, 0.0d, 0.0d, 0.0d, 0.0d}, Relationship.GEQ, 0.0d)); + constraints.add(new LinearConstraint(new double[] {0.0d, 0.0d, 0.0d, 1.0d, 0.0d, -0.0128588d, 1e-5d}, Relationship.EQ, 0.0d)); + constraints.add(new LinearConstraint(new double[] {0.0d, 0.0d, 0.0d, 0.0d, 1.0d, 1e-5d, -0.0128586d}, Relationship.EQ, 1e-10d)); + constraints.add(new LinearConstraint(new double[] {0.0d, 0.0d, 1.0d, -1.0d, 0.0d, 0.0d, 0.0d}, Relationship.GEQ, 0.0d)); + constraints.add(new LinearConstraint(new double[] {0.0d, 0.0d, 1.0d, 1.0d, 0.0d, 0.0d, 0.0d}, Relationship.GEQ, 0.0d)); + constraints.add(new LinearConstraint(new double[] {0.0d, 0.0d, 1.0d, 0.0d, -1.0d, 0.0d, 0.0d}, Relationship.GEQ, 0.0d)); + constraints.add(new LinearConstraint(new double[] {0.0d, 0.0d, 1.0d, 0.0d, 1.0d, 0.0d, 0.0d}, Relationship.GEQ, 0.0d)); + + double epsilon = 1e-7; + SimplexSolver simplex = new SimplexSolver(); + PointValuePair solution = simplex.optimize(DEFAULT_MAX_ITER, f, new LinearConstraintSet(constraints), + GoalType.MINIMIZE, new NonNegativeConstraint(false)); + + Assert.assertTrue(Precision.compareTo(solution.getPoint()[0], -1e-18d, epsilon) >= 0); + Assert.assertEquals(1.0d, solution.getPoint()[1], epsilon); + Assert.assertEquals(0.0d, solution.getPoint()[2], epsilon); + Assert.assertEquals(1.0d, solution.getValue(), epsilon); + } + + @Test + public void testMath272() { + LinearObjectiveFunction f = new LinearObjectiveFunction(new double[] { 2, 2, 1 }, 0); + Collection constraints = new ArrayList(); + constraints.add(new LinearConstraint(new double[] { 1, 1, 0 }, Relationship.GEQ, 1)); + constraints.add(new LinearConstraint(new double[] { 1, 0, 1 }, Relationship.GEQ, 1)); + constraints.add(new LinearConstraint(new double[] { 0, 1, 0 }, Relationship.GEQ, 1)); + + SimplexSolver solver = new SimplexSolver(); + PointValuePair solution = solver.optimize(DEFAULT_MAX_ITER, f, new LinearConstraintSet(constraints), + GoalType.MINIMIZE, new NonNegativeConstraint(true)); + + Assert.assertEquals(0.0, solution.getPoint()[0], .0000001); + Assert.assertEquals(1.0, solution.getPoint()[1], .0000001); + Assert.assertEquals(1.0, solution.getPoint()[2], .0000001); + Assert.assertEquals(3.0, solution.getValue(), .0000001); + } + + @Test + public void testMath286() { + LinearObjectiveFunction f = new LinearObjectiveFunction(new double[] { 0.8, 0.2, 0.7, 0.3, 0.6, 0.4 }, 0 ); + Collection constraints = new ArrayList(); + constraints.add(new LinearConstraint(new double[] { 1, 0, 1, 0, 1, 0 }, Relationship.EQ, 23.0)); + constraints.add(new LinearConstraint(new double[] { 0, 1, 0, 1, 0, 1 }, Relationship.EQ, 23.0)); + constraints.add(new LinearConstraint(new double[] { 1, 0, 0, 0, 0, 0 }, Relationship.GEQ, 10.0)); + constraints.add(new LinearConstraint(new double[] { 0, 0, 1, 0, 0, 0 }, Relationship.GEQ, 8.0)); + constraints.add(new LinearConstraint(new double[] { 0, 0, 0, 0, 1, 0 }, Relationship.GEQ, 5.0)); + + SimplexSolver solver = new SimplexSolver(); + PointValuePair solution = solver.optimize(DEFAULT_MAX_ITER, f, new LinearConstraintSet(constraints), + GoalType.MAXIMIZE, new NonNegativeConstraint(true)); + + Assert.assertEquals(25.8, solution.getValue(), .0000001); + Assert.assertEquals(23.0, solution.getPoint()[0] + solution.getPoint()[2] + solution.getPoint()[4], 0.0000001); + Assert.assertEquals(23.0, solution.getPoint()[1] + solution.getPoint()[3] + solution.getPoint()[5], 0.0000001); + Assert.assertTrue(solution.getPoint()[0] >= 10.0 - 0.0000001); + Assert.assertTrue(solution.getPoint()[2] >= 8.0 - 0.0000001); + Assert.assertTrue(solution.getPoint()[4] >= 5.0 - 0.0000001); + } + + @Test + public void testDegeneracy() { + LinearObjectiveFunction f = new LinearObjectiveFunction(new double[] { 0.8, 0.7 }, 0 ); + Collection constraints = new ArrayList(); + constraints.add(new LinearConstraint(new double[] { 1, 1 }, Relationship.LEQ, 18.0)); + constraints.add(new LinearConstraint(new double[] { 1, 0 }, Relationship.GEQ, 10.0)); + constraints.add(new LinearConstraint(new double[] { 0, 1 }, Relationship.GEQ, 8.0)); + + SimplexSolver solver = new SimplexSolver(); + PointValuePair solution = solver.optimize(DEFAULT_MAX_ITER, f, new LinearConstraintSet(constraints), + GoalType.MINIMIZE, new NonNegativeConstraint(true)); + Assert.assertEquals(13.6, solution.getValue(), .0000001); + } + + @Test + public void testMath288() { + LinearObjectiveFunction f = new LinearObjectiveFunction(new double[] { 7, 3, 0, 0 }, 0 ); + Collection constraints = new ArrayList(); + constraints.add(new LinearConstraint(new double[] { 3, 0, -5, 0 }, Relationship.LEQ, 0.0)); + constraints.add(new LinearConstraint(new double[] { 2, 0, 0, -5 }, Relationship.LEQ, 0.0)); + constraints.add(new LinearConstraint(new double[] { 0, 3, 0, -5 }, Relationship.LEQ, 0.0)); + constraints.add(new LinearConstraint(new double[] { 1, 0, 0, 0 }, Relationship.LEQ, 1.0)); + constraints.add(new LinearConstraint(new double[] { 0, 1, 0, 0 }, Relationship.LEQ, 1.0)); + + SimplexSolver solver = new SimplexSolver(); + PointValuePair solution = solver.optimize(DEFAULT_MAX_ITER, f, new LinearConstraintSet(constraints), + GoalType.MAXIMIZE, new NonNegativeConstraint(true)); + Assert.assertEquals(10.0, solution.getValue(), .0000001); + } + + @Test + public void testMath290GEQ() { + LinearObjectiveFunction f = new LinearObjectiveFunction(new double[] { 1, 5 }, 0 ); + Collection constraints = new ArrayList(); + constraints.add(new LinearConstraint(new double[] { 2, 0 }, Relationship.GEQ, -1.0)); + SimplexSolver solver = new SimplexSolver(); + PointValuePair solution = solver.optimize(DEFAULT_MAX_ITER, f, new LinearConstraintSet(constraints), + GoalType.MINIMIZE, new NonNegativeConstraint(true)); + Assert.assertEquals(0, solution.getValue(), .0000001); + Assert.assertEquals(0, solution.getPoint()[0], .0000001); + Assert.assertEquals(0, solution.getPoint()[1], .0000001); + } + + @Test(expected=NoFeasibleSolutionException.class) + public void testMath290LEQ() { + LinearObjectiveFunction f = new LinearObjectiveFunction(new double[] { 1, 5 }, 0 ); + Collection constraints = new ArrayList(); + constraints.add(new LinearConstraint(new double[] { 2, 0 }, Relationship.LEQ, -1.0)); + SimplexSolver solver = new SimplexSolver(); + solver.optimize(DEFAULT_MAX_ITER, f, new LinearConstraintSet(constraints), + GoalType.MINIMIZE, new NonNegativeConstraint(true)); + } + + @Test + public void testMath293() { + LinearObjectiveFunction f = new LinearObjectiveFunction(new double[] { 0.8, 0.2, 0.7, 0.3, 0.4, 0.6}, 0 ); + Collection constraints = new ArrayList(); + constraints.add(new LinearConstraint(new double[] { 1, 0, 1, 0, 1, 0 }, Relationship.EQ, 30.0)); + constraints.add(new LinearConstraint(new double[] { 0, 1, 0, 1, 0, 1 }, Relationship.EQ, 30.0)); + constraints.add(new LinearConstraint(new double[] { 0.8, 0.2, 0.0, 0.0, 0.0, 0.0 }, Relationship.GEQ, 10.0)); + constraints.add(new LinearConstraint(new double[] { 0.0, 0.0, 0.7, 0.3, 0.0, 0.0 }, Relationship.GEQ, 10.0)); + constraints.add(new LinearConstraint(new double[] { 0.0, 0.0, 0.0, 0.0, 0.4, 0.6 }, Relationship.GEQ, 10.0)); + + SimplexSolver solver = new SimplexSolver(); + PointValuePair solution1 = solver.optimize(DEFAULT_MAX_ITER, f, new LinearConstraintSet(constraints), + GoalType.MAXIMIZE, new NonNegativeConstraint(true)); + + Assert.assertEquals(15.7143, solution1.getPoint()[0], .0001); + Assert.assertEquals(0.0, solution1.getPoint()[1], .0001); + Assert.assertEquals(14.2857, solution1.getPoint()[2], .0001); + Assert.assertEquals(0.0, solution1.getPoint()[3], .0001); + Assert.assertEquals(0.0, solution1.getPoint()[4], .0001); + Assert.assertEquals(30.0, solution1.getPoint()[5], .0001); + Assert.assertEquals(40.57143, solution1.getValue(), .0001); + + double valA = 0.8 * solution1.getPoint()[0] + 0.2 * solution1.getPoint()[1]; + double valB = 0.7 * solution1.getPoint()[2] + 0.3 * solution1.getPoint()[3]; + double valC = 0.4 * solution1.getPoint()[4] + 0.6 * solution1.getPoint()[5]; + + f = new LinearObjectiveFunction(new double[] { 0.8, 0.2, 0.7, 0.3, 0.4, 0.6}, 0 ); + constraints = new ArrayList(); + constraints.add(new LinearConstraint(new double[] { 1, 0, 1, 0, 1, 0 }, Relationship.EQ, 30.0)); + constraints.add(new LinearConstraint(new double[] { 0, 1, 0, 1, 0, 1 }, Relationship.EQ, 30.0)); + constraints.add(new LinearConstraint(new double[] { 0.8, 0.2, 0.0, 0.0, 0.0, 0.0 }, Relationship.GEQ, valA)); + constraints.add(new LinearConstraint(new double[] { 0.0, 0.0, 0.7, 0.3, 0.0, 0.0 }, Relationship.GEQ, valB)); + constraints.add(new LinearConstraint(new double[] { 0.0, 0.0, 0.0, 0.0, 0.4, 0.6 }, Relationship.GEQ, valC)); + + PointValuePair solution2 = solver.optimize(DEFAULT_MAX_ITER, f, new LinearConstraintSet(constraints), + GoalType.MAXIMIZE, new NonNegativeConstraint(true)); + Assert.assertEquals(40.57143, solution2.getValue(), .0001); + } + + @Test + public void testSimplexSolver() { + LinearObjectiveFunction f = + new LinearObjectiveFunction(new double[] { 15, 10 }, 7); + Collection constraints = new ArrayList(); + constraints.add(new LinearConstraint(new double[] { 1, 0 }, Relationship.LEQ, 2)); + constraints.add(new LinearConstraint(new double[] { 0, 1 }, Relationship.LEQ, 3)); + constraints.add(new LinearConstraint(new double[] { 1, 1 }, Relationship.EQ, 4)); + + SimplexSolver solver = new SimplexSolver(); + PointValuePair solution = solver.optimize(DEFAULT_MAX_ITER, f, new LinearConstraintSet(constraints), + GoalType.MAXIMIZE, new NonNegativeConstraint(true)); + Assert.assertEquals(2.0, solution.getPoint()[0], 0.0); + Assert.assertEquals(2.0, solution.getPoint()[1], 0.0); + Assert.assertEquals(57.0, solution.getValue(), 0.0); + } + + @Test + public void testSingleVariableAndConstraint() { + LinearObjectiveFunction f = new LinearObjectiveFunction(new double[] { 3 }, 0); + Collection constraints = new ArrayList(); + constraints.add(new LinearConstraint(new double[] { 1 }, Relationship.LEQ, 10)); + + SimplexSolver solver = new SimplexSolver(); + PointValuePair solution = solver.optimize(DEFAULT_MAX_ITER, f, new LinearConstraintSet(constraints), + GoalType.MAXIMIZE, new NonNegativeConstraint(false)); + Assert.assertEquals(10.0, solution.getPoint()[0], 0.0); + Assert.assertEquals(30.0, solution.getValue(), 0.0); + } + + /** + * With no artificial variables needed (no equals and no greater than + * constraints) we can go straight to Phase 2. + */ + @Test + public void testModelWithNoArtificialVars() { + LinearObjectiveFunction f = new LinearObjectiveFunction(new double[] { 15, 10 }, 0); + Collection constraints = new ArrayList(); + constraints.add(new LinearConstraint(new double[] { 1, 0 }, Relationship.LEQ, 2)); + constraints.add(new LinearConstraint(new double[] { 0, 1 }, Relationship.LEQ, 3)); + constraints.add(new LinearConstraint(new double[] { 1, 1 }, Relationship.LEQ, 4)); + + SimplexSolver solver = new SimplexSolver(); + PointValuePair solution = solver.optimize(DEFAULT_MAX_ITER, f, new LinearConstraintSet(constraints), + GoalType.MAXIMIZE, new NonNegativeConstraint(false)); + Assert.assertEquals(2.0, solution.getPoint()[0], 0.0); + Assert.assertEquals(2.0, solution.getPoint()[1], 0.0); + Assert.assertEquals(50.0, solution.getValue(), 0.0); + } + + @Test + public void testMinimization() { + LinearObjectiveFunction f = new LinearObjectiveFunction(new double[] { -2, 1 }, -5); + Collection constraints = new ArrayList(); + constraints.add(new LinearConstraint(new double[] { 1, 2 }, Relationship.LEQ, 6)); + constraints.add(new LinearConstraint(new double[] { 3, 2 }, Relationship.LEQ, 12)); + constraints.add(new LinearConstraint(new double[] { 0, 1 }, Relationship.GEQ, 0)); + + SimplexSolver solver = new SimplexSolver(); + PointValuePair solution = solver.optimize(DEFAULT_MAX_ITER, f, new LinearConstraintSet(constraints), + GoalType.MINIMIZE, new NonNegativeConstraint(false)); + Assert.assertEquals(4.0, solution.getPoint()[0], 0.0); + Assert.assertEquals(0.0, solution.getPoint()[1], 0.0); + Assert.assertEquals(-13.0, solution.getValue(), 0.0); + } + + @Test + public void testSolutionWithNegativeDecisionVariable() { + LinearObjectiveFunction f = new LinearObjectiveFunction(new double[] { -2, 1 }, 0); + Collection constraints = new ArrayList(); + constraints.add(new LinearConstraint(new double[] { 1, 1 }, Relationship.GEQ, 6)); + constraints.add(new LinearConstraint(new double[] { 1, 2 }, Relationship.LEQ, 14)); + + SimplexSolver solver = new SimplexSolver(); + PointValuePair solution = solver.optimize(DEFAULT_MAX_ITER, f, new LinearConstraintSet(constraints), + GoalType.MAXIMIZE, new NonNegativeConstraint(false)); + Assert.assertEquals(-2.0, solution.getPoint()[0], 0.0); + Assert.assertEquals(8.0, solution.getPoint()[1], 0.0); + Assert.assertEquals(12.0, solution.getValue(), 0.0); + } + + @Test(expected = NoFeasibleSolutionException.class) + public void testInfeasibleSolution() { + LinearObjectiveFunction f = new LinearObjectiveFunction(new double[] { 15 }, 0); + Collection constraints = new ArrayList(); + constraints.add(new LinearConstraint(new double[] { 1 }, Relationship.LEQ, 1)); + constraints.add(new LinearConstraint(new double[] { 1 }, Relationship.GEQ, 3)); + + SimplexSolver solver = new SimplexSolver(); + solver.optimize(DEFAULT_MAX_ITER, f, new LinearConstraintSet(constraints), + GoalType.MAXIMIZE, new NonNegativeConstraint(false)); + } + + @Test(expected = UnboundedSolutionException.class) + public void testUnboundedSolution() { + LinearObjectiveFunction f = new LinearObjectiveFunction(new double[] { 15, 10 }, 0); + Collection constraints = new ArrayList(); + constraints.add(new LinearConstraint(new double[] { 1, 0 }, Relationship.EQ, 2)); + + SimplexSolver solver = new SimplexSolver(); + solver.optimize(DEFAULT_MAX_ITER, f, new LinearConstraintSet(constraints), + GoalType.MAXIMIZE, new NonNegativeConstraint(false)); + } + + @Test + public void testRestrictVariablesToNonNegative() { + LinearObjectiveFunction f = new LinearObjectiveFunction(new double[] { 409, 523, 70, 204, 339 }, 0); + Collection constraints = new ArrayList(); + constraints.add(new LinearConstraint(new double[] { 43, 56, 345, 56, 5 }, Relationship.LEQ, 4567456)); + constraints.add(new LinearConstraint(new double[] { 12, 45, 7, 56, 23 }, Relationship.LEQ, 56454)); + constraints.add(new LinearConstraint(new double[] { 8, 768, 0, 34, 7456 }, Relationship.LEQ, 1923421)); + constraints.add(new LinearConstraint(new double[] { 12342, 2342, 34, 678, 2342 }, Relationship.GEQ, 4356)); + constraints.add(new LinearConstraint(new double[] { 45, 678, 76, 52, 23 }, Relationship.EQ, 456356)); + + SimplexSolver solver = new SimplexSolver(); + PointValuePair solution = solver.optimize(DEFAULT_MAX_ITER, f, new LinearConstraintSet(constraints), + GoalType.MAXIMIZE, new NonNegativeConstraint(true)); + Assert.assertEquals(2902.92783505155, solution.getPoint()[0], .0000001); + Assert.assertEquals(480.419243986254, solution.getPoint()[1], .0000001); + Assert.assertEquals(0.0, solution.getPoint()[2], .0000001); + Assert.assertEquals(0.0, solution.getPoint()[3], .0000001); + Assert.assertEquals(0.0, solution.getPoint()[4], .0000001); + Assert.assertEquals(1438556.7491409, solution.getValue(), .0000001); + } + + @Test + public void testEpsilon() { + LinearObjectiveFunction f = + new LinearObjectiveFunction(new double[] { 10, 5, 1 }, 0); + Collection constraints = new ArrayList(); + constraints.add(new LinearConstraint(new double[] { 9, 8, 0 }, Relationship.EQ, 17)); + constraints.add(new LinearConstraint(new double[] { 0, 7, 8 }, Relationship.LEQ, 7)); + constraints.add(new LinearConstraint(new double[] { 10, 0, 2 }, Relationship.LEQ, 10)); + + SimplexSolver solver = new SimplexSolver(); + PointValuePair solution = solver.optimize(DEFAULT_MAX_ITER, f, new LinearConstraintSet(constraints), + GoalType.MAXIMIZE, new NonNegativeConstraint(false)); + Assert.assertEquals(1.0, solution.getPoint()[0], 0.0); + Assert.assertEquals(1.0, solution.getPoint()[1], 0.0); + Assert.assertEquals(0.0, solution.getPoint()[2], 0.0); + Assert.assertEquals(15.0, solution.getValue(), 0.0); + } + + @Test + public void testTrivialModel() { + LinearObjectiveFunction f = new LinearObjectiveFunction(new double[] { 1, 1 }, 0); + Collection constraints = new ArrayList(); + constraints.add(new LinearConstraint(new double[] { 1, 1 }, Relationship.EQ, 0)); + + SimplexSolver solver = new SimplexSolver(); + PointValuePair solution = solver.optimize(DEFAULT_MAX_ITER, f, new LinearConstraintSet(constraints), + GoalType.MAXIMIZE, new NonNegativeConstraint(true)); + Assert.assertEquals(0, solution.getValue(), .0000001); + } + + @Test + public void testLargeModel() { + double[] objective = new double[] { + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 12, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 12, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 12, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 12, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 12, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1}; + + LinearObjectiveFunction f = new LinearObjectiveFunction(objective, 0); + Collection constraints = new ArrayList(); + constraints.add(equationFromString(objective.length, "x0 + x1 + x2 + x3 - x12 = 0")); + constraints.add(equationFromString(objective.length, "x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 - x13 = 0")); + constraints.add(equationFromString(objective.length, "x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 >= 49")); + constraints.add(equationFromString(objective.length, "x0 + x1 + x2 + x3 >= 42")); + constraints.add(equationFromString(objective.length, "x14 + x15 + x16 + x17 - x26 = 0")); + constraints.add(equationFromString(objective.length, "x18 + x19 + x20 + x21 + x22 + x23 + x24 + x25 - x27 = 0")); + constraints.add(equationFromString(objective.length, "x14 + x15 + x16 + x17 - x12 = 0")); + constraints.add(equationFromString(objective.length, "x18 + x19 + x20 + x21 + x22 + x23 + x24 + x25 - x13 = 0")); + constraints.add(equationFromString(objective.length, "x28 + x29 + x30 + x31 - x40 = 0")); + constraints.add(equationFromString(objective.length, "x32 + x33 + x34 + x35 + x36 + x37 + x38 + x39 - x41 = 0")); + constraints.add(equationFromString(objective.length, "x32 + x33 + x34 + x35 + x36 + x37 + x38 + x39 >= 49")); + constraints.add(equationFromString(objective.length, "x28 + x29 + x30 + x31 >= 42")); + constraints.add(equationFromString(objective.length, "x42 + x43 + x44 + x45 - x54 = 0")); + constraints.add(equationFromString(objective.length, "x46 + x47 + x48 + x49 + x50 + x51 + x52 + x53 - x55 = 0")); + constraints.add(equationFromString(objective.length, "x42 + x43 + x44 + x45 - x40 = 0")); + constraints.add(equationFromString(objective.length, "x46 + x47 + x48 + x49 + x50 + x51 + x52 + x53 - x41 = 0")); + constraints.add(equationFromString(objective.length, "x56 + x57 + x58 + x59 - x68 = 0")); + constraints.add(equationFromString(objective.length, "x60 + x61 + x62 + x63 + x64 + x65 + x66 + x67 - x69 = 0")); + constraints.add(equationFromString(objective.length, "x60 + x61 + x62 + x63 + x64 + x65 + x66 + x67 >= 51")); + constraints.add(equationFromString(objective.length, "x56 + x57 + x58 + x59 >= 44")); + constraints.add(equationFromString(objective.length, "x70 + x71 + x72 + x73 - x82 = 0")); + constraints.add(equationFromString(objective.length, "x74 + x75 + x76 + x77 + x78 + x79 + x80 + x81 - x83 = 0")); + constraints.add(equationFromString(objective.length, "x70 + x71 + x72 + x73 - x68 = 0")); + constraints.add(equationFromString(objective.length, "x74 + x75 + x76 + x77 + x78 + x79 + x80 + x81 - x69 = 0")); + constraints.add(equationFromString(objective.length, "x84 + x85 + x86 + x87 - x96 = 0")); + constraints.add(equationFromString(objective.length, "x88 + x89 + x90 + x91 + x92 + x93 + x94 + x95 - x97 = 0")); + constraints.add(equationFromString(objective.length, "x88 + x89 + x90 + x91 + x92 + x93 + x94 + x95 >= 51")); + constraints.add(equationFromString(objective.length, "x84 + x85 + x86 + x87 >= 44")); + constraints.add(equationFromString(objective.length, "x98 + x99 + x100 + x101 - x110 = 0")); + constraints.add(equationFromString(objective.length, "x102 + x103 + x104 + x105 + x106 + x107 + x108 + x109 - x111 = 0")); + constraints.add(equationFromString(objective.length, "x98 + x99 + x100 + x101 - x96 = 0")); + constraints.add(equationFromString(objective.length, "x102 + x103 + x104 + x105 + x106 + x107 + x108 + x109 - x97 = 0")); + constraints.add(equationFromString(objective.length, "x112 + x113 + x114 + x115 - x124 = 0")); + constraints.add(equationFromString(objective.length, "x116 + x117 + x118 + x119 + x120 + x121 + x122 + x123 - x125 = 0")); + constraints.add(equationFromString(objective.length, "x116 + x117 + x118 + x119 + x120 + x121 + x122 + x123 >= 49")); + constraints.add(equationFromString(objective.length, "x112 + x113 + x114 + x115 >= 42")); + constraints.add(equationFromString(objective.length, "x126 + x127 + x128 + x129 - x138 = 0")); + constraints.add(equationFromString(objective.length, "x130 + x131 + x132 + x133 + x134 + x135 + x136 + x137 - x139 = 0")); + constraints.add(equationFromString(objective.length, "x126 + x127 + x128 + x129 - x124 = 0")); + constraints.add(equationFromString(objective.length, "x130 + x131 + x132 + x133 + x134 + x135 + x136 + x137 - x125 = 0")); + constraints.add(equationFromString(objective.length, "x140 + x141 + x142 + x143 - x152 = 0")); + constraints.add(equationFromString(objective.length, "x144 + x145 + x146 + x147 + x148 + x149 + x150 + x151 - x153 = 0")); + constraints.add(equationFromString(objective.length, "x144 + x145 + x146 + x147 + x148 + x149 + x150 + x151 >= 59")); + constraints.add(equationFromString(objective.length, "x140 + x141 + x142 + x143 >= 42")); + constraints.add(equationFromString(objective.length, "x154 + x155 + x156 + x157 - x166 = 0")); + constraints.add(equationFromString(objective.length, "x158 + x159 + x160 + x161 + x162 + x163 + x164 + x165 - x167 = 0")); + constraints.add(equationFromString(objective.length, "x154 + x155 + x156 + x157 - x152 = 0")); + constraints.add(equationFromString(objective.length, "x158 + x159 + x160 + x161 + x162 + x163 + x164 + x165 - x153 = 0")); + constraints.add(equationFromString(objective.length, "x83 + x82 - x168 = 0")); + constraints.add(equationFromString(objective.length, "x111 + x110 - x169 = 0")); + constraints.add(equationFromString(objective.length, "x170 - x182 = 0")); + constraints.add(equationFromString(objective.length, "x171 - x183 = 0")); + constraints.add(equationFromString(objective.length, "x172 - x184 = 0")); + constraints.add(equationFromString(objective.length, "x173 - x185 = 0")); + constraints.add(equationFromString(objective.length, "x174 - x186 = 0")); + constraints.add(equationFromString(objective.length, "x175 + x176 - x187 = 0")); + constraints.add(equationFromString(objective.length, "x177 - x188 = 0")); + constraints.add(equationFromString(objective.length, "x178 - x189 = 0")); + constraints.add(equationFromString(objective.length, "x179 - x190 = 0")); + constraints.add(equationFromString(objective.length, "x180 - x191 = 0")); + constraints.add(equationFromString(objective.length, "x181 - x192 = 0")); + constraints.add(equationFromString(objective.length, "x170 - x26 = 0")); + constraints.add(equationFromString(objective.length, "x171 - x27 = 0")); + constraints.add(equationFromString(objective.length, "x172 - x54 = 0")); + constraints.add(equationFromString(objective.length, "x173 - x55 = 0")); + constraints.add(equationFromString(objective.length, "x174 - x168 = 0")); + constraints.add(equationFromString(objective.length, "x177 - x169 = 0")); + constraints.add(equationFromString(objective.length, "x178 - x138 = 0")); + constraints.add(equationFromString(objective.length, "x179 - x139 = 0")); + constraints.add(equationFromString(objective.length, "x180 - x166 = 0")); + constraints.add(equationFromString(objective.length, "x181 - x167 = 0")); + constraints.add(equationFromString(objective.length, "x193 - x205 = 0")); + constraints.add(equationFromString(objective.length, "x194 - x206 = 0")); + constraints.add(equationFromString(objective.length, "x195 - x207 = 0")); + constraints.add(equationFromString(objective.length, "x196 - x208 = 0")); + constraints.add(equationFromString(objective.length, "x197 - x209 = 0")); + constraints.add(equationFromString(objective.length, "x198 + x199 - x210 = 0")); + constraints.add(equationFromString(objective.length, "x200 - x211 = 0")); + constraints.add(equationFromString(objective.length, "x201 - x212 = 0")); + constraints.add(equationFromString(objective.length, "x202 - x213 = 0")); + constraints.add(equationFromString(objective.length, "x203 - x214 = 0")); + constraints.add(equationFromString(objective.length, "x204 - x215 = 0")); + constraints.add(equationFromString(objective.length, "x193 - x182 = 0")); + constraints.add(equationFromString(objective.length, "x194 - x183 = 0")); + constraints.add(equationFromString(objective.length, "x195 - x184 = 0")); + constraints.add(equationFromString(objective.length, "x196 - x185 = 0")); + constraints.add(equationFromString(objective.length, "x197 - x186 = 0")); + constraints.add(equationFromString(objective.length, "x198 + x199 - x187 = 0")); + constraints.add(equationFromString(objective.length, "x200 - x188 = 0")); + constraints.add(equationFromString(objective.length, "x201 - x189 = 0")); + constraints.add(equationFromString(objective.length, "x202 - x190 = 0")); + constraints.add(equationFromString(objective.length, "x203 - x191 = 0")); + constraints.add(equationFromString(objective.length, "x204 - x192 = 0")); + + SimplexSolver solver = new SimplexSolver(); + PointValuePair solution = solver.optimize(DEFAULT_MAX_ITER, f, new LinearConstraintSet(constraints), + GoalType.MINIMIZE, new NonNegativeConstraint(true)); + Assert.assertEquals(7518.0, solution.getValue(), .0000001); + } + + /** + * Converts a test string to a {@link LinearConstraint}. + * Ex: x0 + x1 + x2 + x3 - x12 = 0 + */ + private LinearConstraint equationFromString(int numCoefficients, String s) { + Relationship relationship; + if (s.contains(">=")) { + relationship = Relationship.GEQ; + } else if (s.contains("<=")) { + relationship = Relationship.LEQ; + } else if (s.contains("=")) { + relationship = Relationship.EQ; + } else { + throw new IllegalArgumentException(); + } + + String[] equationParts = s.split("[>|<]?="); + double rhs = Double.parseDouble(equationParts[1].trim()); + + double[] lhs = new double[numCoefficients]; + String left = equationParts[0].replaceAll(" ?x", ""); + String[] coefficients = left.split(" "); + for (String coefficient : coefficients) { + double value = coefficient.charAt(0) == '-' ? -1 : 1; + int index = Integer.parseInt(coefficient.replaceFirst("[+|-]", "").trim()); + lhs[index] = value; + } + return new LinearConstraint(lhs, relationship, rhs); + } + + private static boolean validSolution(PointValuePair solution, List constraints, double epsilon) { + double[] vals = solution.getPoint(); + for (LinearConstraint c : constraints) { + double[] coeffs = c.getCoefficients().toArray(); + double result = 0.0d; + for (int i = 0; i < vals.length; i++) { + result += vals[i] * coeffs[i]; + } + + switch (c.getRelationship()) { + case EQ: + if (!Precision.equals(result, c.getValue(), epsilon)) { + return false; + } + break; + + case GEQ: + if (Precision.compareTo(result, c.getValue(), epsilon) < 0) { + return false; + } + break; + + case LEQ: + if (Precision.compareTo(result, c.getValue(), epsilon) > 0) { + return false; + } + break; + } + } + + return true; + } +} diff --git a/src/test/java/org/apache/commons/math3/optim/linear/SimplexTableauTest.java b/src/test/java/org/apache/commons/math3/optim/linear/SimplexTableauTest.java new file mode 100644 index 000000000..242a8c170 --- /dev/null +++ b/src/test/java/org/apache/commons/math3/optim/linear/SimplexTableauTest.java @@ -0,0 +1,108 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.linear; + +import java.util.ArrayList; +import java.util.Collection; +import org.apache.commons.math3.TestUtils; +import org.apache.commons.math3.optim.GoalType; +import org.junit.Assert; +import org.junit.Test; + +public class SimplexTableauTest { + + @Test + public void testInitialization() { + LinearObjectiveFunction f = createFunction(); + Collection constraints = createConstraints(); + SimplexTableau tableau = + new SimplexTableau(f, constraints, GoalType.MAXIMIZE, false, 1.0e-6); + double[][] expectedInitialTableau = { + {-1, 0, -1, -1, 2, 0, 0, 0, -4}, + { 0, 1, -15, -10, 25, 0, 0, 0, 0}, + { 0, 0, 1, 0, -1, 1, 0, 0, 2}, + { 0, 0, 0, 1, -1, 0, 1, 0, 3}, + { 0, 0, 1, 1, -2, 0, 0, 1, 4} + }; + assertMatrixEquals(expectedInitialTableau, tableau.getData()); + } + + @Test + public void testDropPhase1Objective() { + LinearObjectiveFunction f = createFunction(); + Collection constraints = createConstraints(); + SimplexTableau tableau = + new SimplexTableau(f, constraints, GoalType.MAXIMIZE, false, 1.0e-6); + double[][] expectedTableau = { + { 1, -15, -10, 0, 0, 0, 0}, + { 0, 1, 0, 1, 0, 0, 2}, + { 0, 0, 1, 0, 1, 0, 3}, + { 0, 1, 1, 0, 0, 1, 4} + }; + tableau.dropPhase1Objective(); + assertMatrixEquals(expectedTableau, tableau.getData()); + } + + @Test + public void testTableauWithNoArtificialVars() { + LinearObjectiveFunction f = new LinearObjectiveFunction(new double[] {15, 10}, 0); + Collection constraints = new ArrayList(); + constraints.add(new LinearConstraint(new double[] {1, 0}, Relationship.LEQ, 2)); + constraints.add(new LinearConstraint(new double[] {0, 1}, Relationship.LEQ, 3)); + constraints.add(new LinearConstraint(new double[] {1, 1}, Relationship.LEQ, 4)); + SimplexTableau tableau = + new SimplexTableau(f, constraints, GoalType.MAXIMIZE, false, 1.0e-6); + double[][] initialTableau = { + {1, -15, -10, 25, 0, 0, 0, 0}, + {0, 1, 0, -1, 1, 0, 0, 2}, + {0, 0, 1, -1, 0, 1, 0, 3}, + {0, 1, 1, -2, 0, 0, 1, 4} + }; + assertMatrixEquals(initialTableau, tableau.getData()); + } + + @Test + public void testSerial() { + LinearObjectiveFunction f = createFunction(); + Collection constraints = createConstraints(); + SimplexTableau tableau = + new SimplexTableau(f, constraints, GoalType.MAXIMIZE, false, 1.0e-6); + Assert.assertEquals(tableau, TestUtils.serializeAndRecover(tableau)); + } + + private LinearObjectiveFunction createFunction() { + return new LinearObjectiveFunction(new double[] {15, 10}, 0); + } + + private Collection createConstraints() { + Collection constraints = new ArrayList(); + constraints.add(new LinearConstraint(new double[] {1, 0}, Relationship.LEQ, 2)); + constraints.add(new LinearConstraint(new double[] {0, 1}, Relationship.LEQ, 3)); + constraints.add(new LinearConstraint(new double[] {1, 1}, Relationship.EQ, 4)); + return constraints; + } + + private void assertMatrixEquals(double[][] expected, double[][] result) { + Assert.assertEquals("Wrong number of rows.", expected.length, result.length); + for (int i = 0; i < expected.length; i++) { + Assert.assertEquals("Wrong number of columns.", expected[i].length, result[i].length); + for (int j = 0; j < expected[i].length; j++) { + Assert.assertEquals("Wrong value at position [" + i + "," + j + "]", expected[i][j], result[i][j], 1.0e-15); + } + } + } +} diff --git a/src/test/java/org/apache/commons/math3/optim/nonlinear/scalar/MultiStartMultivariateOptimizerTest.java b/src/test/java/org/apache/commons/math3/optim/nonlinear/scalar/MultiStartMultivariateOptimizerTest.java new file mode 100644 index 000000000..46e1db613 --- /dev/null +++ b/src/test/java/org/apache/commons/math3/optim/nonlinear/scalar/MultiStartMultivariateOptimizerTest.java @@ -0,0 +1,127 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.nonlinear.scalar; + +import org.apache.commons.math3.analysis.MultivariateFunction; +import org.apache.commons.math3.geometry.euclidean.twod.Vector2D; +import org.apache.commons.math3.optim.MaxEval; +import org.apache.commons.math3.optim.GoalType; +import org.apache.commons.math3.optim.InitialGuess; +import org.apache.commons.math3.optim.ObjectiveFunction; +import org.apache.commons.math3.optim.PointValuePair; +import org.apache.commons.math3.optim.SimpleValueChecker; +import org.apache.commons.math3.optim.nonlinear.scalar.gradient.CircleScalar; +import org.apache.commons.math3.optim.nonlinear.scalar.gradient.NonLinearConjugateGradientOptimizer; +import org.apache.commons.math3.optim.nonlinear.scalar.noderiv.NelderMeadSimplex; +import org.apache.commons.math3.optim.nonlinear.scalar.noderiv.SimplexOptimizer; +import org.apache.commons.math3.random.GaussianRandomGenerator; +import org.apache.commons.math3.random.JDKRandomGenerator; +import org.apache.commons.math3.random.RandomVectorGenerator; +import org.apache.commons.math3.random.UncorrelatedRandomVectorGenerator; +import org.junit.Assert; +import org.junit.Test; + +public class MultiStartMultivariateOptimizerTest { + @Test + public void testCircleFitting() { + CircleScalar circle = new CircleScalar(); + circle.addPoint( 30.0, 68.0); + circle.addPoint( 50.0, -6.0); + circle.addPoint(110.0, -20.0); + circle.addPoint( 35.0, 15.0); + circle.addPoint( 45.0, 97.0); + // TODO: the wrapper around NonLinearConjugateGradientOptimizer is a temporary hack for + // version 3.1 of the library. It should be removed when NonLinearConjugateGradientOptimizer + // will officially be declared as implementing MultivariateDifferentiableOptimizer + GradientMultivariateOptimizer underlying + = new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE, + new SimpleValueChecker(1e-10, 1e-10)); + JDKRandomGenerator g = new JDKRandomGenerator(); + g.setSeed(753289573253l); + RandomVectorGenerator generator + = new UncorrelatedRandomVectorGenerator(new double[] { 50, 50 }, + new double[] { 10, 10 }, + new GaussianRandomGenerator(g)); + MultiStartMultivariateOptimizer optimizer + = new MultiStartMultivariateOptimizer(underlying, 10, generator); + PointValuePair optimum + = optimizer.optimize(new MaxEval(200), + circle.getObjectiveFunction(), + circle.getObjectiveFunctionGradient(), + GoalType.MINIMIZE, + new InitialGuess(new double[] { 98.680, 47.345 })); + Assert.assertEquals(200, optimizer.getMaxEvaluations()); + PointValuePair[] optima = optimizer.getOptima(); + for (PointValuePair o : optima) { + Vector2D center = new Vector2D(o.getPointRef()[0], o.getPointRef()[1]); + Assert.assertEquals(69.960161753, circle.getRadius(center), 1e-8); + Assert.assertEquals(96.075902096, center.getX(), 1e-8); + Assert.assertEquals(48.135167894, center.getY(), 1e-8); + } + Assert.assertTrue(optimizer.getEvaluations() > 70); + Assert.assertTrue(optimizer.getEvaluations() < 90); + Assert.assertEquals(3.1267527, optimum.getValue(), 1e-8); + } + + @Test + public void testRosenbrock() { + Rosenbrock rosenbrock = new Rosenbrock(); + SimplexOptimizer underlying + = new SimplexOptimizer(new SimpleValueChecker(-1, 1e-3)); + NelderMeadSimplex simplex = new NelderMeadSimplex(new double[][] { + { -1.2, 1.0 }, + { 0.9, 1.2 } , + { 3.5, -2.3 } + }); + JDKRandomGenerator g = new JDKRandomGenerator(); + g.setSeed(16069223052l); + RandomVectorGenerator generator + = new UncorrelatedRandomVectorGenerator(2, new GaussianRandomGenerator(g)); + MultiStartMultivariateOptimizer optimizer + = new MultiStartMultivariateOptimizer(underlying, 10, generator); + PointValuePair optimum + = optimizer.optimize(new MaxEval(1100), + new ObjectiveFunction(rosenbrock), + GoalType.MINIMIZE, + simplex, + new InitialGuess(new double[] { -1.2, 1.0 })); + + Assert.assertEquals(rosenbrock.getCount(), optimizer.getEvaluations()); + Assert.assertTrue(optimizer.getEvaluations() > 900); + Assert.assertTrue(optimizer.getEvaluations() < 1200); + Assert.assertTrue(optimum.getValue() < 8e-4); + } + + private static class Rosenbrock implements MultivariateFunction { + private int count; + + public Rosenbrock() { + count = 0; + } + + public double value(double[] x) { + ++count; + double a = x[1] - x[0] * x[0]; + double b = 1 - x[0]; + return 100 * a * a + b * b; + } + + public int getCount() { + return count; + } + } +} diff --git a/src/test/java/org/apache/commons/math3/optim/nonlinear/scalar/MultivariateFunctionMappingAdapterTest.java b/src/test/java/org/apache/commons/math3/optim/nonlinear/scalar/MultivariateFunctionMappingAdapterTest.java new file mode 100644 index 000000000..e47b2a6ee --- /dev/null +++ b/src/test/java/org/apache/commons/math3/optim/nonlinear/scalar/MultivariateFunctionMappingAdapterTest.java @@ -0,0 +1,195 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.nonlinear.scalar; + +import org.apache.commons.math3.analysis.MultivariateFunction; +import org.apache.commons.math3.optim.MaxEval; +import org.apache.commons.math3.optim.GoalType; +import org.apache.commons.math3.optim.InitialGuess; +import org.apache.commons.math3.optim.PointValuePair; +import org.apache.commons.math3.optim.ObjectiveFunction; +import org.apache.commons.math3.optim.SimplePointChecker; +import org.apache.commons.math3.optim.nonlinear.scalar.noderiv.SimplexOptimizer; +import org.apache.commons.math3.optim.nonlinear.scalar.noderiv.AbstractSimplex; +import org.apache.commons.math3.optim.nonlinear.scalar.noderiv.NelderMeadSimplex; +import org.junit.Assert; +import org.junit.Test; + +public class MultivariateFunctionMappingAdapterTest { + @Test + public void testStartSimplexInsideRange() { + final BiQuadratic biQuadratic = new BiQuadratic(2.0, 2.5, 1.0, 3.0, 2.0, 3.0); + final MultivariateFunctionMappingAdapter wrapped + = new MultivariateFunctionMappingAdapter(biQuadratic, + biQuadratic.getLower(), + biQuadratic.getUpper()); + + SimplexOptimizer optimizer = new SimplexOptimizer(1e-10, 1e-30); + final AbstractSimplex simplex = new NelderMeadSimplex(new double[][] { + wrapped.boundedToUnbounded(new double[] { 1.5, 2.75 }), + wrapped.boundedToUnbounded(new double[] { 1.5, 2.95 }), + wrapped.boundedToUnbounded(new double[] { 1.7, 2.90 }) + }); + + final PointValuePair optimum + = optimizer.optimize(new MaxEval(300), + new ObjectiveFunction(wrapped), + simplex, + GoalType.MINIMIZE, + new InitialGuess(wrapped.boundedToUnbounded(new double[] { 1.5, 2.25 }))); + final double[] bounded = wrapped.unboundedToBounded(optimum.getPoint()); + + Assert.assertEquals(biQuadratic.getBoundedXOptimum(), bounded[0], 2e-7); + Assert.assertEquals(biQuadratic.getBoundedYOptimum(), bounded[1], 2e-7); + } + + @Test + public void testOptimumOutsideRange() { + final BiQuadratic biQuadratic = new BiQuadratic(4.0, 0.0, 1.0, 3.0, 2.0, 3.0); + final MultivariateFunctionMappingAdapter wrapped + = new MultivariateFunctionMappingAdapter(biQuadratic, + biQuadratic.getLower(), + biQuadratic.getUpper()); + + SimplexOptimizer optimizer = new SimplexOptimizer(1e-10, 1e-30); + final AbstractSimplex simplex = new NelderMeadSimplex(new double[][] { + wrapped.boundedToUnbounded(new double[] { 1.5, 2.75 }), + wrapped.boundedToUnbounded(new double[] { 1.5, 2.95 }), + wrapped.boundedToUnbounded(new double[] { 1.7, 2.90 }) + }); + + final PointValuePair optimum + = optimizer.optimize(new MaxEval(100), + new ObjectiveFunction(wrapped), + simplex, + GoalType.MINIMIZE, + new InitialGuess(wrapped.boundedToUnbounded(new double[] { 1.5, 2.25 }))); + final double[] bounded = wrapped.unboundedToBounded(optimum.getPoint()); + + Assert.assertEquals(biQuadratic.getBoundedXOptimum(), bounded[0], 2e-7); + Assert.assertEquals(biQuadratic.getBoundedYOptimum(), bounded[1], 2e-7); + } + + @Test + public void testUnbounded() { + final BiQuadratic biQuadratic = new BiQuadratic(4.0, 0.0, + Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY, + Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY); + final MultivariateFunctionMappingAdapter wrapped + = new MultivariateFunctionMappingAdapter(biQuadratic, + biQuadratic.getLower(), + biQuadratic.getUpper()); + + SimplexOptimizer optimizer = new SimplexOptimizer(1e-10, 1e-30); + final AbstractSimplex simplex = new NelderMeadSimplex(new double[][] { + wrapped.boundedToUnbounded(new double[] { 1.5, 2.75 }), + wrapped.boundedToUnbounded(new double[] { 1.5, 2.95 }), + wrapped.boundedToUnbounded(new double[] { 1.7, 2.90 }) + }); + + final PointValuePair optimum + = optimizer.optimize(new MaxEval(300), + new ObjectiveFunction(wrapped), + simplex, + GoalType.MINIMIZE, + new InitialGuess(wrapped.boundedToUnbounded(new double[] { 1.5, 2.25 }))); + final double[] bounded = wrapped.unboundedToBounded(optimum.getPoint()); + + Assert.assertEquals(biQuadratic.getBoundedXOptimum(), bounded[0], 2e-7); + Assert.assertEquals(biQuadratic.getBoundedYOptimum(), bounded[1], 2e-7); + } + + @Test + public void testHalfBounded() { + final BiQuadratic biQuadratic = new BiQuadratic(4.0, 4.0, + 1.0, Double.POSITIVE_INFINITY, + Double.NEGATIVE_INFINITY, 3.0); + final MultivariateFunctionMappingAdapter wrapped + = new MultivariateFunctionMappingAdapter(biQuadratic, + biQuadratic.getLower(), + biQuadratic.getUpper()); + + SimplexOptimizer optimizer = new SimplexOptimizer(1e-13, 1e-30); + final AbstractSimplex simplex = new NelderMeadSimplex(new double[][] { + wrapped.boundedToUnbounded(new double[] { 1.5, 2.75 }), + wrapped.boundedToUnbounded(new double[] { 1.5, 2.95 }), + wrapped.boundedToUnbounded(new double[] { 1.7, 2.90 }) + }); + + final PointValuePair optimum + = optimizer.optimize(new MaxEval(200), + new ObjectiveFunction(wrapped), + simplex, + GoalType.MINIMIZE, + new InitialGuess(wrapped.boundedToUnbounded(new double[] { 1.5, 2.25 }))); + final double[] bounded = wrapped.unboundedToBounded(optimum.getPoint()); + + Assert.assertEquals(biQuadratic.getBoundedXOptimum(), bounded[0], 1e-7); + Assert.assertEquals(biQuadratic.getBoundedYOptimum(), bounded[1], 1e-7); + } + + private static class BiQuadratic implements MultivariateFunction { + + private final double xOptimum; + private final double yOptimum; + + private final double xMin; + private final double xMax; + private final double yMin; + private final double yMax; + + public BiQuadratic(final double xOptimum, final double yOptimum, + final double xMin, final double xMax, + final double yMin, final double yMax) { + this.xOptimum = xOptimum; + this.yOptimum = yOptimum; + this.xMin = xMin; + this.xMax = xMax; + this.yMin = yMin; + this.yMax = yMax; + } + + public double value(double[] point) { + // the function should never be called with out of range points + Assert.assertTrue(point[0] >= xMin); + Assert.assertTrue(point[0] <= xMax); + Assert.assertTrue(point[1] >= yMin); + Assert.assertTrue(point[1] <= yMax); + + final double dx = point[0] - xOptimum; + final double dy = point[1] - yOptimum; + return dx * dx + dy * dy; + + } + + public double[] getLower() { + return new double[] { xMin, yMin }; + } + + public double[] getUpper() { + return new double[] { xMax, yMax }; + } + + public double getBoundedXOptimum() { + return (xOptimum < xMin) ? xMin : ((xOptimum > xMax) ? xMax : xOptimum); + } + + public double getBoundedYOptimum() { + return (yOptimum < yMin) ? yMin : ((yOptimum > yMax) ? yMax : yOptimum); + } + } +} diff --git a/src/test/java/org/apache/commons/math3/optim/nonlinear/scalar/MultivariateFunctionPenaltyAdapterTest.java b/src/test/java/org/apache/commons/math3/optim/nonlinear/scalar/MultivariateFunctionPenaltyAdapterTest.java new file mode 100644 index 000000000..e85b0b1f0 --- /dev/null +++ b/src/test/java/org/apache/commons/math3/optim/nonlinear/scalar/MultivariateFunctionPenaltyAdapterTest.java @@ -0,0 +1,204 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.nonlinear.scalar; + +import org.apache.commons.math3.analysis.MultivariateFunction; +import org.apache.commons.math3.optim.MaxEval; +import org.apache.commons.math3.optim.GoalType; +import org.apache.commons.math3.optim.InitialGuess; +import org.apache.commons.math3.optim.PointValuePair; +import org.apache.commons.math3.optim.ObjectiveFunction; +import org.apache.commons.math3.optim.SimplePointChecker; +import org.apache.commons.math3.optim.nonlinear.scalar.noderiv.SimplexOptimizer; +import org.apache.commons.math3.optim.nonlinear.scalar.noderiv.AbstractSimplex; +import org.apache.commons.math3.optim.nonlinear.scalar.noderiv.NelderMeadSimplex; +import org.junit.Assert; +import org.junit.Test; + +public class MultivariateFunctionPenaltyAdapterTest { + @Test + public void testStartSimplexInsideRange() { + final BiQuadratic biQuadratic = new BiQuadratic(2.0, 2.5, 1.0, 3.0, 2.0, 3.0); + final MultivariateFunctionPenaltyAdapter wrapped + = new MultivariateFunctionPenaltyAdapter(biQuadratic, + biQuadratic.getLower(), + biQuadratic.getUpper(), + 1000.0, new double[] { 100.0, 100.0 }); + + SimplexOptimizer optimizer = new SimplexOptimizer(1e-10, 1e-30); + final AbstractSimplex simplex = new NelderMeadSimplex(new double[] { 1.0, 0.5 }); + + final PointValuePair optimum + = optimizer.optimize(new MaxEval(300), + new ObjectiveFunction(wrapped), + simplex, + GoalType.MINIMIZE, + new InitialGuess(new double[] { 1.5, 2.25 })); + + Assert.assertEquals(biQuadratic.getBoundedXOptimum(), optimum.getPoint()[0], 2e-7); + Assert.assertEquals(biQuadratic.getBoundedYOptimum(), optimum.getPoint()[1], 2e-7); + } + + @Test + public void testStartSimplexOutsideRange() { + final BiQuadratic biQuadratic = new BiQuadratic(2.0, 2.5, 1.0, 3.0, 2.0, 3.0); + final MultivariateFunctionPenaltyAdapter wrapped + = new MultivariateFunctionPenaltyAdapter(biQuadratic, + biQuadratic.getLower(), + biQuadratic.getUpper(), + 1000.0, new double[] { 100.0, 100.0 }); + + SimplexOptimizer optimizer = new SimplexOptimizer(1e-10, 1e-30); + final AbstractSimplex simplex = new NelderMeadSimplex(new double[] { 1.0, 0.5 }); + + final PointValuePair optimum + = optimizer.optimize(new MaxEval(300), + new ObjectiveFunction(wrapped), + simplex, + GoalType.MINIMIZE, + new InitialGuess(new double[] { -1.5, 4.0 })); + + Assert.assertEquals(biQuadratic.getBoundedXOptimum(), optimum.getPoint()[0], 2e-7); + Assert.assertEquals(biQuadratic.getBoundedYOptimum(), optimum.getPoint()[1], 2e-7); + } + + @Test + public void testOptimumOutsideRange() { + final BiQuadratic biQuadratic = new BiQuadratic(4.0, 0.0, 1.0, 3.0, 2.0, 3.0); + final MultivariateFunctionPenaltyAdapter wrapped + = new MultivariateFunctionPenaltyAdapter(biQuadratic, + biQuadratic.getLower(), + biQuadratic.getUpper(), + 1000.0, new double[] { 100.0, 100.0 }); + + SimplexOptimizer optimizer = new SimplexOptimizer(new SimplePointChecker(1.0e-11, 1.0e-20)); + final AbstractSimplex simplex = new NelderMeadSimplex(new double[] { 1.0, 0.5 }); + + final PointValuePair optimum + = optimizer.optimize(new MaxEval(600), + new ObjectiveFunction(wrapped), + simplex, + GoalType.MINIMIZE, + new InitialGuess(new double[] { -1.5, 4.0 })); + + Assert.assertEquals(biQuadratic.getBoundedXOptimum(), optimum.getPoint()[0], 2e-7); + Assert.assertEquals(biQuadratic.getBoundedYOptimum(), optimum.getPoint()[1], 2e-7); + } + + @Test + public void testUnbounded() { + final BiQuadratic biQuadratic = new BiQuadratic(4.0, 0.0, + Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY, + Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY); + final MultivariateFunctionPenaltyAdapter wrapped + = new MultivariateFunctionPenaltyAdapter(biQuadratic, + biQuadratic.getLower(), + biQuadratic.getUpper(), + 1000.0, new double[] { 100.0, 100.0 }); + + SimplexOptimizer optimizer = new SimplexOptimizer(1e-10, 1e-30); + final AbstractSimplex simplex = new NelderMeadSimplex(new double[] { 1.0, 0.5 }); + + final PointValuePair optimum + = optimizer.optimize(new MaxEval(300), + new ObjectiveFunction(wrapped), + simplex, + GoalType.MINIMIZE, + new InitialGuess(new double[] { -1.5, 4.0 })); + + Assert.assertEquals(biQuadratic.getBoundedXOptimum(), optimum.getPoint()[0], 2e-7); + Assert.assertEquals(biQuadratic.getBoundedYOptimum(), optimum.getPoint()[1], 2e-7); + } + + @Test + public void testHalfBounded() { + final BiQuadratic biQuadratic = new BiQuadratic(4.0, 4.0, + 1.0, Double.POSITIVE_INFINITY, + Double.NEGATIVE_INFINITY, 3.0); + final MultivariateFunctionPenaltyAdapter wrapped + = new MultivariateFunctionPenaltyAdapter(biQuadratic, + biQuadratic.getLower(), + biQuadratic.getUpper(), + 1000.0, new double[] { 100.0, 100.0 }); + + SimplexOptimizer optimizer = new SimplexOptimizer(new SimplePointChecker(1.0e-10, 1.0e-20)); + final AbstractSimplex simplex = new NelderMeadSimplex(new double[] { 1.0, 0.5 }); + + final PointValuePair optimum + = optimizer.optimize(new MaxEval(400), + new ObjectiveFunction(wrapped), + simplex, + GoalType.MINIMIZE, + new InitialGuess(new double[] { -1.5, 4.0 })); + + Assert.assertEquals(biQuadratic.getBoundedXOptimum(), optimum.getPoint()[0], 2e-7); + Assert.assertEquals(biQuadratic.getBoundedYOptimum(), optimum.getPoint()[1], 2e-7); + } + + private static class BiQuadratic implements MultivariateFunction { + + private final double xOptimum; + private final double yOptimum; + + private final double xMin; + private final double xMax; + private final double yMin; + private final double yMax; + + public BiQuadratic(final double xOptimum, final double yOptimum, + final double xMin, final double xMax, + final double yMin, final double yMax) { + this.xOptimum = xOptimum; + this.yOptimum = yOptimum; + this.xMin = xMin; + this.xMax = xMax; + this.yMin = yMin; + this.yMax = yMax; + } + + public double value(double[] point) { + // the function should never be called with out of range points + Assert.assertTrue(point[0] >= xMin); + Assert.assertTrue(point[0] <= xMax); + Assert.assertTrue(point[1] >= yMin); + Assert.assertTrue(point[1] <= yMax); + + final double dx = point[0] - xOptimum; + final double dy = point[1] - yOptimum; + return dx * dx + dy * dy; + + } + + public double[] getLower() { + return new double[] { xMin, yMin }; + } + + public double[] getUpper() { + return new double[] { xMax, yMax }; + } + + public double getBoundedXOptimum() { + return (xOptimum < xMin) ? xMin : ((xOptimum > xMax) ? xMax : xOptimum); + } + + public double getBoundedYOptimum() { + return (yOptimum < yMin) ? yMin : ((yOptimum > yMax) ? yMax : yOptimum); + } + + } + +} diff --git a/src/test/java/org/apache/commons/math3/optim/nonlinear/scalar/gradient/CircleScalar.java b/src/test/java/org/apache/commons/math3/optim/nonlinear/scalar/gradient/CircleScalar.java new file mode 100644 index 000000000..7bc925f47 --- /dev/null +++ b/src/test/java/org/apache/commons/math3/optim/nonlinear/scalar/gradient/CircleScalar.java @@ -0,0 +1,85 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.commons.math3.optim.nonlinear.scalar.gradient; + +import java.util.ArrayList; + +import org.apache.commons.math3.analysis.MultivariateFunction; +import org.apache.commons.math3.analysis.MultivariateVectorFunction; +import org.apache.commons.math3.geometry.euclidean.twod.Vector2D; +import org.apache.commons.math3.optim.ObjectiveFunction; +import org.apache.commons.math3.optim.nonlinear.scalar.ObjectiveFunctionGradient; + +/** + * Class used in the tests. + */ +public class CircleScalar { + private ArrayList points; + + public CircleScalar() { + points = new ArrayList(); + } + + public void addPoint(double px, double py) { + points.add(new Vector2D(px, py)); + } + + public double getRadius(Vector2D center) { + double r = 0; + for (Vector2D point : points) { + r += point.distance(center); + } + return r / points.size(); + } + + public ObjectiveFunction getObjectiveFunction() { + return new ObjectiveFunction(new MultivariateFunction() { + public double value(double[] params) { + Vector2D center = new Vector2D(params[0], params[1]); + double radius = getRadius(center); + double sum = 0; + for (Vector2D point : points) { + double di = point.distance(center) - radius; + sum += di * di; + } + return sum; + } + }); + } + + public ObjectiveFunctionGradient getObjectiveFunctionGradient() { + return new ObjectiveFunctionGradient(new MultivariateVectorFunction() { + public double[] value(double[] params) { + Vector2D center = new Vector2D(params[0], params[1]); + double radius = getRadius(center); + // gradient of the sum of squared residuals + double dJdX = 0; + double dJdY = 0; + for (Vector2D pk : points) { + double dk = pk.distance(center); + dJdX += (center.getX() - pk.getX()) * (dk - radius) / dk; + dJdY += (center.getY() - pk.getY()) * (dk - radius) / dk; + } + dJdX *= 2; + dJdY *= 2; + + return new double[] { dJdX, dJdY }; + } + }); + } +} diff --git a/src/test/java/org/apache/commons/math3/optim/nonlinear/scalar/gradient/NonLinearConjugateGradientOptimizerTest.java b/src/test/java/org/apache/commons/math3/optim/nonlinear/scalar/gradient/NonLinearConjugateGradientOptimizerTest.java new file mode 100644 index 000000000..10a712841 --- /dev/null +++ b/src/test/java/org/apache/commons/math3/optim/nonlinear/scalar/gradient/NonLinearConjugateGradientOptimizerTest.java @@ -0,0 +1,447 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.commons.math3.optim.nonlinear.scalar.gradient; + +import java.io.Serializable; + +import org.apache.commons.math3.analysis.DifferentiableMultivariateFunction; +import org.apache.commons.math3.analysis.MultivariateFunction; +import org.apache.commons.math3.analysis.MultivariateVectorFunction; +import org.apache.commons.math3.analysis.differentiation.DerivativeStructure; +import org.apache.commons.math3.analysis.differentiation.MultivariateDifferentiableFunction; +import org.apache.commons.math3.analysis.solvers.BrentSolver; +import org.apache.commons.math3.exception.DimensionMismatchException; +import org.apache.commons.math3.exception.MathIllegalArgumentException; +import org.apache.commons.math3.geometry.euclidean.twod.Vector2D; +import org.apache.commons.math3.linear.BlockRealMatrix; +import org.apache.commons.math3.linear.RealMatrix; +import org.apache.commons.math3.optim.GoalType; +import org.apache.commons.math3.optim.PointValuePair; +import org.apache.commons.math3.optim.SimpleValueChecker; +import org.apache.commons.math3.optim.InitialGuess; +import org.apache.commons.math3.optim.MaxEval; +import org.apache.commons.math3.optim.ObjectiveFunction; +import org.apache.commons.math3.optim.nonlinear.scalar.ObjectiveFunctionGradient; +import org.junit.Assert; +import org.junit.Test; + +/** + *

    Some of the unit tests are re-implementations of the MINPACK file17 and file22 test files. + * The redistribution policy for MINPACK is available here, for + * convenience, it is reproduced below.

    + * + * + * + * + *
    + * Minpack Copyright Notice (1999) University of Chicago. + * All rights reserved + *
    + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + *
      + *
    1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer.
    2. + *
    3. Redistributions in binary form must reproduce the above + * copyright notice, this list of conditions and the following + * disclaimer in the documentation and/or other materials provided + * with the distribution.
    4. + *
    5. The end-user documentation included with the redistribution, if any, + * must include the following acknowledgment: + * This product includes software developed by the University of + * Chicago, as Operator of Argonne National Laboratory. + * Alternately, this acknowledgment may appear in the software itself, + * if and wherever such third-party acknowledgments normally appear.
    6. + *
    7. WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS" + * WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER, THE + * UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND + * THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES + * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE + * OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY + * OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR + * USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF + * THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4) + * DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION + * UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL + * BE CORRECTED.
    8. + *
    9. LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT + * HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF + * ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT, + * INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF + * ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF + * PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER + * SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT + * (INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE, + * EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE + * POSSIBILITY OF SUCH LOSS OR DAMAGES.
    10. + *
      + * + * @author Argonne National Laboratory. MINPACK project. March 1980 (original fortran minpack tests) + * @author Burton S. Garbow (original fortran minpack tests) + * @author Kenneth E. Hillstrom (original fortran minpack tests) + * @author Jorge J. More (original fortran minpack tests) + * @author Luc Maisonobe (non-minpack tests and minpack tests Java translation) + */ +public class NonLinearConjugateGradientOptimizerTest { + @Test + public void testTrivial() { + LinearProblem problem + = new LinearProblem(new double[][] { { 2 } }, new double[] { 3 }); + NonLinearConjugateGradientOptimizer optimizer + = new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE, + new SimpleValueChecker(1e-6, 1e-6)); + PointValuePair optimum + = optimizer.optimize(new MaxEval(100), + problem.getObjectiveFunction(), + problem.getObjectiveFunctionGradient(), + GoalType.MINIMIZE, + new InitialGuess(new double[] { 0 })); + Assert.assertEquals(1.5, optimum.getPoint()[0], 1.0e-10); + Assert.assertEquals(0.0, optimum.getValue(), 1.0e-10); + } + + @Test + public void testColumnsPermutation() { + LinearProblem problem + = new LinearProblem(new double[][] { { 1.0, -1.0 }, { 0.0, 2.0 }, { 1.0, -2.0 } }, + new double[] { 4.0, 6.0, 1.0 }); + + NonLinearConjugateGradientOptimizer optimizer + = new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE, + new SimpleValueChecker(1e-6, 1e-6)); + PointValuePair optimum + = optimizer.optimize(new MaxEval(100), + problem.getObjectiveFunction(), + problem.getObjectiveFunctionGradient(), + GoalType.MINIMIZE, + new InitialGuess(new double[] { 0, 0 })); + Assert.assertEquals(7.0, optimum.getPoint()[0], 1.0e-10); + Assert.assertEquals(3.0, optimum.getPoint()[1], 1.0e-10); + Assert.assertEquals(0.0, optimum.getValue(), 1.0e-10); + + } + + @Test + public void testNoDependency() { + LinearProblem problem = new LinearProblem(new double[][] { + { 2, 0, 0, 0, 0, 0 }, + { 0, 2, 0, 0, 0, 0 }, + { 0, 0, 2, 0, 0, 0 }, + { 0, 0, 0, 2, 0, 0 }, + { 0, 0, 0, 0, 2, 0 }, + { 0, 0, 0, 0, 0, 2 } + }, new double[] { 0.0, 1.1, 2.2, 3.3, 4.4, 5.5 }); + NonLinearConjugateGradientOptimizer optimizer + = new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE, + new SimpleValueChecker(1e-6, 1e-6)); + PointValuePair optimum + = optimizer.optimize(new MaxEval(100), + problem.getObjectiveFunction(), + problem.getObjectiveFunctionGradient(), + GoalType.MINIMIZE, + new InitialGuess(new double[] { 0, 0, 0, 0, 0, 0 })); + for (int i = 0; i < problem.target.length; ++i) { + Assert.assertEquals(0.55 * i, optimum.getPoint()[i], 1.0e-10); + } + } + + @Test + public void testOneSet() { + LinearProblem problem = new LinearProblem(new double[][] { + { 1, 0, 0 }, + { -1, 1, 0 }, + { 0, -1, 1 } + }, new double[] { 1, 1, 1}); + NonLinearConjugateGradientOptimizer optimizer + = new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE, + new SimpleValueChecker(1e-6, 1e-6)); + PointValuePair optimum + = optimizer.optimize(new MaxEval(100), + problem.getObjectiveFunction(), + problem.getObjectiveFunctionGradient(), + GoalType.MINIMIZE, + new InitialGuess(new double[] { 0, 0, 0 })); + Assert.assertEquals(1.0, optimum.getPoint()[0], 1.0e-10); + Assert.assertEquals(2.0, optimum.getPoint()[1], 1.0e-10); + Assert.assertEquals(3.0, optimum.getPoint()[2], 1.0e-10); + + } + + @Test + public void testTwoSets() { + final double epsilon = 1.0e-7; + LinearProblem problem = new LinearProblem(new double[][] { + { 2, 1, 0, 4, 0, 0 }, + { -4, -2, 3, -7, 0, 0 }, + { 4, 1, -2, 8, 0, 0 }, + { 0, -3, -12, -1, 0, 0 }, + { 0, 0, 0, 0, epsilon, 1 }, + { 0, 0, 0, 0, 1, 1 } + }, new double[] { 2, -9, 2, 2, 1 + epsilon * epsilon, 2}); + + final Preconditioner preconditioner + = new Preconditioner() { + public double[] precondition(double[] point, double[] r) { + double[] d = r.clone(); + d[0] /= 72.0; + d[1] /= 30.0; + d[2] /= 314.0; + d[3] /= 260.0; + d[4] /= 2 * (1 + epsilon * epsilon); + d[5] /= 4.0; + return d; + } + }; + + NonLinearConjugateGradientOptimizer optimizer + = new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE, + new SimpleValueChecker(1e-13, 1e-13), + new BrentSolver(), + preconditioner); + + PointValuePair optimum + = optimizer.optimize(new MaxEval(100), + problem.getObjectiveFunction(), + problem.getObjectiveFunctionGradient(), + GoalType.MINIMIZE, + new InitialGuess(new double[] { 0, 0, 0, 0, 0, 0 })); + Assert.assertEquals( 3.0, optimum.getPoint()[0], 1.0e-10); + Assert.assertEquals( 4.0, optimum.getPoint()[1], 1.0e-10); + Assert.assertEquals(-1.0, optimum.getPoint()[2], 1.0e-10); + Assert.assertEquals(-2.0, optimum.getPoint()[3], 1.0e-10); + Assert.assertEquals( 1.0 + epsilon, optimum.getPoint()[4], 1.0e-10); + Assert.assertEquals( 1.0 - epsilon, optimum.getPoint()[5], 1.0e-10); + + } + + @Test + public void testNonInversible() { + LinearProblem problem = new LinearProblem(new double[][] { + { 1, 2, -3 }, + { 2, 1, 3 }, + { -3, 0, -9 } + }, new double[] { 1, 1, 1 }); + NonLinearConjugateGradientOptimizer optimizer + = new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE, + new SimpleValueChecker(1e-6, 1e-6)); + PointValuePair optimum + = optimizer.optimize(new MaxEval(100), + problem.getObjectiveFunction(), + problem.getObjectiveFunctionGradient(), + GoalType.MINIMIZE, + new InitialGuess(new double[] { 0, 0, 0 })); + Assert.assertTrue(optimum.getValue() > 0.5); + } + + @Test + public void testIllConditioned() { + LinearProblem problem1 = new LinearProblem(new double[][] { + { 10.0, 7.0, 8.0, 7.0 }, + { 7.0, 5.0, 6.0, 5.0 }, + { 8.0, 6.0, 10.0, 9.0 }, + { 7.0, 5.0, 9.0, 10.0 } + }, new double[] { 32, 23, 33, 31 }); + NonLinearConjugateGradientOptimizer optimizer + = new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE, + new SimpleValueChecker(1e-13, 1e-13), + new BrentSolver(1e-15, 1e-15)); + PointValuePair optimum1 + = optimizer.optimize(new MaxEval(200), + problem1.getObjectiveFunction(), + problem1.getObjectiveFunctionGradient(), + GoalType.MINIMIZE, + new InitialGuess(new double[] { 0, 1, 2, 3 })); + Assert.assertEquals(1.0, optimum1.getPoint()[0], 1.0e-4); + Assert.assertEquals(1.0, optimum1.getPoint()[1], 1.0e-4); + Assert.assertEquals(1.0, optimum1.getPoint()[2], 1.0e-4); + Assert.assertEquals(1.0, optimum1.getPoint()[3], 1.0e-4); + + LinearProblem problem2 = new LinearProblem(new double[][] { + { 10.00, 7.00, 8.10, 7.20 }, + { 7.08, 5.04, 6.00, 5.00 }, + { 8.00, 5.98, 9.89, 9.00 }, + { 6.99, 4.99, 9.00, 9.98 } + }, new double[] { 32, 23, 33, 31 }); + PointValuePair optimum2 + = optimizer.optimize(new MaxEval(200), + problem2.getObjectiveFunction(), + problem2.getObjectiveFunctionGradient(), + GoalType.MINIMIZE, + new InitialGuess(new double[] { 0, 1, 2, 3 })); + Assert.assertEquals(-81.0, optimum2.getPoint()[0], 1.0e-1); + Assert.assertEquals(137.0, optimum2.getPoint()[1], 1.0e-1); + Assert.assertEquals(-34.0, optimum2.getPoint()[2], 1.0e-1); + Assert.assertEquals( 22.0, optimum2.getPoint()[3], 1.0e-1); + + } + + @Test + public void testMoreEstimatedParametersSimple() { + LinearProblem problem = new LinearProblem(new double[][] { + { 3.0, 2.0, 0.0, 0.0 }, + { 0.0, 1.0, -1.0, 1.0 }, + { 2.0, 0.0, 1.0, 0.0 } + }, new double[] { 7.0, 3.0, 5.0 }); + + NonLinearConjugateGradientOptimizer optimizer + = new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE, + new SimpleValueChecker(1e-6, 1e-6)); + PointValuePair optimum + = optimizer.optimize(new MaxEval(100), + problem.getObjectiveFunction(), + problem.getObjectiveFunctionGradient(), + GoalType.MINIMIZE, + new InitialGuess(new double[] { 7, 6, 5, 4 })); + Assert.assertEquals(0, optimum.getValue(), 1.0e-10); + + } + + @Test + public void testMoreEstimatedParametersUnsorted() { + LinearProblem problem = new LinearProblem(new double[][] { + { 1.0, 1.0, 0.0, 0.0, 0.0, 0.0 }, + { 0.0, 0.0, 1.0, 1.0, 1.0, 0.0 }, + { 0.0, 0.0, 0.0, 0.0, 1.0, -1.0 }, + { 0.0, 0.0, -1.0, 1.0, 0.0, 1.0 }, + { 0.0, 0.0, 0.0, -1.0, 1.0, 0.0 } + }, new double[] { 3.0, 12.0, -1.0, 7.0, 1.0 }); + NonLinearConjugateGradientOptimizer optimizer + = new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE, + new SimpleValueChecker(1e-6, 1e-6)); + PointValuePair optimum + = optimizer.optimize(new MaxEval(100), + problem.getObjectiveFunction(), + problem.getObjectiveFunctionGradient(), + GoalType.MINIMIZE, + new InitialGuess(new double[] { 2, 2, 2, 2, 2, 2 })); + Assert.assertEquals(0, optimum.getValue(), 1.0e-10); + } + + @Test + public void testRedundantEquations() { + LinearProblem problem = new LinearProblem(new double[][] { + { 1.0, 1.0 }, + { 1.0, -1.0 }, + { 1.0, 3.0 } + }, new double[] { 3.0, 1.0, 5.0 }); + + NonLinearConjugateGradientOptimizer optimizer + = new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE, + new SimpleValueChecker(1e-6, 1e-6)); + PointValuePair optimum + = optimizer.optimize(new MaxEval(100), + problem.getObjectiveFunction(), + problem.getObjectiveFunctionGradient(), + GoalType.MINIMIZE, + new InitialGuess(new double[] { 1, 1 })); + Assert.assertEquals(2.0, optimum.getPoint()[0], 1.0e-8); + Assert.assertEquals(1.0, optimum.getPoint()[1], 1.0e-8); + + } + + @Test + public void testInconsistentEquations() { + LinearProblem problem = new LinearProblem(new double[][] { + { 1.0, 1.0 }, + { 1.0, -1.0 }, + { 1.0, 3.0 } + }, new double[] { 3.0, 1.0, 4.0 }); + + NonLinearConjugateGradientOptimizer optimizer + = new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE, + new SimpleValueChecker(1e-6, 1e-6)); + PointValuePair optimum + = optimizer.optimize(new MaxEval(100), + problem.getObjectiveFunction(), + problem.getObjectiveFunctionGradient(), + GoalType.MINIMIZE, + new InitialGuess(new double[] { 1, 1 })); + Assert.assertTrue(optimum.getValue() > 0.1); + + } + + @Test + public void testCircleFitting() { + CircleScalar problem = new CircleScalar(); + problem.addPoint( 30.0, 68.0); + problem.addPoint( 50.0, -6.0); + problem.addPoint(110.0, -20.0); + problem.addPoint( 35.0, 15.0); + problem.addPoint( 45.0, 97.0); + NonLinearConjugateGradientOptimizer optimizer + = new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE, + new SimpleValueChecker(1e-30, 1e-30), + new BrentSolver(1e-15, 1e-13)); + PointValuePair optimum + = optimizer.optimize(new MaxEval(100), + problem.getObjectiveFunction(), + problem.getObjectiveFunctionGradient(), + GoalType.MINIMIZE, + new InitialGuess(new double[] { 98.680, 47.345 })); + Vector2D center = new Vector2D(optimum.getPointRef()[0], optimum.getPointRef()[1]); + Assert.assertEquals(69.960161753, problem.getRadius(center), 1.0e-8); + Assert.assertEquals(96.075902096, center.getX(), 1.0e-8); + Assert.assertEquals(48.135167894, center.getY(), 1.0e-8); + } + + private static class LinearProblem { + final RealMatrix factors; + final double[] target; + + public LinearProblem(double[][] factors, + double[] target) { + this.factors = new BlockRealMatrix(factors); + this.target = target; + } + + public ObjectiveFunction getObjectiveFunction() { + return new ObjectiveFunction(new MultivariateFunction() { + public double value(double[] point) { + double[] y = factors.operate(point); + double sum = 0; + for (int i = 0; i < y.length; ++i) { + double ri = y[i] - target[i]; + sum += ri * ri; + } + return sum; + } + }); + } + + public ObjectiveFunctionGradient getObjectiveFunctionGradient() { + return new ObjectiveFunctionGradient(new MultivariateVectorFunction() { + public double[] value(double[] point) { + double[] r = factors.operate(point); + for (int i = 0; i < r.length; ++i) { + r[i] -= target[i]; + } + double[] p = factors.transpose().operate(r); + for (int i = 0; i < p.length; ++i) { + p[i] *= 2; + } + return p; + } + }); + } + } +} diff --git a/src/test/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/BOBYQAOptimizerTest.java b/src/test/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/BOBYQAOptimizerTest.java new file mode 100644 index 000000000..1281ad315 --- /dev/null +++ b/src/test/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/BOBYQAOptimizerTest.java @@ -0,0 +1,627 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.nonlinear.scalar.noderiv; + +import java.util.Arrays; +import java.util.Random; +import org.apache.commons.math3.analysis.MultivariateFunction; +import org.apache.commons.math3.exception.DimensionMismatchException; +import org.apache.commons.math3.exception.TooManyEvaluationsException; +import org.apache.commons.math3.exception.NumberIsTooLargeException; +import org.apache.commons.math3.exception.NumberIsTooSmallException; +import org.apache.commons.math3.optim.MaxEval; +import org.apache.commons.math3.optim.ObjectiveFunction; +import org.apache.commons.math3.optim.GoalType; +import org.apache.commons.math3.optim.PointValuePair; +import org.apache.commons.math3.optim.InitialGuess; +import org.apache.commons.math3.optim.SimpleBounds; +import org.junit.Assert; +import org.junit.Test; + +/** + * Test for {@link BOBYQAOptimizer}. + */ +public class BOBYQAOptimizerTest { + + static final int DIM = 13; + + @Test(expected=NumberIsTooLargeException.class) + public void testInitOutOfBounds() { + double[] startPoint = point(DIM, 3); + double[][] boundaries = boundaries(DIM, -1, 2); + doTest(new Rosen(), startPoint, boundaries, + GoalType.MINIMIZE, + 1e-13, 1e-6, 2000, null); + } + + @Test(expected=DimensionMismatchException.class) + public void testBoundariesDimensionMismatch() { + double[] startPoint = point(DIM, 0.5); + double[][] boundaries = boundaries(DIM + 1, -1, 2); + doTest(new Rosen(), startPoint, boundaries, + GoalType.MINIMIZE, + 1e-13, 1e-6, 2000, null); + } + + @Test(expected=NumberIsTooSmallException.class) + public void testProblemDimensionTooSmall() { + double[] startPoint = point(1, 0.5); + doTest(new Rosen(), startPoint, null, + GoalType.MINIMIZE, + 1e-13, 1e-6, 2000, null); + } + + @Test(expected=TooManyEvaluationsException.class) + public void testMaxEvaluations() { + final int lowMaxEval = 2; + double[] startPoint = point(DIM, 0.1); + double[][] boundaries = null; + doTest(new Rosen(), startPoint, boundaries, + GoalType.MINIMIZE, + 1e-13, 1e-6, lowMaxEval, null); + } + + @Test + public void testRosen() { + double[] startPoint = point(DIM,0.1); + double[][] boundaries = null; + PointValuePair expected = new PointValuePair(point(DIM,1.0),0.0); + doTest(new Rosen(), startPoint, boundaries, + GoalType.MINIMIZE, + 1e-13, 1e-6, 2000, expected); + } + + @Test + public void testMaximize() { + double[] startPoint = point(DIM,1.0); + double[][] boundaries = null; + PointValuePair expected = new PointValuePair(point(DIM,0.0),1.0); + doTest(new MinusElli(), startPoint, boundaries, + GoalType.MAXIMIZE, + 2e-10, 5e-6, 1000, expected); + boundaries = boundaries(DIM,-0.3,0.3); + startPoint = point(DIM,0.1); + doTest(new MinusElli(), startPoint, boundaries, + GoalType.MAXIMIZE, + 2e-10, 5e-6, 1000, expected); + } + + @Test + public void testEllipse() { + double[] startPoint = point(DIM,1.0); + double[][] boundaries = null; + PointValuePair expected = + new PointValuePair(point(DIM,0.0),0.0); + doTest(new Elli(), startPoint, boundaries, + GoalType.MINIMIZE, + 1e-13, 1e-6, 1000, expected); + } + + @Test + public void testElliRotated() { + double[] startPoint = point(DIM,1.0); + double[][] boundaries = null; + PointValuePair expected = + new PointValuePair(point(DIM,0.0),0.0); + doTest(new ElliRotated(), startPoint, boundaries, + GoalType.MINIMIZE, + 1e-12, 1e-6, 10000, expected); + } + + @Test + public void testCigar() { + double[] startPoint = point(DIM,1.0); + double[][] boundaries = null; + PointValuePair expected = + new PointValuePair(point(DIM,0.0),0.0); + doTest(new Cigar(), startPoint, boundaries, + GoalType.MINIMIZE, + 1e-13, 1e-6, 100, expected); + } + + @Test + public void testTwoAxes() { + double[] startPoint = point(DIM,1.0); + double[][] boundaries = null; + PointValuePair expected = + new PointValuePair(point(DIM,0.0),0.0); + doTest(new TwoAxes(), startPoint, boundaries, + GoalType.MINIMIZE, 2* + 1e-13, 1e-6, 100, expected); + } + + @Test + public void testCigTab() { + double[] startPoint = point(DIM,1.0); + double[][] boundaries = null; + PointValuePair expected = + new PointValuePair(point(DIM,0.0),0.0); + doTest(new CigTab(), startPoint, boundaries, + GoalType.MINIMIZE, + 1e-13, 5e-5, 100, expected); + } + + @Test + public void testSphere() { + double[] startPoint = point(DIM,1.0); + double[][] boundaries = null; + PointValuePair expected = + new PointValuePair(point(DIM,0.0),0.0); + doTest(new Sphere(), startPoint, boundaries, + GoalType.MINIMIZE, + 1e-13, 1e-6, 100, expected); + } + + @Test + public void testTablet() { + double[] startPoint = point(DIM,1.0); + double[][] boundaries = null; + PointValuePair expected = + new PointValuePair(point(DIM,0.0),0.0); + doTest(new Tablet(), startPoint, boundaries, + GoalType.MINIMIZE, + 1e-13, 1e-6, 100, expected); + } + + @Test + public void testDiffPow() { + double[] startPoint = point(DIM/2,1.0); + double[][] boundaries = null; + PointValuePair expected = + new PointValuePair(point(DIM/2,0.0),0.0); + doTest(new DiffPow(), startPoint, boundaries, + GoalType.MINIMIZE, + 1e-8, 1e-1, 12000, expected); + } + + @Test + public void testSsDiffPow() { + double[] startPoint = point(DIM/2,1.0); + double[][] boundaries = null; + PointValuePair expected = + new PointValuePair(point(DIM/2,0.0),0.0); + doTest(new SsDiffPow(), startPoint, boundaries, + GoalType.MINIMIZE, + 1e-2, 1.3e-1, 50000, expected); + } + + @Test + public void testAckley() { + double[] startPoint = point(DIM,0.1); + double[][] boundaries = null; + PointValuePair expected = + new PointValuePair(point(DIM,0.0),0.0); + doTest(new Ackley(), startPoint, boundaries, + GoalType.MINIMIZE, + 1e-8, 1e-5, 1000, expected); + } + + @Test + public void testRastrigin() { + double[] startPoint = point(DIM,1.0); + + double[][] boundaries = null; + PointValuePair expected = + new PointValuePair(point(DIM,0.0),0.0); + doTest(new Rastrigin(), startPoint, boundaries, + GoalType.MINIMIZE, + 1e-13, 1e-6, 1000, expected); + } + + @Test + public void testConstrainedRosen() { + double[] startPoint = point(DIM,0.1); + + double[][] boundaries = boundaries(DIM,-1,2); + PointValuePair expected = + new PointValuePair(point(DIM,1.0),0.0); + doTest(new Rosen(), startPoint, boundaries, + GoalType.MINIMIZE, + 1e-13, 1e-6, 2000, expected); + } + + // See MATH-728 + @Test + public void testConstrainedRosenWithMoreInterpolationPoints() { + final double[] startPoint = point(DIM, 0.1); + final double[][] boundaries = boundaries(DIM, -1, 2); + final PointValuePair expected = new PointValuePair(point(DIM, 1.0), 0.0); + + // This should have been 78 because in the code the hard limit is + // said to be + // ((DIM + 1) * (DIM + 2)) / 2 - (2 * DIM + 1) + // i.e. 78 in this case, but the test fails for 48, 59, 62, 63, 64, + // 65, 66, ... + final int maxAdditionalPoints = 47; + + for (int num = 1; num <= maxAdditionalPoints; num++) { + doTest(new Rosen(), startPoint, boundaries, + GoalType.MINIMIZE, + 1e-12, 1e-6, 2000, + num, + expected, + "num=" + num); + } + } + + /** + * @param func Function to optimize. + * @param startPoint Starting point. + * @param boundaries Upper / lower point limit. + * @param goal Minimization or maximization. + * @param fTol Tolerance relative error on the objective function. + * @param pointTol Tolerance for checking that the optimum is correct. + * @param maxEvaluations Maximum number of evaluations. + * @param expected Expected point / value. + */ + private void doTest(MultivariateFunction func, + double[] startPoint, + double[][] boundaries, + GoalType goal, + double fTol, + double pointTol, + int maxEvaluations, + PointValuePair expected) { + doTest(func, + startPoint, + boundaries, + goal, + fTol, + pointTol, + maxEvaluations, + 0, + expected, + ""); + } + + /** + * @param func Function to optimize. + * @param startPoint Starting point. + * @param boundaries Upper / lower point limit. + * @param goal Minimization or maximization. + * @param fTol Tolerance relative error on the objective function. + * @param pointTol Tolerance for checking that the optimum is correct. + * @param maxEvaluations Maximum number of evaluations. + * @param additionalInterpolationPoints Number of interpolation to used + * in addition to the default (2 * dim + 1). + * @param expected Expected point / value. + */ + private void doTest(MultivariateFunction func, + double[] startPoint, + double[][] boundaries, + GoalType goal, + double fTol, + double pointTol, + int maxEvaluations, + int additionalInterpolationPoints, + PointValuePair expected, + String assertMsg) { + +// System.out.println(func.getClass().getName() + " BEGIN"); // XXX + + int dim = startPoint.length; + final int numIterpolationPoints = 2 * dim + 1 + additionalInterpolationPoints; + BOBYQAOptimizer optim = new BOBYQAOptimizer(numIterpolationPoints); + PointValuePair result = boundaries == null ? + optim.optimize(new MaxEval(maxEvaluations), + new ObjectiveFunction(func), + goal, + SimpleBounds.unbounded(dim), + new InitialGuess(startPoint)) : + optim.optimize(new MaxEval(maxEvaluations), + new ObjectiveFunction(func), + goal, + new InitialGuess(startPoint), + new SimpleBounds(boundaries[0], + boundaries[1])); +// System.out.println(func.getClass().getName() + " = " +// + optim.getEvaluations() + " f("); +// for (double x: result.getPoint()) System.out.print(x + " "); +// System.out.println(") = " + result.getValue()); + Assert.assertEquals(assertMsg, expected.getValue(), result.getValue(), fTol); + for (int i = 0; i < dim; i++) { + Assert.assertEquals(expected.getPoint()[i], + result.getPoint()[i], pointTol); + } + +// System.out.println(func.getClass().getName() + " END"); // XXX + } + + private static double[] point(int n, double value) { + double[] ds = new double[n]; + Arrays.fill(ds, value); + return ds; + } + + private static double[][] boundaries(int dim, + double lower, double upper) { + double[][] boundaries = new double[2][dim]; + for (int i = 0; i < dim; i++) + boundaries[0][i] = lower; + for (int i = 0; i < dim; i++) + boundaries[1][i] = upper; + return boundaries; + } + + private static class Sphere implements MultivariateFunction { + + public double value(double[] x) { + double f = 0; + for (int i = 0; i < x.length; ++i) + f += x[i] * x[i]; + return f; + } + } + + private static class Cigar implements MultivariateFunction { + private double factor; + + Cigar() { + this(1e3); + } + + Cigar(double axisratio) { + factor = axisratio * axisratio; + } + + public double value(double[] x) { + double f = x[0] * x[0]; + for (int i = 1; i < x.length; ++i) + f += factor * x[i] * x[i]; + return f; + } + } + + private static class Tablet implements MultivariateFunction { + private double factor; + + Tablet() { + this(1e3); + } + + Tablet(double axisratio) { + factor = axisratio * axisratio; + } + + public double value(double[] x) { + double f = factor * x[0] * x[0]; + for (int i = 1; i < x.length; ++i) + f += x[i] * x[i]; + return f; + } + } + + private static class CigTab implements MultivariateFunction { + private double factor; + + CigTab() { + this(1e4); + } + + CigTab(double axisratio) { + factor = axisratio; + } + + public double value(double[] x) { + int end = x.length - 1; + double f = x[0] * x[0] / factor + factor * x[end] * x[end]; + for (int i = 1; i < end; ++i) + f += x[i] * x[i]; + return f; + } + } + + private static class TwoAxes implements MultivariateFunction { + + private double factor; + + TwoAxes() { + this(1e6); + } + + TwoAxes(double axisratio) { + factor = axisratio * axisratio; + } + + public double value(double[] x) { + double f = 0; + for (int i = 0; i < x.length; ++i) + f += (i < x.length / 2 ? factor : 1) * x[i] * x[i]; + return f; + } + } + + private static class ElliRotated implements MultivariateFunction { + private Basis B = new Basis(); + private double factor; + + ElliRotated() { + this(1e3); + } + + ElliRotated(double axisratio) { + factor = axisratio * axisratio; + } + + public double value(double[] x) { + double f = 0; + x = B.Rotate(x); + for (int i = 0; i < x.length; ++i) + f += Math.pow(factor, i / (x.length - 1.)) * x[i] * x[i]; + return f; + } + } + + private static class Elli implements MultivariateFunction { + + private double factor; + + Elli() { + this(1e3); + } + + Elli(double axisratio) { + factor = axisratio * axisratio; + } + + public double value(double[] x) { + double f = 0; + for (int i = 0; i < x.length; ++i) + f += Math.pow(factor, i / (x.length - 1.)) * x[i] * x[i]; + return f; + } + } + + private static class MinusElli implements MultivariateFunction { + private final Elli elli = new Elli(); + public double value(double[] x) { + return 1.0 - elli.value(x); + } + } + + private static class DiffPow implements MultivariateFunction { +// private int fcount = 0; + public double value(double[] x) { + double f = 0; + for (int i = 0; i < x.length; ++i) + f += Math.pow(Math.abs(x[i]), 2. + 10 * (double) i + / (x.length - 1.)); +// System.out.print("" + (fcount++) + ") "); +// for (int i = 0; i < x.length; i++) +// System.out.print(x[i] + " "); +// System.out.println(" = " + f); + return f; + } + } + + private static class SsDiffPow implements MultivariateFunction { + + public double value(double[] x) { + double f = Math.pow(new DiffPow().value(x), 0.25); + return f; + } + } + + private static class Rosen implements MultivariateFunction { + + public double value(double[] x) { + double f = 0; + for (int i = 0; i < x.length - 1; ++i) + f += 1e2 * (x[i] * x[i] - x[i + 1]) * (x[i] * x[i] - x[i + 1]) + + (x[i] - 1.) * (x[i] - 1.); + return f; + } + } + + private static class Ackley implements MultivariateFunction { + private double axisratio; + + Ackley(double axra) { + axisratio = axra; + } + + public Ackley() { + this(1); + } + + public double value(double[] x) { + double f = 0; + double res2 = 0; + double fac = 0; + for (int i = 0; i < x.length; ++i) { + fac = Math.pow(axisratio, (i - 1.) / (x.length - 1.)); + f += fac * fac * x[i] * x[i]; + res2 += Math.cos(2. * Math.PI * fac * x[i]); + } + f = (20. - 20. * Math.exp(-0.2 * Math.sqrt(f / x.length)) + + Math.exp(1.) - Math.exp(res2 / x.length)); + return f; + } + } + + private static class Rastrigin implements MultivariateFunction { + + private double axisratio; + private double amplitude; + + Rastrigin() { + this(1, 10); + } + + Rastrigin(double axisratio, double amplitude) { + this.axisratio = axisratio; + this.amplitude = amplitude; + } + + public double value(double[] x) { + double f = 0; + double fac; + for (int i = 0; i < x.length; ++i) { + fac = Math.pow(axisratio, (i - 1.) / (x.length - 1.)); + if (i == 0 && x[i] < 0) + fac *= 1.; + f += fac * fac * x[i] * x[i] + amplitude + * (1. - Math.cos(2. * Math.PI * fac * x[i])); + } + return f; + } + } + + private static class Basis { + double[][] basis; + Random rand = new Random(2); // use not always the same basis + + double[] Rotate(double[] x) { + GenBasis(x.length); + double[] y = new double[x.length]; + for (int i = 0; i < x.length; ++i) { + y[i] = 0; + for (int j = 0; j < x.length; ++j) + y[i] += basis[i][j] * x[j]; + } + return y; + } + + void GenBasis(int DIM) { + if (basis != null ? basis.length == DIM : false) + return; + + double sp; + int i, j, k; + + /* generate orthogonal basis */ + basis = new double[DIM][DIM]; + for (i = 0; i < DIM; ++i) { + /* sample components gaussian */ + for (j = 0; j < DIM; ++j) + basis[i][j] = rand.nextGaussian(); + /* substract projection of previous vectors */ + for (j = i - 1; j >= 0; --j) { + for (sp = 0., k = 0; k < DIM; ++k) + sp += basis[i][k] * basis[j][k]; /* scalar product */ + for (k = 0; k < DIM; ++k) + basis[i][k] -= sp * basis[j][k]; /* substract */ + } + /* normalize */ + for (sp = 0., k = 0; k < DIM; ++k) + sp += basis[i][k] * basis[i][k]; /* squared norm */ + for (k = 0; k < DIM; ++k) + basis[i][k] /= Math.sqrt(sp); + } + } + } +} diff --git a/src/test/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/CMAESOptimizerTest.java b/src/test/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/CMAESOptimizerTest.java new file mode 100644 index 000000000..4e8c4dc89 --- /dev/null +++ b/src/test/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/CMAESOptimizerTest.java @@ -0,0 +1,794 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.nonlinear.scalar.noderiv; + +import java.util.Arrays; +import java.util.Random; +import org.apache.commons.math3.Retry; +import org.apache.commons.math3.RetryRunner; +import org.apache.commons.math3.analysis.MultivariateFunction; +import org.apache.commons.math3.exception.NumberIsTooLargeException; +import org.apache.commons.math3.exception.NumberIsTooSmallException; +import org.apache.commons.math3.exception.DimensionMismatchException; +import org.apache.commons.math3.exception.MathUnsupportedOperationException; +import org.apache.commons.math3.exception.MathIllegalStateException; +import org.apache.commons.math3.exception.NotPositiveException; +import org.apache.commons.math3.exception.OutOfRangeException; +import org.apache.commons.math3.optim.GoalType; +import org.apache.commons.math3.optim.PointValuePair; +import org.apache.commons.math3.optim.InitialGuess; +import org.apache.commons.math3.optim.SimpleBounds; +import org.apache.commons.math3.optim.ObjectiveFunction; +import org.apache.commons.math3.optim.MaxEval; +import org.apache.commons.math3.random.MersenneTwister; +import org.apache.commons.math3.util.FastMath; +import org.junit.Assert; +import org.junit.Test; +import org.junit.Ignore; +import org.junit.runner.RunWith; + +/** + * Test for {@link CMAESOptimizer}. + */ +@RunWith(RetryRunner.class) +public class CMAESOptimizerTest { + + static final int DIM = 13; + static final int LAMBDA = 4 + (int)(3.*Math.log(DIM)); + + @Test(expected = NumberIsTooLargeException.class) + public void testInitOutofbounds1() { + double[] startPoint = point(DIM,3); + double[] insigma = point(DIM, 0.3); + double[][] boundaries = boundaries(DIM,-1,2); + PointValuePair expected = + new PointValuePair(point(DIM,1.0),0.0); + doTest(new Rosen(), startPoint, insigma, boundaries, + GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13, + 1e-13, 1e-6, 100000, expected); + } + @Test(expected = NumberIsTooSmallException.class) + public void testInitOutofbounds2() { + double[] startPoint = point(DIM, -2); + double[] insigma = point(DIM, 0.3); + double[][] boundaries = boundaries(DIM,-1,2); + PointValuePair expected = + new PointValuePair(point(DIM,1.0),0.0); + doTest(new Rosen(), startPoint, insigma, boundaries, + GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13, + 1e-13, 1e-6, 100000, expected); + } + + @Test(expected = DimensionMismatchException.class) + public void testBoundariesDimensionMismatch() { + double[] startPoint = point(DIM,0.5); + double[] insigma = point(DIM, 0.3); + double[][] boundaries = boundaries(DIM+1,-1,2); + PointValuePair expected = + new PointValuePair(point(DIM,1.0),0.0); + doTest(new Rosen(), startPoint, insigma, boundaries, + GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13, + 1e-13, 1e-6, 100000, expected); + } + + @Test(expected = NotPositiveException.class) + public void testInputSigmaNegative() { + double[] startPoint = point(DIM,0.5); + double[] insigma = point(DIM,-0.5); + double[][] boundaries = null; + PointValuePair expected = + new PointValuePair(point(DIM,1.0),0.0); + doTest(new Rosen(), startPoint, insigma, boundaries, + GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13, + 1e-13, 1e-6, 100000, expected); + } + + @Test(expected = OutOfRangeException.class) + public void testInputSigmaOutOfRange() { + double[] startPoint = point(DIM,0.5); + double[] insigma = point(DIM, 1.1); + double[][] boundaries = boundaries(DIM,-0.5,0.5); + PointValuePair expected = + new PointValuePair(point(DIM,1.0),0.0); + doTest(new Rosen(), startPoint, insigma, boundaries, + GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13, + 1e-13, 1e-6, 100000, expected); + } + + @Test(expected = DimensionMismatchException.class) + public void testInputSigmaDimensionMismatch() { + double[] startPoint = point(DIM,0.5); + double[] insigma = point(DIM + 1, 0.5); + double[][] boundaries = null; + PointValuePair expected = + new PointValuePair(point(DIM,1.0),0.0); + doTest(new Rosen(), startPoint, insigma, boundaries, + GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13, + 1e-13, 1e-6, 100000, expected); + } + + @Test + @Retry(3) + public void testRosen() { + double[] startPoint = point(DIM,0.1); + double[] insigma = point(DIM,0.1); + double[][] boundaries = null; + PointValuePair expected = + new PointValuePair(point(DIM,1.0),0.0); + doTest(new Rosen(), startPoint, insigma, boundaries, + GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13, + 1e-13, 1e-6, 100000, expected); + doTest(new Rosen(), startPoint, insigma, boundaries, + GoalType.MINIMIZE, LAMBDA, false, 0, 1e-13, + 1e-13, 1e-6, 100000, expected); + } + + @Test + @Retry(3) + public void testMaximize() { + double[] startPoint = point(DIM,1.0); + double[] insigma = point(DIM,0.1); + double[][] boundaries = null; + PointValuePair expected = + new PointValuePair(point(DIM,0.0),1.0); + doTest(new MinusElli(), startPoint, insigma, boundaries, + GoalType.MAXIMIZE, LAMBDA, true, 0, 1.0-1e-13, + 2e-10, 5e-6, 100000, expected); + doTest(new MinusElli(), startPoint, insigma, boundaries, + GoalType.MAXIMIZE, LAMBDA, false, 0, 1.0-1e-13, + 2e-10, 5e-6, 100000, expected); + boundaries = boundaries(DIM,-0.3,0.3); + startPoint = point(DIM,0.1); + doTest(new MinusElli(), startPoint, insigma, boundaries, + GoalType.MAXIMIZE, LAMBDA, true, 0, 1.0-1e-13, + 2e-10, 5e-6, 100000, expected); + } + + @Test + public void testEllipse() { + double[] startPoint = point(DIM,1.0); + double[] insigma = point(DIM,0.1); + double[][] boundaries = null; + PointValuePair expected = + new PointValuePair(point(DIM,0.0),0.0); + doTest(new Elli(), startPoint, insigma, boundaries, + GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13, + 1e-13, 1e-6, 100000, expected); + doTest(new Elli(), startPoint, insigma, boundaries, + GoalType.MINIMIZE, LAMBDA, false, 0, 1e-13, + 1e-13, 1e-6, 100000, expected); + } + + @Test + public void testElliRotated() { + double[] startPoint = point(DIM,1.0); + double[] insigma = point(DIM,0.1); + double[][] boundaries = null; + PointValuePair expected = + new PointValuePair(point(DIM,0.0),0.0); + doTest(new ElliRotated(), startPoint, insigma, boundaries, + GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13, + 1e-13, 1e-6, 100000, expected); + doTest(new ElliRotated(), startPoint, insigma, boundaries, + GoalType.MINIMIZE, LAMBDA, false, 0, 1e-13, + 1e-13, 1e-6, 100000, expected); + } + + @Test + public void testCigar() { + double[] startPoint = point(DIM,1.0); + double[] insigma = point(DIM,0.1); + double[][] boundaries = null; + PointValuePair expected = + new PointValuePair(point(DIM,0.0),0.0); + doTest(new Cigar(), startPoint, insigma, boundaries, + GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13, + 1e-13, 1e-6, 200000, expected); + doTest(new Cigar(), startPoint, insigma, boundaries, + GoalType.MINIMIZE, LAMBDA, false, 0, 1e-13, + 1e-13, 1e-6, 100000, expected); + } + + @Test + public void testCigarWithBoundaries() { + double[] startPoint = point(DIM,1.0); + double[] insigma = point(DIM,0.1); + double[][] boundaries = boundaries(DIM, -1e100, Double.POSITIVE_INFINITY); + PointValuePair expected = + new PointValuePair(point(DIM,0.0),0.0); + doTest(new Cigar(), startPoint, insigma, boundaries, + GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13, + 1e-13, 1e-6, 200000, expected); + doTest(new Cigar(), startPoint, insigma, boundaries, + GoalType.MINIMIZE, LAMBDA, false, 0, 1e-13, + 1e-13, 1e-6, 100000, expected); + } + + @Test + public void testTwoAxes() { + double[] startPoint = point(DIM,1.0); + double[] insigma = point(DIM,0.1); + double[][] boundaries = null; + PointValuePair expected = + new PointValuePair(point(DIM,0.0),0.0); + doTest(new TwoAxes(), startPoint, insigma, boundaries, + GoalType.MINIMIZE, 2*LAMBDA, true, 0, 1e-13, + 1e-13, 1e-6, 200000, expected); + doTest(new TwoAxes(), startPoint, insigma, boundaries, + GoalType.MINIMIZE, 2*LAMBDA, false, 0, 1e-13, + 1e-8, 1e-3, 200000, expected); + } + + @Test + public void testCigTab() { + double[] startPoint = point(DIM,1.0); + double[] insigma = point(DIM,0.3); + double[][] boundaries = null; + PointValuePair expected = + new PointValuePair(point(DIM,0.0),0.0); + doTest(new CigTab(), startPoint, insigma, boundaries, + GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13, + 1e-13, 5e-5, 100000, expected); + doTest(new CigTab(), startPoint, insigma, boundaries, + GoalType.MINIMIZE, LAMBDA, false, 0, 1e-13, + 1e-13, 5e-5, 100000, expected); + } + + @Test + public void testSphere() { + double[] startPoint = point(DIM,1.0); + double[] insigma = point(DIM,0.1); + double[][] boundaries = null; + PointValuePair expected = + new PointValuePair(point(DIM,0.0),0.0); + doTest(new Sphere(), startPoint, insigma, boundaries, + GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13, + 1e-13, 1e-6, 100000, expected); + doTest(new Sphere(), startPoint, insigma, boundaries, + GoalType.MINIMIZE, LAMBDA, false, 0, 1e-13, + 1e-13, 1e-6, 100000, expected); + } + + @Test + public void testTablet() { + double[] startPoint = point(DIM,1.0); + double[] insigma = point(DIM,0.1); + double[][] boundaries = null; + PointValuePair expected = + new PointValuePair(point(DIM,0.0),0.0); + doTest(new Tablet(), startPoint, insigma, boundaries, + GoalType.MINIMIZE, LAMBDA, true, 0, 1e-13, + 1e-13, 1e-6, 100000, expected); + doTest(new Tablet(), startPoint, insigma, boundaries, + GoalType.MINIMIZE, LAMBDA, false, 0, 1e-13, + 1e-13, 1e-6, 100000, expected); + } + + @Test + public void testDiffPow() { + double[] startPoint = point(DIM,1.0); + double[] insigma = point(DIM,0.1); + double[][] boundaries = null; + PointValuePair expected = + new PointValuePair(point(DIM,0.0),0.0); + doTest(new DiffPow(), startPoint, insigma, boundaries, + GoalType.MINIMIZE, 10, true, 0, 1e-13, + 1e-8, 1e-1, 100000, expected); + doTest(new DiffPow(), startPoint, insigma, boundaries, + GoalType.MINIMIZE, 10, false, 0, 1e-13, + 1e-8, 2e-1, 100000, expected); + } + + @Test + public void testSsDiffPow() { + double[] startPoint = point(DIM,1.0); + double[] insigma = point(DIM,0.1); + double[][] boundaries = null; + PointValuePair expected = + new PointValuePair(point(DIM,0.0),0.0); + doTest(new SsDiffPow(), startPoint, insigma, boundaries, + GoalType.MINIMIZE, 10, true, 0, 1e-13, + 1e-4, 1e-1, 200000, expected); + doTest(new SsDiffPow(), startPoint, insigma, boundaries, + GoalType.MINIMIZE, 10, false, 0, 1e-13, + 1e-4, 1e-1, 200000, expected); + } + + @Test + public void testAckley() { + double[] startPoint = point(DIM,1.0); + double[] insigma = point(DIM,1.0); + double[][] boundaries = null; + PointValuePair expected = + new PointValuePair(point(DIM,0.0),0.0); + doTest(new Ackley(), startPoint, insigma, boundaries, + GoalType.MINIMIZE, 2*LAMBDA, true, 0, 1e-13, + 1e-9, 1e-5, 100000, expected); + doTest(new Ackley(), startPoint, insigma, boundaries, + GoalType.MINIMIZE, 2*LAMBDA, false, 0, 1e-13, + 1e-9, 1e-5, 100000, expected); + } + + @Test + public void testRastrigin() { + double[] startPoint = point(DIM,0.1); + double[] insigma = point(DIM,0.1); + double[][] boundaries = null; + PointValuePair expected = + new PointValuePair(point(DIM,0.0),0.0); + doTest(new Rastrigin(), startPoint, insigma, boundaries, + GoalType.MINIMIZE, (int)(200*Math.sqrt(DIM)), true, 0, 1e-13, + 1e-13, 1e-6, 200000, expected); + doTest(new Rastrigin(), startPoint, insigma, boundaries, + GoalType.MINIMIZE, (int)(200*Math.sqrt(DIM)), false, 0, 1e-13, + 1e-13, 1e-6, 200000, expected); + } + + @Test + public void testConstrainedRosen() { + double[] startPoint = point(DIM, 0.1); + double[] insigma = point(DIM, 0.1); + double[][] boundaries = boundaries(DIM, -1, 2); + PointValuePair expected = + new PointValuePair(point(DIM,1.0),0.0); + doTest(new Rosen(), startPoint, insigma, boundaries, + GoalType.MINIMIZE, 2*LAMBDA, true, 0, 1e-13, + 1e-13, 1e-6, 100000, expected); + doTest(new Rosen(), startPoint, insigma, boundaries, + GoalType.MINIMIZE, 2*LAMBDA, false, 0, 1e-13, + 1e-13, 1e-6, 100000, expected); + } + + @Test + public void testDiagonalRosen() { + double[] startPoint = point(DIM,0.1); + double[] insigma = point(DIM,0.1); + double[][] boundaries = null; + PointValuePair expected = + new PointValuePair(point(DIM,1.0),0.0); + doTest(new Rosen(), startPoint, insigma, boundaries, + GoalType.MINIMIZE, LAMBDA, false, 1, 1e-13, + 1e-10, 1e-4, 1000000, expected); + } + + @Test + public void testMath864() { + final CMAESOptimizer optimizer + = new CMAESOptimizer(30000, 0, true, 10, + 0, new MersenneTwister(), false, null); + final MultivariateFunction fitnessFunction = new MultivariateFunction() { + public double value(double[] parameters) { + final double target = 1; + final double error = target - parameters[0]; + return error * error; + } + }; + + final double[] start = { 0 }; + final double[] lower = { -1e6 }; + final double[] upper = { 1.5 }; + final double[] sigma = { 1e-1 }; + final double[] result = optimizer.optimize(new MaxEval(10000), + new ObjectiveFunction(fitnessFunction), + GoalType.MINIMIZE, + new CMAESOptimizer.PopulationSize(5), + new CMAESOptimizer.Sigma(sigma), + new InitialGuess(start), + new SimpleBounds(lower, upper)).getPoint(); + Assert.assertTrue("Out of bounds (" + result[0] + " > " + upper[0] + ")", + result[0] <= upper[0]); + } + + /** + * Cf. MATH-867 + */ + @Test + public void testFitAccuracyDependsOnBoundary() { + final CMAESOptimizer optimizer + = new CMAESOptimizer(30000, 0, true, 10, + 0, new MersenneTwister(), false, null); + final MultivariateFunction fitnessFunction = new MultivariateFunction() { + public double value(double[] parameters) { + final double target = 11.1; + final double error = target - parameters[0]; + return error * error; + } + }; + + final double[] start = { 1 }; + + // No bounds. + PointValuePair result = optimizer.optimize(new MaxEval(100000), + new ObjectiveFunction(fitnessFunction), + GoalType.MINIMIZE, + SimpleBounds.unbounded(1), + new CMAESOptimizer.PopulationSize(5), + new CMAESOptimizer.Sigma(new double[] { 1e-1 }), + new InitialGuess(start)); + final double resNoBound = result.getPoint()[0]; + + // Optimum is near the lower bound. + final double[] lower = { -20 }; + final double[] upper = { 5e16 }; + final double[] sigma = { 10 }; + result = optimizer.optimize(new MaxEval(100000), + new ObjectiveFunction(fitnessFunction), + GoalType.MINIMIZE, + new CMAESOptimizer.PopulationSize(5), + new CMAESOptimizer.Sigma(sigma), + new InitialGuess(start), + new SimpleBounds(lower, upper)); + final double resNearLo = result.getPoint()[0]; + + // Optimum is near the upper bound. + lower[0] = -5e16; + upper[0] = 20; + result = optimizer.optimize(new MaxEval(100000), + new ObjectiveFunction(fitnessFunction), + GoalType.MINIMIZE, + new CMAESOptimizer.PopulationSize(5), + new CMAESOptimizer.Sigma(sigma), + new InitialGuess(start), + new SimpleBounds(lower, upper)); + final double resNearHi = result.getPoint()[0]; + + // System.out.println("resNoBound=" + resNoBound + + // " resNearLo=" + resNearLo + + // " resNearHi=" + resNearHi); + + // The two values currently differ by a substantial amount, indicating that + // the bounds definition can prevent reaching the optimum. + Assert.assertEquals(resNoBound, resNearLo, 1e-3); + Assert.assertEquals(resNoBound, resNearHi, 1e-3); + } + + /** + * @param func Function to optimize. + * @param startPoint Starting point. + * @param inSigma Individual input sigma. + * @param boundaries Upper / lower point limit. + * @param goal Minimization or maximization. + * @param lambda Population size used for offspring. + * @param isActive Covariance update mechanism. + * @param diagonalOnly Simplified covariance update. + * @param stopValue Termination criteria for optimization. + * @param fTol Tolerance relative error on the objective function. + * @param pointTol Tolerance for checking that the optimum is correct. + * @param maxEvaluations Maximum number of evaluations. + * @param expected Expected point / value. + */ + private void doTest(MultivariateFunction func, + double[] startPoint, + double[] inSigma, + double[][] boundaries, + GoalType goal, + int lambda, + boolean isActive, + int diagonalOnly, + double stopValue, + double fTol, + double pointTol, + int maxEvaluations, + PointValuePair expected) { + int dim = startPoint.length; + // test diagonalOnly = 0 - slow but normally fewer feval# + CMAESOptimizer optim = new CMAESOptimizer(30000, stopValue, isActive, diagonalOnly, + 0, new MersenneTwister(), false, null); + PointValuePair result = boundaries == null ? + optim.optimize(new MaxEval(maxEvaluations), + new ObjectiveFunction(func), + goal, + new InitialGuess(startPoint), + SimpleBounds.unbounded(dim), + new CMAESOptimizer.Sigma(inSigma), + new CMAESOptimizer.PopulationSize(lambda)) : + optim.optimize(new MaxEval(maxEvaluations), + new ObjectiveFunction(func), + goal, + new SimpleBounds(boundaries[0], + boundaries[1]), + new InitialGuess(startPoint), + new CMAESOptimizer.Sigma(inSigma), + new CMAESOptimizer.PopulationSize(lambda)); + + // System.out.println("sol=" + Arrays.toString(result.getPoint())); + Assert.assertEquals(expected.getValue(), result.getValue(), fTol); + for (int i = 0; i < dim; i++) { + Assert.assertEquals(expected.getPoint()[i], result.getPoint()[i], pointTol); + } + } + + private static double[] point(int n, double value) { + double[] ds = new double[n]; + Arrays.fill(ds, value); + return ds; + } + + private static double[][] boundaries(int dim, + double lower, double upper) { + double[][] boundaries = new double[2][dim]; + for (int i = 0; i < dim; i++) + boundaries[0][i] = lower; + for (int i = 0; i < dim; i++) + boundaries[1][i] = upper; + return boundaries; + } + + private static class Sphere implements MultivariateFunction { + + public double value(double[] x) { + double f = 0; + for (int i = 0; i < x.length; ++i) + f += x[i] * x[i]; + return f; + } + } + + private static class Cigar implements MultivariateFunction { + private double factor; + + Cigar() { + this(1e3); + } + + Cigar(double axisratio) { + factor = axisratio * axisratio; + } + + public double value(double[] x) { + double f = x[0] * x[0]; + for (int i = 1; i < x.length; ++i) + f += factor * x[i] * x[i]; + return f; + } + } + + private static class Tablet implements MultivariateFunction { + private double factor; + + Tablet() { + this(1e3); + } + + Tablet(double axisratio) { + factor = axisratio * axisratio; + } + + public double value(double[] x) { + double f = factor * x[0] * x[0]; + for (int i = 1; i < x.length; ++i) + f += x[i] * x[i]; + return f; + } + } + + private static class CigTab implements MultivariateFunction { + private double factor; + + CigTab() { + this(1e4); + } + + CigTab(double axisratio) { + factor = axisratio; + } + + public double value(double[] x) { + int end = x.length - 1; + double f = x[0] * x[0] / factor + factor * x[end] * x[end]; + for (int i = 1; i < end; ++i) + f += x[i] * x[i]; + return f; + } + } + + private static class TwoAxes implements MultivariateFunction { + + private double factor; + + TwoAxes() { + this(1e6); + } + + TwoAxes(double axisratio) { + factor = axisratio * axisratio; + } + + public double value(double[] x) { + double f = 0; + for (int i = 0; i < x.length; ++i) + f += (i < x.length / 2 ? factor : 1) * x[i] * x[i]; + return f; + } + } + + private static class ElliRotated implements MultivariateFunction { + private Basis B = new Basis(); + private double factor; + + ElliRotated() { + this(1e3); + } + + ElliRotated(double axisratio) { + factor = axisratio * axisratio; + } + + public double value(double[] x) { + double f = 0; + x = B.Rotate(x); + for (int i = 0; i < x.length; ++i) + f += Math.pow(factor, i / (x.length - 1.)) * x[i] * x[i]; + return f; + } + } + + private static class Elli implements MultivariateFunction { + + private double factor; + + Elli() { + this(1e3); + } + + Elli(double axisratio) { + factor = axisratio * axisratio; + } + + public double value(double[] x) { + double f = 0; + for (int i = 0; i < x.length; ++i) + f += Math.pow(factor, i / (x.length - 1.)) * x[i] * x[i]; + return f; + } + } + + private static class MinusElli implements MultivariateFunction { + + public double value(double[] x) { + return 1.0-(new Elli().value(x)); + } + } + + private static class DiffPow implements MultivariateFunction { + + public double value(double[] x) { + double f = 0; + for (int i = 0; i < x.length; ++i) + f += Math.pow(Math.abs(x[i]), 2. + 10 * (double) i + / (x.length - 1.)); + return f; + } + } + + private static class SsDiffPow implements MultivariateFunction { + + public double value(double[] x) { + double f = Math.pow(new DiffPow().value(x), 0.25); + return f; + } + } + + private static class Rosen implements MultivariateFunction { + + public double value(double[] x) { + double f = 0; + for (int i = 0; i < x.length - 1; ++i) + f += 1e2 * (x[i] * x[i] - x[i + 1]) * (x[i] * x[i] - x[i + 1]) + + (x[i] - 1.) * (x[i] - 1.); + return f; + } + } + + private static class Ackley implements MultivariateFunction { + private double axisratio; + + Ackley(double axra) { + axisratio = axra; + } + + public Ackley() { + this(1); + } + + public double value(double[] x) { + double f = 0; + double res2 = 0; + double fac = 0; + for (int i = 0; i < x.length; ++i) { + fac = Math.pow(axisratio, (i - 1.) / (x.length - 1.)); + f += fac * fac * x[i] * x[i]; + res2 += Math.cos(2. * Math.PI * fac * x[i]); + } + f = (20. - 20. * Math.exp(-0.2 * Math.sqrt(f / x.length)) + + Math.exp(1.) - Math.exp(res2 / x.length)); + return f; + } + } + + private static class Rastrigin implements MultivariateFunction { + + private double axisratio; + private double amplitude; + + Rastrigin() { + this(1, 10); + } + + Rastrigin(double axisratio, double amplitude) { + this.axisratio = axisratio; + this.amplitude = amplitude; + } + + public double value(double[] x) { + double f = 0; + double fac; + for (int i = 0; i < x.length; ++i) { + fac = Math.pow(axisratio, (i - 1.) / (x.length - 1.)); + if (i == 0 && x[i] < 0) + fac *= 1.; + f += fac * fac * x[i] * x[i] + amplitude + * (1. - Math.cos(2. * Math.PI * fac * x[i])); + } + return f; + } + } + + private static class Basis { + double[][] basis; + Random rand = new Random(2); // use not always the same basis + + double[] Rotate(double[] x) { + GenBasis(x.length); + double[] y = new double[x.length]; + for (int i = 0; i < x.length; ++i) { + y[i] = 0; + for (int j = 0; j < x.length; ++j) + y[i] += basis[i][j] * x[j]; + } + return y; + } + + void GenBasis(int DIM) { + if (basis != null ? basis.length == DIM : false) + return; + + double sp; + int i, j, k; + + /* generate orthogonal basis */ + basis = new double[DIM][DIM]; + for (i = 0; i < DIM; ++i) { + /* sample components gaussian */ + for (j = 0; j < DIM; ++j) + basis[i][j] = rand.nextGaussian(); + /* substract projection of previous vectors */ + for (j = i - 1; j >= 0; --j) { + for (sp = 0., k = 0; k < DIM; ++k) + sp += basis[i][k] * basis[j][k]; /* scalar product */ + for (k = 0; k < DIM; ++k) + basis[i][k] -= sp * basis[j][k]; /* substract */ + } + /* normalize */ + for (sp = 0., k = 0; k < DIM; ++k) + sp += basis[i][k] * basis[i][k]; /* squared norm */ + for (k = 0; k < DIM; ++k) + basis[i][k] /= Math.sqrt(sp); + } + } + } +} diff --git a/src/test/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/PowellOptimizerTest.java b/src/test/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/PowellOptimizerTest.java new file mode 100644 index 000000000..296ec0c95 --- /dev/null +++ b/src/test/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/PowellOptimizerTest.java @@ -0,0 +1,251 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.nonlinear.scalar.noderiv; + +import org.apache.commons.math3.analysis.MultivariateFunction; +import org.apache.commons.math3.analysis.SumSincFunction; +import org.apache.commons.math3.optim.GoalType; +import org.apache.commons.math3.optim.PointValuePair; +import org.apache.commons.math3.optim.InitialGuess; +import org.apache.commons.math3.optim.MaxEval; +import org.apache.commons.math3.optim.ObjectiveFunction; +import org.apache.commons.math3.util.FastMath; +import org.junit.Assert; +import org.junit.Test; + +/** + * Test for {@link PowellOptimizer}. + */ +public class PowellOptimizerTest { + + @Test + public void testSumSinc() { + final MultivariateFunction func = new SumSincFunction(-1); + + int dim = 2; + final double[] minPoint = new double[dim]; + for (int i = 0; i < dim; i++) { + minPoint[i] = 0; + } + + double[] init = new double[dim]; + + // Initial is minimum. + for (int i = 0; i < dim; i++) { + init[i] = minPoint[i]; + } + doTest(func, minPoint, init, GoalType.MINIMIZE, 1e-9, 1e-9); + + // Initial is far from minimum. + for (int i = 0; i < dim; i++) { + init[i] = minPoint[i] + 3; + } + doTest(func, minPoint, init, GoalType.MINIMIZE, 1e-9, 1e-5); + // More stringent line search tolerance enhances the precision + // of the result. + doTest(func, minPoint, init, GoalType.MINIMIZE, 1e-9, 1e-9, 1e-7); + } + + @Test + public void testQuadratic() { + final MultivariateFunction func = new MultivariateFunction() { + public double value(double[] x) { + final double a = x[0] - 1; + final double b = x[1] - 1; + return a * a + b * b + 1; + } + }; + + int dim = 2; + final double[] minPoint = new double[dim]; + for (int i = 0; i < dim; i++) { + minPoint[i] = 1; + } + + double[] init = new double[dim]; + + // Initial is minimum. + for (int i = 0; i < dim; i++) { + init[i] = minPoint[i]; + } + doTest(func, minPoint, init, GoalType.MINIMIZE, 1e-9, 1e-8); + + // Initial is far from minimum. + for (int i = 0; i < dim; i++) { + init[i] = minPoint[i] - 20; + } + doTest(func, minPoint, init, GoalType.MINIMIZE, 1e-9, 1e-8); + } + + @Test + public void testMaximizeQuadratic() { + final MultivariateFunction func = new MultivariateFunction() { + public double value(double[] x) { + final double a = x[0] - 1; + final double b = x[1] - 1; + return -a * a - b * b + 1; + } + }; + + int dim = 2; + final double[] maxPoint = new double[dim]; + for (int i = 0; i < dim; i++) { + maxPoint[i] = 1; + } + + double[] init = new double[dim]; + + // Initial is minimum. + for (int i = 0; i < dim; i++) { + init[i] = maxPoint[i]; + } + doTest(func, maxPoint, init, GoalType.MAXIMIZE, 1e-9, 1e-8); + + // Initial is far from minimum. + for (int i = 0; i < dim; i++) { + init[i] = maxPoint[i] - 20; + } + doTest(func, maxPoint, init, GoalType.MAXIMIZE, 1e-9, 1e-8); + } + + /** + * Ensure that we do not increase the number of function evaluations when + * the function values are scaled up. + * Note that the tolerances parameters passed to the constructor must + * still hold sensible values because they are used to set the line search + * tolerances. + */ + @Test + public void testRelativeToleranceOnScaledValues() { + final MultivariateFunction func = new MultivariateFunction() { + public double value(double[] x) { + final double a = x[0] - 1; + final double b = x[1] - 1; + return a * a * FastMath.sqrt(FastMath.abs(a)) + b * b + 1; + } + }; + + int dim = 2; + final double[] minPoint = new double[dim]; + for (int i = 0; i < dim; i++) { + minPoint[i] = 1; + } + + double[] init = new double[dim]; + // Initial is far from minimum. + for (int i = 0; i < dim; i++) { + init[i] = minPoint[i] - 20; + } + + final double relTol = 1e-10; + + final int maxEval = 1000; + // Very small absolute tolerance to rely solely on the relative + // tolerance as a stopping criterion + final PowellOptimizer optim = new PowellOptimizer(relTol, 1e-100); + + final PointValuePair funcResult = optim.optimize(new MaxEval(maxEval), + new ObjectiveFunction(func), + GoalType.MINIMIZE, + new InitialGuess(init)); + final double funcValue = func.value(funcResult.getPoint()); + final int funcEvaluations = optim.getEvaluations(); + + final double scale = 1e10; + final MultivariateFunction funcScaled = new MultivariateFunction() { + public double value(double[] x) { + return scale * func.value(x); + } + }; + + final PointValuePair funcScaledResult = optim.optimize(new MaxEval(maxEval), + new ObjectiveFunction(funcScaled), + GoalType.MINIMIZE, + new InitialGuess(init)); + final double funcScaledValue = funcScaled.value(funcScaledResult.getPoint()); + final int funcScaledEvaluations = optim.getEvaluations(); + + // Check that both minima provide the same objective funciton values, + // within the relative function tolerance. + Assert.assertEquals(1, funcScaledValue / (scale * funcValue), relTol); + + // Check that the numbers of evaluations are the same. + Assert.assertEquals(funcEvaluations, funcScaledEvaluations); + } + + /** + * @param func Function to optimize. + * @param optimum Expected optimum. + * @param init Starting point. + * @param goal Minimization or maximization. + * @param fTol Tolerance (relative error on the objective function) for + * "Powell" algorithm. + * @param pointTol Tolerance for checking that the optimum is correct. + */ + private void doTest(MultivariateFunction func, + double[] optimum, + double[] init, + GoalType goal, + double fTol, + double pointTol) { + final PowellOptimizer optim = new PowellOptimizer(fTol, Math.ulp(1d)); + + final PointValuePair result = optim.optimize(new MaxEval(1000), + new ObjectiveFunction(func), + goal, + new InitialGuess(init)); + final double[] point = result.getPoint(); + + for (int i = 0, dim = optimum.length; i < dim; i++) { + Assert.assertEquals("found[" + i + "]=" + point[i] + " value=" + result.getValue(), + optimum[i], point[i], pointTol); + } + } + + /** + * @param func Function to optimize. + * @param optimum Expected optimum. + * @param init Starting point. + * @param goal Minimization or maximization. + * @param fTol Tolerance (relative error on the objective function) for + * "Powell" algorithm. + * @param fLineTol Tolerance (relative error on the objective function) + * for the internal line search algorithm. + * @param pointTol Tolerance for checking that the optimum is correct. + */ + private void doTest(MultivariateFunction func, + double[] optimum, + double[] init, + GoalType goal, + double fTol, + double fLineTol, + double pointTol) { + final PowellOptimizer optim = new PowellOptimizer(fTol, Math.ulp(1d), + fLineTol, Math.ulp(1d)); + + final PointValuePair result = optim.optimize(new MaxEval(1000), + new ObjectiveFunction(func), + goal, + new InitialGuess(init)); + final double[] point = result.getPoint(); + + for (int i = 0, dim = optimum.length; i < dim; i++) { + Assert.assertEquals("found[" + i + "]=" + point[i] + " value=" + result.getValue(), + optimum[i], point[i], pointTol); + } + } +} diff --git a/src/test/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/SimplexOptimizerMultiDirectionalTest.java b/src/test/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/SimplexOptimizerMultiDirectionalTest.java new file mode 100644 index 000000000..8113a177d --- /dev/null +++ b/src/test/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/SimplexOptimizerMultiDirectionalTest.java @@ -0,0 +1,228 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.commons.math3.optim.nonlinear.scalar.noderiv; + +import org.apache.commons.math3.analysis.MultivariateFunction; +import org.apache.commons.math3.optim.MaxEval; +import org.apache.commons.math3.optim.GoalType; +import org.apache.commons.math3.optim.InitialGuess; +import org.apache.commons.math3.optim.PointValuePair; +import org.apache.commons.math3.optim.SimpleValueChecker; +import org.apache.commons.math3.optim.ObjectiveFunction; +import org.apache.commons.math3.util.FastMath; +import org.junit.Assert; +import org.junit.Test; + +public class SimplexOptimizerMultiDirectionalTest { + @Test + public void testMinimize1() { + SimplexOptimizer optimizer = new SimplexOptimizer(1e-11, 1e-30); + final FourExtrema fourExtrema = new FourExtrema(); + + final PointValuePair optimum + = optimizer.optimize(new MaxEval(200), + new ObjectiveFunction(fourExtrema), + GoalType.MINIMIZE, + new InitialGuess(new double[] { -3, 0 }), + new MultiDirectionalSimplex(new double[] { 0.2, 0.2 })); + Assert.assertEquals(fourExtrema.xM, optimum.getPoint()[0], 4e-6); + Assert.assertEquals(fourExtrema.yP, optimum.getPoint()[1], 3e-6); + Assert.assertEquals(fourExtrema.valueXmYp, optimum.getValue(), 8e-13); + Assert.assertTrue(optimizer.getEvaluations() > 120); + Assert.assertTrue(optimizer.getEvaluations() < 150); + } + + @Test + public void testMinimize2() { + SimplexOptimizer optimizer = new SimplexOptimizer(1e-11, 1e-30); + final FourExtrema fourExtrema = new FourExtrema(); + + final PointValuePair optimum + = optimizer.optimize(new MaxEval(200), + new ObjectiveFunction(fourExtrema), + GoalType.MINIMIZE, + new InitialGuess(new double[] { 1, 0 }), + new MultiDirectionalSimplex(new double[] { 0.2, 0.2 })); + Assert.assertEquals(fourExtrema.xP, optimum.getPoint()[0], 2e-8); + Assert.assertEquals(fourExtrema.yM, optimum.getPoint()[1], 3e-6); + Assert.assertEquals(fourExtrema.valueXpYm, optimum.getValue(), 2e-12); + Assert.assertTrue(optimizer.getEvaluations() > 120); + Assert.assertTrue(optimizer.getEvaluations() < 150); + } + + @Test + public void testMaximize1() { + SimplexOptimizer optimizer = new SimplexOptimizer(1e-11, 1e-30); + final FourExtrema fourExtrema = new FourExtrema(); + + final PointValuePair optimum + = optimizer.optimize(new MaxEval(200), + new ObjectiveFunction(fourExtrema), + GoalType.MAXIMIZE, + new InitialGuess(new double[] { -3.0, 0.0 }), + new MultiDirectionalSimplex(new double[] { 0.2, 0.2 })); + Assert.assertEquals(fourExtrema.xM, optimum.getPoint()[0], 7e-7); + Assert.assertEquals(fourExtrema.yM, optimum.getPoint()[1], 3e-7); + Assert.assertEquals(fourExtrema.valueXmYm, optimum.getValue(), 2e-14); + Assert.assertTrue(optimizer.getEvaluations() > 120); + Assert.assertTrue(optimizer.getEvaluations() < 150); + } + + @Test + public void testMaximize2() { + SimplexOptimizer optimizer = new SimplexOptimizer(new SimpleValueChecker(1e-15, 1e-30)); + final FourExtrema fourExtrema = new FourExtrema(); + + final PointValuePair optimum + = optimizer.optimize(new MaxEval(200), + new ObjectiveFunction(fourExtrema), + GoalType.MAXIMIZE, + new InitialGuess(new double[] { 1, 0 }), + new MultiDirectionalSimplex(new double[] { 0.2, 0.2 })); + Assert.assertEquals(fourExtrema.xP, optimum.getPoint()[0], 2e-8); + Assert.assertEquals(fourExtrema.yP, optimum.getPoint()[1], 3e-6); + Assert.assertEquals(fourExtrema.valueXpYp, optimum.getValue(), 2e-12); + Assert.assertTrue(optimizer.getEvaluations() > 180); + Assert.assertTrue(optimizer.getEvaluations() < 220); + } + + @Test + public void testRosenbrock() { + MultivariateFunction rosenbrock + = new MultivariateFunction() { + public double value(double[] x) { + ++count; + double a = x[1] - x[0] * x[0]; + double b = 1.0 - x[0]; + return 100 * a * a + b * b; + } + }; + + count = 0; + SimplexOptimizer optimizer = new SimplexOptimizer(-1, 1e-3); + PointValuePair optimum + = optimizer.optimize(new MaxEval(100), + new ObjectiveFunction(rosenbrock), + GoalType.MINIMIZE, + new InitialGuess(new double[] { -1.2, 1 }), + new MultiDirectionalSimplex(new double[][] { + { -1.2, 1.0 }, + { 0.9, 1.2 }, + { 3.5, -2.3 } })); + + Assert.assertEquals(count, optimizer.getEvaluations()); + Assert.assertTrue(optimizer.getEvaluations() > 50); + Assert.assertTrue(optimizer.getEvaluations() < 100); + Assert.assertTrue(optimum.getValue() > 1e-2); + } + + @Test + public void testPowell() { + MultivariateFunction powell + = new MultivariateFunction() { + public double value(double[] x) { + ++count; + double a = x[0] + 10 * x[1]; + double b = x[2] - x[3]; + double c = x[1] - 2 * x[2]; + double d = x[0] - x[3]; + return a * a + 5 * b * b + c * c * c * c + 10 * d * d * d * d; + } + }; + + count = 0; + SimplexOptimizer optimizer = new SimplexOptimizer(-1, 1e-3); + PointValuePair optimum + = optimizer.optimize(new MaxEval(1000), + new ObjectiveFunction(powell), + GoalType.MINIMIZE, + new InitialGuess(new double[] { 3, -1, 0, 1 }), + new MultiDirectionalSimplex(4)); + Assert.assertEquals(count, optimizer.getEvaluations()); + Assert.assertTrue(optimizer.getEvaluations() > 800); + Assert.assertTrue(optimizer.getEvaluations() < 900); + Assert.assertTrue(optimum.getValue() > 1e-2); + } + + @Test + public void testMath283() { + // fails because MultiDirectional.iterateSimplex is looping forever + // the while(true) should be replaced with a convergence check + SimplexOptimizer optimizer = new SimplexOptimizer(1e-14, 1e-14); + final Gaussian2D function = new Gaussian2D(0, 0, 1); + PointValuePair estimate = optimizer.optimize(new MaxEval(1000), + new ObjectiveFunction(function), + GoalType.MAXIMIZE, + new InitialGuess(function.getMaximumPosition()), + new MultiDirectionalSimplex(2)); + final double EPSILON = 1e-5; + final double expectedMaximum = function.getMaximum(); + final double actualMaximum = estimate.getValue(); + Assert.assertEquals(expectedMaximum, actualMaximum, EPSILON); + + final double[] expectedPosition = function.getMaximumPosition(); + final double[] actualPosition = estimate.getPoint(); + Assert.assertEquals(expectedPosition[0], actualPosition[0], EPSILON ); + Assert.assertEquals(expectedPosition[1], actualPosition[1], EPSILON ); + } + + private static class FourExtrema implements MultivariateFunction { + // The following function has 4 local extrema. + final double xM = -3.841947088256863675365; + final double yM = -1.391745200270734924416; + final double xP = 0.2286682237349059125691; + final double yP = -yM; + final double valueXmYm = 0.2373295333134216789769; // Local maximum. + final double valueXmYp = -valueXmYm; // Local minimum. + final double valueXpYm = -0.7290400707055187115322; // Global minimum. + final double valueXpYp = -valueXpYm; // Global maximum. + + public double value(double[] variables) { + final double x = variables[0]; + final double y = variables[1]; + return (x == 0 || y == 0) ? 0 : + FastMath.atan(x) * FastMath.atan(x + 2) * FastMath.atan(y) * FastMath.atan(y) / (x * y); + } + } + + private static class Gaussian2D implements MultivariateFunction { + private final double[] maximumPosition; + private final double std; + + public Gaussian2D(double xOpt, double yOpt, double std) { + maximumPosition = new double[] { xOpt, yOpt }; + this.std = std; + } + + public double getMaximum() { + return value(maximumPosition); + } + + public double[] getMaximumPosition() { + return maximumPosition.clone(); + } + + public double value(double[] point) { + final double x = point[0], y = point[1]; + final double twoS2 = 2.0 * std * std; + return 1.0 / (twoS2 * FastMath.PI) * FastMath.exp(-(x * x + y * y) / twoS2); + } + } + + private int count; +} diff --git a/src/test/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/SimplexOptimizerNelderMeadTest.java b/src/test/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/SimplexOptimizerNelderMeadTest.java new file mode 100644 index 000000000..ab728beed --- /dev/null +++ b/src/test/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/SimplexOptimizerNelderMeadTest.java @@ -0,0 +1,295 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.commons.math3.optim.nonlinear.scalar.noderiv; + + +import org.apache.commons.math3.exception.TooManyEvaluationsException; +import org.apache.commons.math3.analysis.MultivariateFunction; +import org.apache.commons.math3.analysis.MultivariateVectorFunction; +import org.apache.commons.math3.linear.Array2DRowRealMatrix; +import org.apache.commons.math3.linear.RealMatrix; +import org.apache.commons.math3.optim.GoalType; +import org.apache.commons.math3.optim.InitialGuess; +import org.apache.commons.math3.optim.MaxEval; +import org.apache.commons.math3.optim.ObjectiveFunction; +import org.apache.commons.math3.optim.PointValuePair; +import org.apache.commons.math3.optim.nonlinear.scalar.LeastSquaresConverter; +import org.apache.commons.math3.util.FastMath; +import org.junit.Assert; +import org.junit.Test; + +public class SimplexOptimizerNelderMeadTest { + @Test + public void testMinimize1() { + SimplexOptimizer optimizer = new SimplexOptimizer(1e-10, 1e-30); + final FourExtrema fourExtrema = new FourExtrema(); + + final PointValuePair optimum + = optimizer.optimize(new MaxEval(100), + new ObjectiveFunction(fourExtrema), + GoalType.MINIMIZE, + new InitialGuess(new double[] { -3, 0 }), + new NelderMeadSimplex(new double[] { 0.2, 0.2 })); + Assert.assertEquals(fourExtrema.xM, optimum.getPoint()[0], 2e-7); + Assert.assertEquals(fourExtrema.yP, optimum.getPoint()[1], 2e-5); + Assert.assertEquals(fourExtrema.valueXmYp, optimum.getValue(), 6e-12); + Assert.assertTrue(optimizer.getEvaluations() > 60); + Assert.assertTrue(optimizer.getEvaluations() < 90); + } + + @Test + public void testMinimize2() { + SimplexOptimizer optimizer = new SimplexOptimizer(1e-10, 1e-30); + final FourExtrema fourExtrema = new FourExtrema(); + + final PointValuePair optimum + = optimizer.optimize(new MaxEval(100), + new ObjectiveFunction(fourExtrema), + GoalType.MINIMIZE, + new InitialGuess(new double[] { 1, 0 }), + new NelderMeadSimplex(new double[] { 0.2, 0.2 })); + Assert.assertEquals(fourExtrema.xP, optimum.getPoint()[0], 5e-6); + Assert.assertEquals(fourExtrema.yM, optimum.getPoint()[1], 6e-6); + Assert.assertEquals(fourExtrema.valueXpYm, optimum.getValue(), 1e-11); + Assert.assertTrue(optimizer.getEvaluations() > 60); + Assert.assertTrue(optimizer.getEvaluations() < 90); + } + + @Test + public void testMaximize1() { + SimplexOptimizer optimizer = new SimplexOptimizer(1e-10, 1e-30); + final FourExtrema fourExtrema = new FourExtrema(); + + final PointValuePair optimum + = optimizer.optimize(new MaxEval(100), + new ObjectiveFunction(fourExtrema), + GoalType.MAXIMIZE, + new InitialGuess(new double[] { -3, 0 }), + new NelderMeadSimplex(new double[] { 0.2, 0.2 })); + Assert.assertEquals(fourExtrema.xM, optimum.getPoint()[0], 1e-5); + Assert.assertEquals(fourExtrema.yM, optimum.getPoint()[1], 3e-6); + Assert.assertEquals(fourExtrema.valueXmYm, optimum.getValue(), 3e-12); + Assert.assertTrue(optimizer.getEvaluations() > 60); + Assert.assertTrue(optimizer.getEvaluations() < 90); + } + + @Test + public void testMaximize2() { + SimplexOptimizer optimizer = new SimplexOptimizer(1e-10, 1e-30); + final FourExtrema fourExtrema = new FourExtrema(); + + final PointValuePair optimum + = optimizer.optimize(new MaxEval(100), + new ObjectiveFunction(fourExtrema), + GoalType.MAXIMIZE, + new InitialGuess(new double[] { 1, 0 }), + new NelderMeadSimplex(new double[] { 0.2, 0.2 })); + Assert.assertEquals(fourExtrema.xP, optimum.getPoint()[0], 4e-6); + Assert.assertEquals(fourExtrema.yP, optimum.getPoint()[1], 5e-6); + Assert.assertEquals(fourExtrema.valueXpYp, optimum.getValue(), 7e-12); + Assert.assertTrue(optimizer.getEvaluations() > 60); + Assert.assertTrue(optimizer.getEvaluations() < 90); + } + + @Test + public void testRosenbrock() { + + Rosenbrock rosenbrock = new Rosenbrock(); + SimplexOptimizer optimizer = new SimplexOptimizer(-1, 1e-3); + PointValuePair optimum + = optimizer.optimize(new MaxEval(100), + new ObjectiveFunction(rosenbrock), + GoalType.MINIMIZE, + new InitialGuess(new double[] { -1.2, 1 }), + new NelderMeadSimplex(new double[][] { + { -1.2, 1 }, + { 0.9, 1.2 }, + { 3.5, -2.3 } })); + + Assert.assertEquals(rosenbrock.getCount(), optimizer.getEvaluations()); + Assert.assertTrue(optimizer.getEvaluations() > 40); + Assert.assertTrue(optimizer.getEvaluations() < 50); + Assert.assertTrue(optimum.getValue() < 8e-4); + } + + @Test + public void testPowell() { + Powell powell = new Powell(); + SimplexOptimizer optimizer = new SimplexOptimizer(-1, 1e-3); + PointValuePair optimum = + optimizer.optimize(new MaxEval(200), + new ObjectiveFunction(powell), + GoalType.MINIMIZE, + new InitialGuess(new double[] { 3, -1, 0, 1 }), + new NelderMeadSimplex(4)); + Assert.assertEquals(powell.getCount(), optimizer.getEvaluations()); + Assert.assertTrue(optimizer.getEvaluations() > 110); + Assert.assertTrue(optimizer.getEvaluations() < 130); + Assert.assertTrue(optimum.getValue() < 2e-3); + } + + @Test + public void testLeastSquares1() { + final RealMatrix factors + = new Array2DRowRealMatrix(new double[][] { + { 1, 0 }, + { 0, 1 } + }, false); + LeastSquaresConverter ls = new LeastSquaresConverter(new MultivariateVectorFunction() { + public double[] value(double[] variables) { + return factors.operate(variables); + } + }, new double[] { 2.0, -3.0 }); + SimplexOptimizer optimizer = new SimplexOptimizer(-1, 1e-6); + PointValuePair optimum = + optimizer.optimize(new MaxEval(200), + new ObjectiveFunction(ls), + GoalType.MINIMIZE, + new InitialGuess(new double[] { 10, 10 }), + new NelderMeadSimplex(2)); + Assert.assertEquals( 2, optimum.getPointRef()[0], 3e-5); + Assert.assertEquals(-3, optimum.getPointRef()[1], 4e-4); + Assert.assertTrue(optimizer.getEvaluations() > 60); + Assert.assertTrue(optimizer.getEvaluations() < 80); + Assert.assertTrue(optimum.getValue() < 1.0e-6); + } + + @Test + public void testLeastSquares2() { + final RealMatrix factors + = new Array2DRowRealMatrix(new double[][] { + { 1, 0 }, + { 0, 1 } + }, false); + LeastSquaresConverter ls = new LeastSquaresConverter(new MultivariateVectorFunction() { + public double[] value(double[] variables) { + return factors.operate(variables); + } + }, new double[] { 2, -3 }, new double[] { 10, 0.1 }); + SimplexOptimizer optimizer = new SimplexOptimizer(-1, 1e-6); + PointValuePair optimum = + optimizer.optimize(new MaxEval(200), + new ObjectiveFunction(ls), + GoalType.MINIMIZE, + new InitialGuess(new double[] { 10, 10 }), + new NelderMeadSimplex(2)); + Assert.assertEquals( 2, optimum.getPointRef()[0], 5e-5); + Assert.assertEquals(-3, optimum.getPointRef()[1], 8e-4); + Assert.assertTrue(optimizer.getEvaluations() > 60); + Assert.assertTrue(optimizer.getEvaluations() < 80); + Assert.assertTrue(optimum.getValue() < 1e-6); + } + + @Test + public void testLeastSquares3() { + final RealMatrix factors = + new Array2DRowRealMatrix(new double[][] { + { 1, 0 }, + { 0, 1 } + }, false); + LeastSquaresConverter ls = new LeastSquaresConverter(new MultivariateVectorFunction() { + public double[] value(double[] variables) { + return factors.operate(variables); + } + }, new double[] { 2, -3 }, new Array2DRowRealMatrix(new double [][] { + { 1, 1.2 }, { 1.2, 2 } + })); + SimplexOptimizer optimizer = new SimplexOptimizer(-1, 1e-6); + PointValuePair optimum + = optimizer.optimize(new MaxEval(200), + new ObjectiveFunction(ls), + GoalType.MINIMIZE, + new InitialGuess(new double[] { 10, 10 }), + new NelderMeadSimplex(2)); + Assert.assertEquals( 2, optimum.getPointRef()[0], 2e-3); + Assert.assertEquals(-3, optimum.getPointRef()[1], 8e-4); + Assert.assertTrue(optimizer.getEvaluations() > 60); + Assert.assertTrue(optimizer.getEvaluations() < 80); + Assert.assertTrue(optimum.getValue() < 1e-6); + } + + @Test(expected=TooManyEvaluationsException.class) + public void testMaxIterations() { + Powell powell = new Powell(); + SimplexOptimizer optimizer = new SimplexOptimizer(-1, 1e-3); + optimizer.optimize(new MaxEval(20), + new ObjectiveFunction(powell), + GoalType.MINIMIZE, + new InitialGuess(new double[] { 3, -1, 0, 1 }), + new NelderMeadSimplex(4)); + } + + private static class FourExtrema implements MultivariateFunction { + // The following function has 4 local extrema. + final double xM = -3.841947088256863675365; + final double yM = -1.391745200270734924416; + final double xP = 0.2286682237349059125691; + final double yP = -yM; + final double valueXmYm = 0.2373295333134216789769; // Local maximum. + final double valueXmYp = -valueXmYm; // Local minimum. + final double valueXpYm = -0.7290400707055187115322; // Global minimum. + final double valueXpYp = -valueXpYm; // Global maximum. + + public double value(double[] variables) { + final double x = variables[0]; + final double y = variables[1]; + return (x == 0 || y == 0) ? 0 : + FastMath.atan(x) * FastMath.atan(x + 2) * FastMath.atan(y) * FastMath.atan(y) / (x * y); + } + } + + private static class Rosenbrock implements MultivariateFunction { + private int count; + + public Rosenbrock() { + count = 0; + } + + public double value(double[] x) { + ++count; + double a = x[1] - x[0] * x[0]; + double b = 1.0 - x[0]; + return 100 * a * a + b * b; + } + + public int getCount() { + return count; + } + } + + private static class Powell implements MultivariateFunction { + private int count; + + public Powell() { + count = 0; + } + + public double value(double[] x) { + ++count; + double a = x[0] + 10 * x[1]; + double b = x[2] - x[3]; + double c = x[1] - 2 * x[2]; + double d = x[0] - x[3]; + return a * a + 5 * b * b + c * c * c * c + 10 * d * d * d * d; + } + + public int getCount() { + return count; + } + } +} diff --git a/src/test/java/org/apache/commons/math3/optim/nonlinear/vector/MultiStartMultivariateVectorOptimizerTest.java b/src/test/java/org/apache/commons/math3/optim/nonlinear/vector/MultiStartMultivariateVectorOptimizerTest.java new file mode 100644 index 000000000..e92091f27 --- /dev/null +++ b/src/test/java/org/apache/commons/math3/optim/nonlinear/vector/MultiStartMultivariateVectorOptimizerTest.java @@ -0,0 +1,205 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.nonlinear.vector; + +import org.apache.commons.math3.analysis.MultivariateVectorFunction; +import org.apache.commons.math3.analysis.MultivariateMatrixFunction; +import org.apache.commons.math3.exception.MathIllegalStateException; +import org.apache.commons.math3.linear.BlockRealMatrix; +import org.apache.commons.math3.linear.RealMatrix; +import org.apache.commons.math3.optim.MaxEval; +import org.apache.commons.math3.optim.InitialGuess; +import org.apache.commons.math3.optim.PointVectorValuePair; +import org.apache.commons.math3.optim.SimpleVectorValueChecker; +import org.apache.commons.math3.optim.nonlinear.vector.jacobian.GaussNewtonOptimizer; +import org.apache.commons.math3.random.GaussianRandomGenerator; +import org.apache.commons.math3.random.JDKRandomGenerator; +import org.apache.commons.math3.random.RandomVectorGenerator; +import org.apache.commons.math3.random.UncorrelatedRandomVectorGenerator; +import org.junit.Assert; +import org.junit.Test; + +/** + *

      Some of the unit tests are re-implementations of the MINPACK file17 and file22 test files. + * The redistribution policy for MINPACK is available here, for + * convenience, it is reproduced below.

      + * + * + * + * + *
      + * Minpack Copyright Notice (1999) University of Chicago. + * All rights reserved + *
      + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + *
        + *
      1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer.
      2. + *
      3. Redistributions in binary form must reproduce the above + * copyright notice, this list of conditions and the following + * disclaimer in the documentation and/or other materials provided + * with the distribution.
      4. + *
      5. The end-user documentation included with the redistribution, if any, + * must include the following acknowledgment: + * This product includes software developed by the University of + * Chicago, as Operator of Argonne National Laboratory. + * Alternately, this acknowledgment may appear in the software itself, + * if and wherever such third-party acknowledgments normally appear.
      6. + *
      7. WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS" + * WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER, THE + * UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND + * THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES + * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE + * OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY + * OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR + * USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF + * THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4) + * DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION + * UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL + * BE CORRECTED.
      8. + *
      9. LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT + * HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF + * ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT, + * INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF + * ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF + * PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER + * SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT + * (INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE, + * EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE + * POSSIBILITY OF SUCH LOSS OR DAMAGES.
      10. + *
        + * + * @author Argonne National Laboratory. MINPACK project. March 1980 (original fortran minpack tests) + * @author Burton S. Garbow (original fortran minpack tests) + * @author Kenneth E. Hillstrom (original fortran minpack tests) + * @author Jorge J. More (original fortran minpack tests) + * @author Luc Maisonobe (non-minpack tests and minpack tests Java translation) + */ +public class MultiStartMultivariateVectorOptimizerTest { + @Test(expected=NullPointerException.class) + public void testGetOptimaBeforeOptimize() { + LinearProblem problem + = new LinearProblem(new double[][] { { 2 } }, new double[] { 3 }); + JacobianMultivariateVectorOptimizer underlyingOptimizer + = new GaussNewtonOptimizer(true, new SimpleVectorValueChecker(1e-6, 1e-6)); + JDKRandomGenerator g = new JDKRandomGenerator(); + g.setSeed(16069223052l); + RandomVectorGenerator generator + = new UncorrelatedRandomVectorGenerator(1, new GaussianRandomGenerator(g)); + MultiStartMultivariateVectorOptimizer optimizer + = new MultiStartMultivariateVectorOptimizer(underlyingOptimizer, 10, generator); + + optimizer.getOptima(); + } + + @Test + public void testTrivial() { + LinearProblem problem + = new LinearProblem(new double[][] { { 2 } }, new double[] { 3 }); + JacobianMultivariateVectorOptimizer underlyingOptimizer + = new GaussNewtonOptimizer(true, new SimpleVectorValueChecker(1e-6, 1e-6)); + JDKRandomGenerator g = new JDKRandomGenerator(); + g.setSeed(16069223052l); + RandomVectorGenerator generator + = new UncorrelatedRandomVectorGenerator(1, new GaussianRandomGenerator(g)); + MultiStartMultivariateVectorOptimizer optimizer + = new MultiStartMultivariateVectorOptimizer(underlyingOptimizer, 10, generator); + + PointVectorValuePair optimum + = optimizer.optimize(new MaxEval(100), + problem.getModelFunction(), + problem.getModelFunctionJacobian(), + problem.getTarget(), + new Weight(new double[] { 1 }), + new InitialGuess(new double[] { 0 })); + Assert.assertEquals(1.5, optimum.getPoint()[0], 1e-10); + Assert.assertEquals(3.0, optimum.getValue()[0], 1e-10); + PointVectorValuePair[] optima = optimizer.getOptima(); + Assert.assertEquals(10, optima.length); + for (int i = 0; i < optima.length; i++) { + Assert.assertEquals(1.5, optima[i].getPoint()[0], 1e-10); + Assert.assertEquals(3.0, optima[i].getValue()[0], 1e-10); + } + Assert.assertTrue(optimizer.getEvaluations() > 20); + Assert.assertTrue(optimizer.getEvaluations() < 50); + Assert.assertEquals(100, optimizer.getMaxEvaluations()); + } + + /** + * Test demonstrating that the user exception is fnally thrown if none + * of the runs succeed. + */ + @Test(expected=TestException.class) + public void testNoOptimum() { + JacobianMultivariateVectorOptimizer underlyingOptimizer + = new GaussNewtonOptimizer(true, new SimpleVectorValueChecker(1e-6, 1e-6)); + JDKRandomGenerator g = new JDKRandomGenerator(); + g.setSeed(12373523445l); + RandomVectorGenerator generator + = new UncorrelatedRandomVectorGenerator(1, new GaussianRandomGenerator(g)); + MultiStartMultivariateVectorOptimizer optimizer + = new MultiStartMultivariateVectorOptimizer(underlyingOptimizer, 10, generator); + optimizer.optimize(new MaxEval(100), + new Target(new double[] { 0 }), + new Weight(new double[] { 1 }), + new InitialGuess(new double[] { 0 }), + new ModelFunction(new MultivariateVectorFunction() { + public double[] value(double[] point) { + throw new TestException(); + } + })); + } + + private static class TestException extends RuntimeException {} + + private static class LinearProblem { + private final RealMatrix factors; + private final double[] target; + + public LinearProblem(double[][] factors, + double[] target) { + this.factors = new BlockRealMatrix(factors); + this.target = target; + } + + public Target getTarget() { + return new Target(target); + } + + public ModelFunction getModelFunction() { + return new ModelFunction(new MultivariateVectorFunction() { + public double[] value(double[] variables) { + return factors.operate(variables); + } + }); + } + + public ModelFunctionJacobian getModelFunctionJacobian() { + return new ModelFunctionJacobian(new MultivariateMatrixFunction() { + public double[][] value(double[] point) { + return factors.getData(); + } + }); + } + } +} diff --git a/src/test/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/AbstractLeastSquaresOptimizerAbstractTest.java b/src/test/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/AbstractLeastSquaresOptimizerAbstractTest.java new file mode 100644 index 000000000..cc86ae0f4 --- /dev/null +++ b/src/test/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/AbstractLeastSquaresOptimizerAbstractTest.java @@ -0,0 +1,617 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.nonlinear.vector.jacobian; + +import java.io.IOException; +import java.io.Serializable; +import java.util.Arrays; +import org.apache.commons.math3.analysis.MultivariateVectorFunction; +import org.apache.commons.math3.analysis.MultivariateMatrixFunction; +import org.apache.commons.math3.exception.ConvergenceException; +import org.apache.commons.math3.exception.DimensionMismatchException; +import org.apache.commons.math3.exception.NumberIsTooSmallException; +import org.apache.commons.math3.geometry.euclidean.twod.Vector2D; +import org.apache.commons.math3.linear.BlockRealMatrix; +import org.apache.commons.math3.linear.RealMatrix; +import org.apache.commons.math3.optim.PointVectorValuePair; +import org.apache.commons.math3.optim.InitialGuess; +import org.apache.commons.math3.optim.MaxEval; +import org.apache.commons.math3.optim.nonlinear.vector.Target; +import org.apache.commons.math3.optim.nonlinear.vector.Weight; +import org.apache.commons.math3.optim.nonlinear.vector.ModelFunction; +import org.apache.commons.math3.optim.nonlinear.vector.ModelFunctionJacobian; +import org.apache.commons.math3.util.FastMath; +import org.junit.Assert; +import org.junit.Test; + +/** + *

        Some of the unit tests are re-implementations of the MINPACK file17 and file22 test files. + * The redistribution policy for MINPACK is available here, for + * convenience, it is reproduced below.

        + + * + * + * + *
        + * Minpack Copyright Notice (1999) University of Chicago. + * All rights reserved + *
        + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + *
          + *
        1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer.
        2. + *
        3. Redistributions in binary form must reproduce the above + * copyright notice, this list of conditions and the following + * disclaimer in the documentation and/or other materials provided + * with the distribution.
        4. + *
        5. The end-user documentation included with the redistribution, if any, + * must include the following acknowledgment: + * This product includes software developed by the University of + * Chicago, as Operator of Argonne National Laboratory. + * Alternately, this acknowledgment may appear in the software itself, + * if and wherever such third-party acknowledgments normally appear.
        6. + *
        7. WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS" + * WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER, THE + * UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND + * THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES + * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE + * OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY + * OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR + * USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF + * THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4) + * DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION + * UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL + * BE CORRECTED.
        8. + *
        9. LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT + * HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF + * ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT, + * INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF + * ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF + * PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER + * SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT + * (INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE, + * EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE + * POSSIBILITY OF SUCH LOSS OR DAMAGES.
        10. + *
          + + * @author Argonne National Laboratory. MINPACK project. March 1980 (original fortran minpack tests) + * @author Burton S. Garbow (original fortran minpack tests) + * @author Kenneth E. Hillstrom (original fortran minpack tests) + * @author Jorge J. More (original fortran minpack tests) + * @author Luc Maisonobe (non-minpack tests and minpack tests Java translation) + * @version $Id: AbstractLeastSquaresOptimizerAbstractTest.java 1407467 2012-11-09 14:30:49Z erans $ + */ +public abstract class AbstractLeastSquaresOptimizerAbstractTest { + + public abstract AbstractLeastSquaresOptimizer createOptimizer(); + + @Test + public void testTrivial() { + LinearProblem problem + = new LinearProblem(new double[][] { { 2 } }, new double[] { 3 }); + AbstractLeastSquaresOptimizer optimizer = createOptimizer(); + PointVectorValuePair optimum = + optimizer.optimize(new MaxEval(100), + problem.getModelFunction(), + problem.getModelFunctionJacobian(), + problem.getTarget(), + new Weight(new double[] { 1 }), + new InitialGuess(new double[] { 0 })); + Assert.assertEquals(0, optimizer.getRMS(), 1e-10); + Assert.assertEquals(1.5, optimum.getPoint()[0], 1e-10); + Assert.assertEquals(3.0, optimum.getValue()[0], 1e-10); + } + + @Test + public void testQRColumnsPermutation() { + + LinearProblem problem + = new LinearProblem(new double[][] { { 1, -1 }, { 0, 2 }, { 1, -2 } }, + new double[] { 4, 6, 1 }); + + AbstractLeastSquaresOptimizer optimizer = createOptimizer(); + PointVectorValuePair optimum = + optimizer.optimize(new MaxEval(100), + problem.getModelFunction(), + problem.getModelFunctionJacobian(), + problem.getTarget(), + new Weight(new double[] { 1, 1, 1 }), + new InitialGuess(new double[] { 0, 0 })); + Assert.assertEquals(0, optimizer.getRMS(), 1e-10); + Assert.assertEquals(7, optimum.getPoint()[0], 1e-10); + Assert.assertEquals(3, optimum.getPoint()[1], 1e-10); + Assert.assertEquals(4, optimum.getValue()[0], 1e-10); + Assert.assertEquals(6, optimum.getValue()[1], 1e-10); + Assert.assertEquals(1, optimum.getValue()[2], 1e-10); + } + + @Test + public void testNoDependency() { + LinearProblem problem = new LinearProblem(new double[][] { + { 2, 0, 0, 0, 0, 0 }, + { 0, 2, 0, 0, 0, 0 }, + { 0, 0, 2, 0, 0, 0 }, + { 0, 0, 0, 2, 0, 0 }, + { 0, 0, 0, 0, 2, 0 }, + { 0, 0, 0, 0, 0, 2 } + }, new double[] { 0, 1.1, 2.2, 3.3, 4.4, 5.5 }); + AbstractLeastSquaresOptimizer optimizer = createOptimizer(); + PointVectorValuePair optimum = + optimizer.optimize(new MaxEval(100), + problem.getModelFunction(), + problem.getModelFunctionJacobian(), + problem.getTarget(), + new Weight(new double[] { 1, 1, 1, 1, 1, 1 }), + new InitialGuess(new double[] { 0, 0, 0, 0, 0, 0 })); + Assert.assertEquals(0, optimizer.getRMS(), 1e-10); + for (int i = 0; i < problem.target.length; ++i) { + Assert.assertEquals(0.55 * i, optimum.getPoint()[i], 1e-10); + } + } + + @Test + public void testOneSet() { + + LinearProblem problem = new LinearProblem(new double[][] { + { 1, 0, 0 }, + { -1, 1, 0 }, + { 0, -1, 1 } + }, new double[] { 1, 1, 1}); + AbstractLeastSquaresOptimizer optimizer = createOptimizer(); + PointVectorValuePair optimum = + optimizer.optimize(new MaxEval(100), + problem.getModelFunction(), + problem.getModelFunctionJacobian(), + problem.getTarget(), + new Weight(new double[] { 1, 1, 1 }), + new InitialGuess(new double[] { 0, 0, 0 })); + Assert.assertEquals(0, optimizer.getRMS(), 1e-10); + Assert.assertEquals(1, optimum.getPoint()[0], 1e-10); + Assert.assertEquals(2, optimum.getPoint()[1], 1e-10); + Assert.assertEquals(3, optimum.getPoint()[2], 1e-10); + } + + @Test + public void testTwoSets() { + double epsilon = 1e-7; + LinearProblem problem = new LinearProblem(new double[][] { + { 2, 1, 0, 4, 0, 0 }, + { -4, -2, 3, -7, 0, 0 }, + { 4, 1, -2, 8, 0, 0 }, + { 0, -3, -12, -1, 0, 0 }, + { 0, 0, 0, 0, epsilon, 1 }, + { 0, 0, 0, 0, 1, 1 } + }, new double[] { 2, -9, 2, 2, 1 + epsilon * epsilon, 2}); + + AbstractLeastSquaresOptimizer optimizer = createOptimizer(); + PointVectorValuePair optimum = + optimizer.optimize(new MaxEval(100), + problem.getModelFunction(), + problem.getModelFunctionJacobian(), + problem.getTarget(), + new Weight(new double[] { 1, 1, 1, 1, 1, 1 }), + new InitialGuess(new double[] { 0, 0, 0, 0, 0, 0 })); + Assert.assertEquals(0, optimizer.getRMS(), 1e-10); + Assert.assertEquals(3, optimum.getPoint()[0], 1e-10); + Assert.assertEquals(4, optimum.getPoint()[1], 1e-10); + Assert.assertEquals(-1, optimum.getPoint()[2], 1e-10); + Assert.assertEquals(-2, optimum.getPoint()[3], 1e-10); + Assert.assertEquals(1 + epsilon, optimum.getPoint()[4], 1e-10); + Assert.assertEquals(1 - epsilon, optimum.getPoint()[5], 1e-10); + } + + @Test(expected=ConvergenceException.class) + public void testNonInvertible() throws Exception { + + LinearProblem problem = new LinearProblem(new double[][] { + { 1, 2, -3 }, + { 2, 1, 3 }, + { -3, 0, -9 } + }, new double[] { 1, 1, 1 }); + + AbstractLeastSquaresOptimizer optimizer = createOptimizer(); + + optimizer.optimize(new MaxEval(100), + problem.getModelFunction(), + problem.getModelFunctionJacobian(), + problem.getTarget(), + new Weight(new double[] { 1, 1, 1 }), + new InitialGuess(new double[] { 0, 0, 0 })); + } + + @Test + public void testIllConditioned() { + LinearProblem problem1 = new LinearProblem(new double[][] { + { 10, 7, 8, 7 }, + { 7, 5, 6, 5 }, + { 8, 6, 10, 9 }, + { 7, 5, 9, 10 } + }, new double[] { 32, 23, 33, 31 }); + AbstractLeastSquaresOptimizer optimizer = createOptimizer(); + PointVectorValuePair optimum1 = + optimizer.optimize(new MaxEval(100), + problem1.getModelFunction(), + problem1.getModelFunctionJacobian(), + problem1.getTarget(), + new Weight(new double[] { 1, 1, 1, 1 }), + new InitialGuess(new double[] { 0, 1, 2, 3 })); + Assert.assertEquals(0, optimizer.getRMS(), 1e-10); + Assert.assertEquals(1, optimum1.getPoint()[0], 1e-10); + Assert.assertEquals(1, optimum1.getPoint()[1], 1e-10); + Assert.assertEquals(1, optimum1.getPoint()[2], 1e-10); + Assert.assertEquals(1, optimum1.getPoint()[3], 1e-10); + + LinearProblem problem2 = new LinearProblem(new double[][] { + { 10.00, 7.00, 8.10, 7.20 }, + { 7.08, 5.04, 6.00, 5.00 }, + { 8.00, 5.98, 9.89, 9.00 }, + { 6.99, 4.99, 9.00, 9.98 } + }, new double[] { 32, 23, 33, 31 }); + PointVectorValuePair optimum2 = + optimizer.optimize(new MaxEval(100), + problem2.getModelFunction(), + problem2.getModelFunctionJacobian(), + problem2.getTarget(), + new Weight(new double[] { 1, 1, 1, 1 }), + new InitialGuess(new double[] { 0, 1, 2, 3 })); + Assert.assertEquals(0, optimizer.getRMS(), 1e-10); + Assert.assertEquals(-81, optimum2.getPoint()[0], 1e-8); + Assert.assertEquals(137, optimum2.getPoint()[1], 1e-8); + Assert.assertEquals(-34, optimum2.getPoint()[2], 1e-8); + Assert.assertEquals( 22, optimum2.getPoint()[3], 1e-8); + } + + @Test + public void testMoreEstimatedParametersSimple() { + + LinearProblem problem = new LinearProblem(new double[][] { + { 3, 2, 0, 0 }, + { 0, 1, -1, 1 }, + { 2, 0, 1, 0 } + }, new double[] { 7, 3, 5 }); + + AbstractLeastSquaresOptimizer optimizer = createOptimizer(); + optimizer.optimize(new MaxEval(100), + problem.getModelFunction(), + problem.getModelFunctionJacobian(), + problem.getTarget(), + new Weight(new double[] { 1, 1, 1 }), + new InitialGuess(new double[] { 7, 6, 5, 4 })); + Assert.assertEquals(0, optimizer.getRMS(), 1e-10); + } + + @Test + public void testMoreEstimatedParametersUnsorted() { + LinearProblem problem = new LinearProblem(new double[][] { + { 1, 1, 0, 0, 0, 0 }, + { 0, 0, 1, 1, 1, 0 }, + { 0, 0, 0, 0, 1, -1 }, + { 0, 0, -1, 1, 0, 1 }, + { 0, 0, 0, -1, 1, 0 } + }, new double[] { 3, 12, -1, 7, 1 }); + + AbstractLeastSquaresOptimizer optimizer = createOptimizer(); + PointVectorValuePair optimum = + optimizer.optimize(new MaxEval(100), + problem.getModelFunction(), + problem.getModelFunctionJacobian(), + problem.getTarget(), + new Weight(new double[] { 1, 1, 1, 1, 1 }), + new InitialGuess(new double[] { 2, 2, 2, 2, 2, 2 })); + Assert.assertEquals(0, optimizer.getRMS(), 1e-10); + Assert.assertEquals(3, optimum.getPointRef()[2], 1e-10); + Assert.assertEquals(4, optimum.getPointRef()[3], 1e-10); + Assert.assertEquals(5, optimum.getPointRef()[4], 1e-10); + Assert.assertEquals(6, optimum.getPointRef()[5], 1e-10); + } + + @Test + public void testRedundantEquations() { + LinearProblem problem = new LinearProblem(new double[][] { + { 1, 1 }, + { 1, -1 }, + { 1, 3 } + }, new double[] { 3, 1, 5 }); + + AbstractLeastSquaresOptimizer optimizer = createOptimizer(); + PointVectorValuePair optimum = + optimizer.optimize(new MaxEval(100), + problem.getModelFunction(), + problem.getModelFunctionJacobian(), + problem.getTarget(), + new Weight(new double[] { 1, 1, 1 }), + new InitialGuess(new double[] { 1, 1 })); + Assert.assertEquals(0, optimizer.getRMS(), 1e-10); + Assert.assertEquals(2, optimum.getPointRef()[0], 1e-10); + Assert.assertEquals(1, optimum.getPointRef()[1], 1e-10); + } + + @Test + public void testInconsistentEquations() { + LinearProblem problem = new LinearProblem(new double[][] { + { 1, 1 }, + { 1, -1 }, + { 1, 3 } + }, new double[] { 3, 1, 4 }); + + AbstractLeastSquaresOptimizer optimizer = createOptimizer(); + optimizer.optimize(new MaxEval(100), + problem.getModelFunction(), + problem.getModelFunctionJacobian(), + problem.getTarget(), + new Weight(new double[] { 1, 1, 1 }), + new InitialGuess(new double[] { 1, 1 })); + Assert.assertTrue(optimizer.getRMS() > 0.1); + } + + @Test(expected=DimensionMismatchException.class) + public void testInconsistentSizes1() { + LinearProblem problem + = new LinearProblem(new double[][] { { 1, 0 }, { 0, 1 } }, + new double[] { -1, 1 }); + AbstractLeastSquaresOptimizer optimizer = createOptimizer(); + PointVectorValuePair optimum = + optimizer.optimize(new MaxEval(100), + problem.getModelFunction(), + problem.getModelFunctionJacobian(), + problem.getTarget(), + new Weight(new double[] { 1, 1 }), + new InitialGuess(new double[] { 0, 0 })); + Assert.assertEquals(0, optimizer.getRMS(), 1e-10); + Assert.assertEquals(-1, optimum.getPoint()[0], 1e-10); + Assert.assertEquals(1, optimum.getPoint()[1], 1e-10); + + optimizer.optimize(new MaxEval(100), + problem.getModelFunction(), + problem.getModelFunctionJacobian(), + problem.getTarget(), + new Weight(new double[] { 1 }), + new InitialGuess(new double[] { 0, 0 })); + } + + @Test(expected=DimensionMismatchException.class) + public void testInconsistentSizes2() { + LinearProblem problem + = new LinearProblem(new double[][] { { 1, 0 }, { 0, 1 } }, + new double[] { -1, 1 }); + AbstractLeastSquaresOptimizer optimizer = createOptimizer(); + PointVectorValuePair optimum + = optimizer.optimize(new MaxEval(100), + problem.getModelFunction(), + problem.getModelFunctionJacobian(), + problem.getTarget(), + new Weight(new double[] { 1, 1 }), + new InitialGuess(new double[] { 0, 0 })); + Assert.assertEquals(0, optimizer.getRMS(), 1e-10); + Assert.assertEquals(-1, optimum.getPoint()[0], 1e-10); + Assert.assertEquals(1, optimum.getPoint()[1], 1e-10); + + optimizer.optimize(new MaxEval(100), + problem.getModelFunction(), + problem.getModelFunctionJacobian(), + new Target(new double[] { 1 }), + new Weight(new double[] { 1 }), + new InitialGuess(new double[] { 0, 0 })); + } + + @Test + public void testCircleFitting() { + CircleVectorial circle = new CircleVectorial(); + circle.addPoint( 30, 68); + circle.addPoint( 50, -6); + circle.addPoint(110, -20); + circle.addPoint( 35, 15); + circle.addPoint( 45, 97); + AbstractLeastSquaresOptimizer optimizer = createOptimizer(); + PointVectorValuePair optimum + = optimizer.optimize(new MaxEval(100), + circle.getModelFunction(), + circle.getModelFunctionJacobian(), + new Target(new double[] { 0, 0, 0, 0, 0 }), + new Weight(new double[] { 1, 1, 1, 1, 1 }), + new InitialGuess(new double[] { 98.680, 47.345 })); + Assert.assertTrue(optimizer.getEvaluations() < 10); + double rms = optimizer.getRMS(); + Assert.assertEquals(1.768262623567235, FastMath.sqrt(circle.getN()) * rms, 1e-10); + Vector2D center = new Vector2D(optimum.getPointRef()[0], optimum.getPointRef()[1]); + Assert.assertEquals(69.96016176931406, circle.getRadius(center), 1e-6); + Assert.assertEquals(96.07590211815305, center.getX(), 1e-6); + Assert.assertEquals(48.13516790438953, center.getY(), 1e-6); + double[][] cov = optimizer.computeCovariances(optimum.getPoint(), 1e-14); + Assert.assertEquals(1.839, cov[0][0], 0.001); + Assert.assertEquals(0.731, cov[0][1], 0.001); + Assert.assertEquals(cov[0][1], cov[1][0], 1e-14); + Assert.assertEquals(0.786, cov[1][1], 0.001); + + // add perfect measurements and check errors are reduced + double r = circle.getRadius(center); + for (double d= 0; d < 2 * FastMath.PI; d += 0.01) { + circle.addPoint(center.getX() + r * FastMath.cos(d), center.getY() + r * FastMath.sin(d)); + } + double[] target = new double[circle.getN()]; + Arrays.fill(target, 0); + double[] weights = new double[circle.getN()]; + Arrays.fill(weights, 2); + optimum = optimizer.optimize(new MaxEval(100), + circle.getModelFunction(), + circle.getModelFunctionJacobian(), + new Target(target), + new Weight(weights), + new InitialGuess(new double[] { 98.680, 47.345 })); + cov = optimizer.computeCovariances(optimum.getPoint(), 1e-14); + Assert.assertEquals(0.0016, cov[0][0], 0.001); + Assert.assertEquals(3.2e-7, cov[0][1], 1e-9); + Assert.assertEquals(cov[0][1], cov[1][0], 1e-14); + Assert.assertEquals(0.0016, cov[1][1], 0.001); + } + + @Test + public void testCircleFittingBadInit() { + CircleVectorial circle = new CircleVectorial(); + double[][] points = circlePoints; + double[] target = new double[points.length]; + Arrays.fill(target, 0); + double[] weights = new double[points.length]; + Arrays.fill(weights, 2); + for (int i = 0; i < points.length; ++i) { + circle.addPoint(points[i][0], points[i][1]); + } + AbstractLeastSquaresOptimizer optimizer = createOptimizer(); + PointVectorValuePair optimum + = optimizer.optimize(new MaxEval(100), + circle.getModelFunction(), + circle.getModelFunctionJacobian(), + new Target(target), + new Weight(weights), + new InitialGuess(new double[] { -12, -12 })); + Vector2D center = new Vector2D(optimum.getPointRef()[0], optimum.getPointRef()[1]); + Assert.assertTrue(optimizer.getEvaluations() < 25); + Assert.assertEquals( 0.043, optimizer.getRMS(), 1e-3); + Assert.assertEquals( 0.292235, circle.getRadius(center), 1e-6); + Assert.assertEquals(-0.151738, center.getX(), 1e-6); + Assert.assertEquals( 0.2075001, center.getY(), 1e-6); + } + + @Test + public void testCircleFittingGoodInit() { + CircleVectorial circle = new CircleVectorial(); + double[][] points = circlePoints; + double[] target = new double[points.length]; + Arrays.fill(target, 0); + double[] weights = new double[points.length]; + Arrays.fill(weights, 2); + for (int i = 0; i < points.length; ++i) { + circle.addPoint(points[i][0], points[i][1]); + } + AbstractLeastSquaresOptimizer optimizer = createOptimizer(); + PointVectorValuePair optimum = + optimizer.optimize(new MaxEval(100), + circle.getModelFunction(), + circle.getModelFunctionJacobian(), + new Target(target), + new Weight(weights), + new InitialGuess(new double[] { 0, 0 })); + Assert.assertEquals(-0.1517383071957963, optimum.getPointRef()[0], 1e-6); + Assert.assertEquals(0.2074999736353867, optimum.getPointRef()[1], 1e-6); + Assert.assertEquals(0.04268731682389561, optimizer.getRMS(), 1e-8); + } + + private final double[][] circlePoints = new double[][] { + {-0.312967, 0.072366}, {-0.339248, 0.132965}, {-0.379780, 0.202724}, + {-0.390426, 0.260487}, {-0.361212, 0.328325}, {-0.346039, 0.392619}, + {-0.280579, 0.444306}, {-0.216035, 0.470009}, {-0.149127, 0.493832}, + {-0.075133, 0.483271}, {-0.007759, 0.452680}, { 0.060071, 0.410235}, + { 0.103037, 0.341076}, { 0.118438, 0.273884}, { 0.131293, 0.192201}, + { 0.115869, 0.129797}, { 0.072223, 0.058396}, { 0.022884, 0.000718}, + {-0.053355, -0.020405}, {-0.123584, -0.032451}, {-0.216248, -0.032862}, + {-0.278592, -0.005008}, {-0.337655, 0.056658}, {-0.385899, 0.112526}, + {-0.405517, 0.186957}, {-0.415374, 0.262071}, {-0.387482, 0.343398}, + {-0.347322, 0.397943}, {-0.287623, 0.458425}, {-0.223502, 0.475513}, + {-0.135352, 0.478186}, {-0.061221, 0.483371}, { 0.003711, 0.422737}, + { 0.065054, 0.375830}, { 0.108108, 0.297099}, { 0.123882, 0.222850}, + { 0.117729, 0.134382}, { 0.085195, 0.056820}, { 0.029800, -0.019138}, + {-0.027520, -0.072374}, {-0.102268, -0.091555}, {-0.200299, -0.106578}, + {-0.292731, -0.091473}, {-0.356288, -0.051108}, {-0.420561, 0.014926}, + {-0.471036, 0.074716}, {-0.488638, 0.182508}, {-0.485990, 0.254068}, + {-0.463943, 0.338438}, {-0.406453, 0.404704}, {-0.334287, 0.466119}, + {-0.254244, 0.503188}, {-0.161548, 0.495769}, {-0.075733, 0.495560}, + { 0.001375, 0.434937}, { 0.082787, 0.385806}, { 0.115490, 0.323807}, + { 0.141089, 0.223450}, { 0.138693, 0.131703}, { 0.126415, 0.049174}, + { 0.066518, -0.010217}, {-0.005184, -0.070647}, {-0.080985, -0.103635}, + {-0.177377, -0.116887}, {-0.260628, -0.100258}, {-0.335756, -0.056251}, + {-0.405195, -0.000895}, {-0.444937, 0.085456}, {-0.484357, 0.175597}, + {-0.472453, 0.248681}, {-0.438580, 0.347463}, {-0.402304, 0.422428}, + {-0.326777, 0.479438}, {-0.247797, 0.505581}, {-0.152676, 0.519380}, + {-0.071754, 0.516264}, { 0.015942, 0.472802}, { 0.076608, 0.419077}, + { 0.127673, 0.330264}, { 0.159951, 0.262150}, { 0.153530, 0.172681}, + { 0.140653, 0.089229}, { 0.078666, 0.024981}, { 0.023807, -0.037022}, + {-0.048837, -0.077056}, {-0.127729, -0.075338}, {-0.221271, -0.067526} + }; + + public void doTestStRD(final StatisticalReferenceDataset dataset, + final double errParams, + final double errParamsSd) { + final AbstractLeastSquaresOptimizer optimizer = createOptimizer(); + final double[] w = new double[dataset.getNumObservations()]; + Arrays.fill(w, 1); + + final double[][] data = dataset.getData(); + final double[] initial = dataset.getStartingPoint(0); + final StatisticalReferenceDataset.LeastSquaresProblem problem = dataset.getLeastSquaresProblem(); + final PointVectorValuePair optimum + = optimizer.optimize(new MaxEval(100), + problem.getModelFunction(), + problem.getModelFunctionJacobian(), + new Target(data[1]), + new Weight(w), + new InitialGuess(initial)); + + final double[] actual = optimum.getPoint(); + for (int i = 0; i < actual.length; i++) { + double expected = dataset.getParameter(i); + double delta = FastMath.abs(errParams * expected); + Assert.assertEquals(dataset.getName() + ", param #" + i, + expected, actual[i], delta); + } + } + + @Test + public void testKirby2() throws IOException { + doTestStRD(StatisticalReferenceDatasetFactory.createKirby2(), 1E-7, 1E-7); + } + + @Test + public void testHahn1() throws IOException { + doTestStRD(StatisticalReferenceDatasetFactory.createHahn1(), 1E-7, 1E-4); + } + + static class LinearProblem { + private final RealMatrix factors; + private final double[] target; + + public LinearProblem(double[][] factors, double[] target) { + this.factors = new BlockRealMatrix(factors); + this.target = target; + } + + public Target getTarget() { + return new Target(target); + } + + public ModelFunction getModelFunction() { + return new ModelFunction(new MultivariateVectorFunction() { + public double[] value(double[] params) { + return factors.operate(params); + } + }); + } + + public ModelFunctionJacobian getModelFunctionJacobian() { + return new ModelFunctionJacobian(new MultivariateMatrixFunction() { + public double[][] value(double[] params) { + return factors.getData(); + } + }); + } + } +} diff --git a/src/test/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/AbstractLeastSquaresOptimizerTest.java b/src/test/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/AbstractLeastSquaresOptimizerTest.java new file mode 100644 index 000000000..719761631 --- /dev/null +++ b/src/test/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/AbstractLeastSquaresOptimizerTest.java @@ -0,0 +1,126 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with this + * work for additional information regarding copyright ownership. The ASF + * licenses this file to You under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law + * or agreed to in writing, software distributed under the License is + * distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY + * KIND, either express or implied. See the License for the specific language + * governing permissions and limitations under the License. + */ +package org.apache.commons.math3.optim.nonlinear.vector.jacobian; + +import java.io.IOException; +import java.util.Arrays; +import org.apache.commons.math3.optim.PointVectorValuePair; +import org.apache.commons.math3.optim.InitialGuess; +import org.apache.commons.math3.optim.MaxEval; +import org.apache.commons.math3.optim.nonlinear.vector.Target; +import org.apache.commons.math3.optim.nonlinear.vector.Weight; +import org.apache.commons.math3.util.FastMath; +import org.junit.Test; +import org.junit.Assert; + +public class AbstractLeastSquaresOptimizerTest { + + public static AbstractLeastSquaresOptimizer createOptimizer() { + return new AbstractLeastSquaresOptimizer(null) { + + @Override + protected PointVectorValuePair doOptimize() { + final double[] params = getStartPoint(); + final double[] res = computeResiduals(computeObjectiveValue(params)); + setCost(computeCost(res)); + return new PointVectorValuePair(params, null); + } + }; + } + + @Test + public void testGetChiSquare() throws IOException { + final StatisticalReferenceDataset dataset + = StatisticalReferenceDatasetFactory.createKirby2(); + final AbstractLeastSquaresOptimizer optimizer = createOptimizer(); + final double[] a = dataset.getParameters(); + final double[] y = dataset.getData()[1]; + final double[] w = new double[y.length]; + Arrays.fill(w, 1.0); + + StatisticalReferenceDataset.LeastSquaresProblem problem + = dataset.getLeastSquaresProblem(); + + optimizer.optimize(new MaxEval(1), + problem.getModelFunction(), + problem.getModelFunctionJacobian(), + new Target(y), + new Weight(w), + new InitialGuess(a)); + final double expected = dataset.getResidualSumOfSquares(); + final double actual = optimizer.getChiSquare(); + Assert.assertEquals(dataset.getName(), expected, actual, + 1E-11 * expected); + } + + @Test + public void testGetRMS() throws IOException { + final StatisticalReferenceDataset dataset + = StatisticalReferenceDatasetFactory.createKirby2(); + final AbstractLeastSquaresOptimizer optimizer = createOptimizer(); + final double[] a = dataset.getParameters(); + final double[] y = dataset.getData()[1]; + final double[] w = new double[y.length]; + Arrays.fill(w, 1); + + StatisticalReferenceDataset.LeastSquaresProblem problem + = dataset.getLeastSquaresProblem(); + + optimizer.optimize(new MaxEval(1), + problem.getModelFunction(), + problem.getModelFunctionJacobian(), + new Target(y), + new Weight(w), + new InitialGuess(a)); + + final double expected = FastMath + .sqrt(dataset.getResidualSumOfSquares() / + dataset.getNumObservations()); + final double actual = optimizer.getRMS(); + Assert.assertEquals(dataset.getName(), expected, actual, + 1E-11 * expected); + } + + @Test + public void testComputeSigma() throws IOException { + final StatisticalReferenceDataset dataset + = StatisticalReferenceDatasetFactory.createKirby2(); + final AbstractLeastSquaresOptimizer optimizer = createOptimizer(); + final double[] a = dataset.getParameters(); + final double[] y = dataset.getData()[1]; + final double[] w = new double[y.length]; + Arrays.fill(w, 1); + + StatisticalReferenceDataset.LeastSquaresProblem problem + = dataset.getLeastSquaresProblem(); + + final PointVectorValuePair optimum + = optimizer.optimize(new MaxEval(1), + problem.getModelFunction(), + problem.getModelFunctionJacobian(), + new Target(y), + new Weight(w), + new InitialGuess(a)); + + final double[] sig = optimizer.computeSigma(optimum.getPoint(), 1e-14); + + final int dof = y.length - a.length; + final double[] expected = dataset.getParametersStandardDeviations(); + for (int i = 0; i < sig.length; i++) { + final double actual = FastMath.sqrt(optimizer.getChiSquare() / dof) * sig[i]; + Assert.assertEquals(dataset.getName() + ", parameter #" + i, + expected[i], actual, 1e-6 * expected[i]); + } + } +} diff --git a/src/test/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/AbstractLeastSquaresOptimizerTestValidation.java b/src/test/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/AbstractLeastSquaresOptimizerTestValidation.java new file mode 100644 index 000000000..d9aa76141 --- /dev/null +++ b/src/test/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/AbstractLeastSquaresOptimizerTestValidation.java @@ -0,0 +1,334 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with this + * work for additional information regarding copyright ownership. The ASF + * licenses this file to You under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law + * or agreed to in writing, software distributed under the License is + * distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY + * KIND, either express or implied. See the License for the specific language + * governing permissions and limitations under the License. + */ +package org.apache.commons.math3.optim.nonlinear.vector.jacobian; + +import java.util.Arrays; +import java.util.List; +import java.util.ArrayList; +import java.awt.geom.Point2D; +import org.apache.commons.math3.optim.PointVectorValuePair; +import org.apache.commons.math3.optim.InitialGuess; +import org.apache.commons.math3.optim.MaxEval; +import org.apache.commons.math3.optim.nonlinear.vector.Target; +import org.apache.commons.math3.optim.nonlinear.vector.Weight; +import org.apache.commons.math3.stat.descriptive.SummaryStatistics; +import org.apache.commons.math3.stat.descriptive.StatisticalSummary; +import org.apache.commons.math3.util.FastMath; +import org.junit.Test; +import org.junit.Assert; + +/** + * This class demonstrates the main functionality of the + * {@link AbstractLeastSquaresOptimizer}, common to the + * optimizer implementations in package + * {@link org.apache.commons.math3.optimization.general}. + *
          + * Not enabled by default, as the class name does not end with "Test". + *
          + * Invoke by running + *
          
          + *  mvn test -Dtest=AbstractLeastSquaresOptimizerTestValidation
          + * 
          + * or by running + *
          
          + *  mvn test -Dtest=AbstractLeastSquaresOptimizerTestValidation -DargLine="-DmcRuns=1234 -server"
          + * 
          + */ +public class AbstractLeastSquaresOptimizerTestValidation { + private static final int MONTE_CARLO_RUNS = Integer.parseInt(System.getProperty("mcRuns", + "100")); + + /** + * Using a Monte-Carlo procedure, this test checks the error estimations + * as provided by the square-root of the diagonal elements of the + * covariance matrix. + *
          + * The test generates sets of observations, each sampled from + * a Gaussian distribution. + *
          + * The optimization problem solved is defined in class + * {@link StraightLineProblem}. + *
          + * The output (on stdout) will be a table summarizing the distribution + * of parameters generated by the Monte-Carlo process and by the direct + * estimation provided by the diagonal elements of the covariance matrix. + */ + @Test + public void testParametersErrorMonteCarloObservations() { + // Error on the observations. + final double yError = 15; + + // True values of the parameters. + final double slope = 123.456; + final double offset = -98.765; + + // Samples generator. + final RandomStraightLinePointGenerator lineGenerator + = new RandomStraightLinePointGenerator(slope, offset, + yError, + -1e3, 1e4, + 138577L); + + // Number of observations. + final int numObs = 100; // XXX Should be a command-line option. + // number of parameters. + final int numParams = 2; + + // Parameters found for each of Monte-Carlo run. + final SummaryStatistics[] paramsFoundByDirectSolution = new SummaryStatistics[numParams]; + // Sigma estimations (square-root of the diagonal elements of the + // covariance matrix), for each Monte-Carlo run. + final SummaryStatistics[] sigmaEstimate = new SummaryStatistics[numParams]; + + // Initialize statistics accumulators. + for (int i = 0; i < numParams; i++) { + paramsFoundByDirectSolution[i] = new SummaryStatistics(); + sigmaEstimate[i] = new SummaryStatistics(); + } + + // Dummy optimizer (to compute the covariance matrix). + final AbstractLeastSquaresOptimizer optim = new DummyOptimizer(); + final double[] init = { slope, offset }; + + // Monte-Carlo (generates many sets of observations). + final int mcRepeat = MONTE_CARLO_RUNS; + int mcCount = 0; + while (mcCount < mcRepeat) { + // Observations. + final Point2D.Double[] obs = lineGenerator.generate(numObs); + + final StraightLineProblem problem = new StraightLineProblem(yError); + for (int i = 0; i < numObs; i++) { + final Point2D.Double p = obs[i]; + problem.addPoint(p.x, p.y); + } + + // Direct solution (using simple regression). + final double[] regress = problem.solve(); + + // Estimation of the standard deviation (diagonal elements of the + // covariance matrix). + final PointVectorValuePair optimum + = optim.optimize(new MaxEval(Integer.MAX_VALUE), + problem.getModelFunction(), + problem.getModelFunctionJacobian(), + new Target(problem.target()), + new Weight(problem.weight()), + new InitialGuess(init)); + final double[] sigma = optim.computeSigma(optimum.getPoint(), 1e-14); + + // Accumulate statistics. + for (int i = 0; i < numParams; i++) { + paramsFoundByDirectSolution[i].addValue(regress[i]); + sigmaEstimate[i].addValue(sigma[i]); + } + + // Next Monte-Carlo. + ++mcCount; + } + + // Print statistics. + final String line = "--------------------------------------------------------------"; + System.out.println(" True value Mean Std deviation"); + for (int i = 0; i < numParams; i++) { + System.out.println(line); + System.out.println("Parameter #" + i); + + StatisticalSummary s = paramsFoundByDirectSolution[i].getSummary(); + System.out.printf(" %+.6e %+.6e %+.6e\n", + init[i], + s.getMean(), + s.getStandardDeviation()); + + s = sigmaEstimate[i].getSummary(); + System.out.printf("sigma: %+.6e (%+.6e)\n", + s.getMean(), + s.getStandardDeviation()); + } + System.out.println(line); + + // Check the error estimation. + for (int i = 0; i < numParams; i++) { + Assert.assertEquals(paramsFoundByDirectSolution[i].getSummary().getStandardDeviation(), + sigmaEstimate[i].getSummary().getMean(), + 8e-2); + } + } + + /** + * In this test, the set of observations is fixed. + * Using a Monte-Carlo procedure, it generates sets of parameters, + * and determine the parameter change that will result in the + * normalized chi-square becoming larger by one than the value from + * the best fit solution. + *
          + * The optimization problem solved is defined in class + * {@link StraightLineProblem}. + *
          + * The output (on stdout) will be a list of lines containing: + *
            + *
          • slope of the straight line,
          • + *
          • intercept of the straight line,
          • + *
          • chi-square of the solution defined by the above two values.
          • + *
          + * The output is separated into two blocks (with a blank line between + * them); the first block will contain all parameter sets for which + * {@code chi2 < chi2_b + 1} + * and the second block, all sets for which + * {@code chi2 >= chi2_b + 1} + * where {@code chi2_b} is the lowest chi-square (corresponding to the + * best solution). + */ + @Test + public void testParametersErrorMonteCarloParameters() { + // Error on the observations. + final double yError = 15; + + // True values of the parameters. + final double slope = 123.456; + final double offset = -98.765; + + // Samples generator. + final RandomStraightLinePointGenerator lineGenerator + = new RandomStraightLinePointGenerator(slope, offset, + yError, + -1e3, 1e4, + 13839013L); + + // Number of observations. + final int numObs = 10; + // number of parameters. + final int numParams = 2; + + // Create a single set of observations. + final Point2D.Double[] obs = lineGenerator.generate(numObs); + + final StraightLineProblem problem = new StraightLineProblem(yError); + for (int i = 0; i < numObs; i++) { + final Point2D.Double p = obs[i]; + problem.addPoint(p.x, p.y); + } + + // Direct solution (using simple regression). + final double[] regress = problem.solve(); + + // Dummy optimizer (to compute the chi-square). + final AbstractLeastSquaresOptimizer optim = new DummyOptimizer(); + final double[] init = { slope, offset }; + // Get chi-square of the best parameters set for the given set of + // observations. + final double bestChi2N = getChi2N(optim, problem, regress); + final double[] sigma = optim.computeSigma(regress, 1e-14); + + // Monte-Carlo (generates a grid of parameters). + final int mcRepeat = MONTE_CARLO_RUNS; + final int gridSize = (int) FastMath.sqrt(mcRepeat); + + // Parameters found for each of Monte-Carlo run. + // Index 0 = slope + // Index 1 = offset + // Index 2 = normalized chi2 + final List paramsAndChi2 = new ArrayList(gridSize * gridSize); + + final double slopeRange = 10 * sigma[0]; + final double offsetRange = 10 * sigma[1]; + final double minSlope = slope - 0.5 * slopeRange; + final double minOffset = offset - 0.5 * offsetRange; + final double deltaSlope = slopeRange/ gridSize; + final double deltaOffset = offsetRange / gridSize; + for (int i = 0; i < gridSize; i++) { + final double s = minSlope + i * deltaSlope; + for (int j = 0; j < gridSize; j++) { + final double o = minOffset + j * deltaOffset; + final double chi2N = getChi2N(optim, problem, new double[] {s, o}); + + paramsAndChi2.add(new double[] {s, o, chi2N}); + } + } + + // Output (for use with "gnuplot"). + + // Some info. + + // For plotting separately sets of parameters that have a large chi2. + final double chi2NPlusOne = bestChi2N + 1; + int numLarger = 0; + + final String lineFmt = "%+.10e %+.10e %.8e\n"; + + // Point with smallest chi-square. + System.out.printf(lineFmt, regress[0], regress[1], bestChi2N); + System.out.println(); // Empty line. + + // Points within the confidence interval. + for (double[] d : paramsAndChi2) { + if (d[2] <= chi2NPlusOne) { + System.out.printf(lineFmt, d[0], d[1], d[2]); + } + } + System.out.println(); // Empty line. + + // Points outside the confidence interval. + for (double[] d : paramsAndChi2) { + if (d[2] > chi2NPlusOne) { + ++numLarger; + System.out.printf(lineFmt, d[0], d[1], d[2]); + } + } + System.out.println(); // Empty line. + + System.out.println("# sigma=" + Arrays.toString(sigma)); + System.out.println("# " + numLarger + " sets filtered out"); + } + + /** + * @return the normalized chi-square. + */ + private double getChi2N(AbstractLeastSquaresOptimizer optim, + StraightLineProblem problem, + double[] params) { + final double[] t = problem.target(); + final double[] w = problem.weight(); + + optim.optimize(new MaxEval(Integer.MAX_VALUE), + problem.getModelFunction(), + problem.getModelFunctionJacobian(), + new Target(t), + new Weight(w), + new InitialGuess(params)); + + return optim.getChiSquare() / (t.length - params.length); + } +} + +/** + * A dummy optimizer. + * Used for computing the covariance matrix. + */ +class DummyOptimizer extends AbstractLeastSquaresOptimizer { + public DummyOptimizer() { + super(null); + } + + /** + * This method does nothing and returns a dummy value. + */ + @Override + public PointVectorValuePair doOptimize() { + final double[] params = getStartPoint(); + final double[] res = computeResiduals(computeObjectiveValue(params)); + setCost(computeCost(res)); + return new PointVectorValuePair(params, null); + } +} diff --git a/src/test/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/CircleProblem.java b/src/test/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/CircleProblem.java new file mode 100644 index 000000000..41414fbda --- /dev/null +++ b/src/test/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/CircleProblem.java @@ -0,0 +1,177 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.nonlinear.vector.jacobian; + +import java.util.ArrayList; +import org.apache.commons.math3.analysis.MultivariateVectorFunction; +import org.apache.commons.math3.analysis.MultivariateMatrixFunction; +import org.apache.commons.math3.util.MathUtils; +import org.apache.commons.math3.util.FastMath; +import org.apache.commons.math3.optim.nonlinear.vector.ModelFunction; +import org.apache.commons.math3.optim.nonlinear.vector.ModelFunctionJacobian; + +/** + * Class that models a circle. + * The parameters of problem are: + *
            + *
          • the x-coordinate of the circle center,
          • + *
          • the y-coordinate of the circle center,
          • + *
          • the radius of the circle.
          • + *
          + * The model functions are: + *
            + *
          • for each triplet (cx, cy, r), the (x, y) coordinates of a point on the + * corresponding circle.
          • + *
          + */ +class CircleProblem { + /** Cloud of points assumed to be fitted by a circle. */ + private final ArrayList points; + /** Error on the x-coordinate of the points. */ + private final double xSigma; + /** Error on the y-coordinate of the points. */ + private final double ySigma; + /** Number of points on the circumference (when searching which + model point is closest to a given "observation". */ + private final int resolution; + + /** + * @param xError Assumed error for the x-coordinate of the circle points. + * @param yError Assumed error for the y-coordinate of the circle points. + * @param searchResolution Number of points to try when searching the one + * that is closest to a given "observed" point. + */ + public CircleProblem(double xError, + double yError, + int searchResolution) { + points = new ArrayList(); + xSigma = xError; + ySigma = yError; + resolution = searchResolution; + } + + /** + * @param xError Assumed error for the x-coordinate of the circle points. + * @param yError Assumed error for the y-coordinate of the circle points. + */ + public CircleProblem(double xError, + double yError) { + this(xError, yError, 500); + } + + public void addPoint(double px, double py) { + points.add(new double[] { px, py }); + } + + public double[] target() { + final double[] t = new double[points.size() * 2]; + for (int i = 0; i < points.size(); i++) { + final double[] p = points.get(i); + final int index = i * 2; + t[index] = p[0]; + t[index + 1] = p[1]; + } + + return t; + } + + public double[] weight() { + final double wX = 1 / (xSigma * xSigma); + final double wY = 1 / (ySigma * ySigma); + final double[] w = new double[points.size() * 2]; + for (int i = 0; i < points.size(); i++) { + final int index = i * 2; + w[index] = wX; + w[index + 1] = wY; + } + + return w; + } + + public ModelFunction getModelFunction() { + return new ModelFunction(new MultivariateVectorFunction() { + public double[] value(double[] params) { + final double cx = params[0]; + final double cy = params[1]; + final double r = params[2]; + + final double[] model = new double[points.size() * 2]; + + final double deltaTheta = MathUtils.TWO_PI / resolution; + for (int i = 0; i < points.size(); i++) { + final double[] p = points.get(i); + final double px = p[0]; + final double py = p[1]; + + double bestX = 0; + double bestY = 0; + double dMin = Double.POSITIVE_INFINITY; + + // Find the angle for which the circle passes closest to the + // current point (using a resolution of 100 points along the + // circumference). + for (double theta = 0; theta <= MathUtils.TWO_PI; theta += deltaTheta) { + final double currentX = cx + r * FastMath.cos(theta); + final double currentY = cy + r * FastMath.sin(theta); + final double dX = currentX - px; + final double dY = currentY - py; + final double d = dX * dX + dY * dY; + if (d < dMin) { + dMin = d; + bestX = currentX; + bestY = currentY; + } + } + + final int index = i * 2; + model[index] = bestX; + model[index + 1] = bestY; + } + + return model; + } + }); + } + + public ModelFunctionJacobian getModelFunctionJacobian() { + return new ModelFunctionJacobian(new MultivariateMatrixFunction() { + public double[][] value(double[] point) { + return jacobian(point); + } + }); + } + + private double[][] jacobian(double[] params) { + final double[][] jacobian = new double[points.size() * 2][3]; + + for (int i = 0; i < points.size(); i++) { + final int index = i * 2; + // Partial derivative wrt x-coordinate of center. + jacobian[index][0] = 1; + jacobian[index + 1][0] = 0; + // Partial derivative wrt y-coordinate of center. + jacobian[index][1] = 0; + jacobian[index + 1][1] = 1; + // Partial derivative wrt radius. + final double[] p = points.get(i); + jacobian[index][2] = (p[0] - params[0]) / params[2]; + jacobian[index + 1][2] = (p[1] - params[1]) / params[2]; + } + + return jacobian; + } +} diff --git a/src/test/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/CircleVectorial.java b/src/test/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/CircleVectorial.java new file mode 100644 index 000000000..0248f9e06 --- /dev/null +++ b/src/test/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/CircleVectorial.java @@ -0,0 +1,97 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.commons.math3.optim.nonlinear.vector.jacobian; + +import java.util.ArrayList; +import org.apache.commons.math3.analysis.MultivariateVectorFunction; +import org.apache.commons.math3.analysis.MultivariateMatrixFunction; +import org.apache.commons.math3.geometry.euclidean.twod.Vector2D; +import org.apache.commons.math3.optim.nonlinear.vector.ModelFunction; +import org.apache.commons.math3.optim.nonlinear.vector.ModelFunctionJacobian; + +/** + * Class used in the tests. + */ +class CircleVectorial { + private ArrayList points; + + public CircleVectorial() { + points = new ArrayList(); + } + + public void addPoint(double px, double py) { + points.add(new Vector2D(px, py)); + } + + public int getN() { + return points.size(); + } + + public double getRadius(Vector2D center) { + double r = 0; + for (Vector2D point : points) { + r += point.distance(center); + } + return r / points.size(); + } + + public ModelFunction getModelFunction() { + return new ModelFunction(new MultivariateVectorFunction() { + public double[] value(double[] params) { + Vector2D center = new Vector2D(params[0], params[1]); + double radius = getRadius(center); + double[] residuals = new double[points.size()]; + for (int i = 0; i < residuals.length; i++) { + residuals[i] = points.get(i).distance(center) - radius; + } + + return residuals; + } + }); + } + + public ModelFunctionJacobian getModelFunctionJacobian() { + return new ModelFunctionJacobian(new MultivariateMatrixFunction() { + public double[][] value(double[] params) { + final int n = points.size(); + final Vector2D center = new Vector2D(params[0], params[1]); + + double dRdX = 0; + double dRdY = 0; + for (Vector2D pk : points) { + double dk = pk.distance(center); + dRdX += (center.getX() - pk.getX()) / dk; + dRdY += (center.getY() - pk.getY()) / dk; + } + dRdX /= n; + dRdY /= n; + + // Jacobian of the radius residuals. + double[][] jacobian = new double[n][2]; + for (int i = 0; i < n; i++) { + final Vector2D pi = points.get(i); + final double di = pi.distance(center); + jacobian[i][0] = (center.getX() - pi.getX()) / di - dRdX; + jacobian[i][1] = (center.getY() - pi.getY()) / di - dRdY; + } + + return jacobian; + } + }); + } +} diff --git a/src/test/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/GaussNewtonOptimizerTest.java b/src/test/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/GaussNewtonOptimizerTest.java new file mode 100644 index 000000000..af23e3f88 --- /dev/null +++ b/src/test/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/GaussNewtonOptimizerTest.java @@ -0,0 +1,159 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.commons.math3.optim.nonlinear.vector.jacobian; + +import java.io.IOException; +import org.apache.commons.math3.exception.ConvergenceException; +import org.apache.commons.math3.exception.TooManyEvaluationsException; +import org.apache.commons.math3.optim.SimpleVectorValueChecker; +import org.apache.commons.math3.optim.InitialGuess; +import org.apache.commons.math3.optim.MaxEval; +import org.apache.commons.math3.optim.nonlinear.vector.Target; +import org.apache.commons.math3.optim.nonlinear.vector.Weight; +import org.apache.commons.math3.optim.nonlinear.vector.ModelFunction; +import org.apache.commons.math3.optim.nonlinear.vector.ModelFunctionJacobian; +import org.junit.Test; + +/** + *

          Some of the unit tests are re-implementations of the MINPACK file17 and file22 test files. + * The redistribution policy for MINPACK is available here, for + * convenience, it is reproduced below.

          + + * + * + * + *
          + * Minpack Copyright Notice (1999) University of Chicago. + * All rights reserved + *
          + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + *
            + *
          1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer.
          2. + *
          3. Redistributions in binary form must reproduce the above + * copyright notice, this list of conditions and the following + * disclaimer in the documentation and/or other materials provided + * with the distribution.
          4. + *
          5. The end-user documentation included with the redistribution, if any, + * must include the following acknowledgment: + * This product includes software developed by the University of + * Chicago, as Operator of Argonne National Laboratory. + * Alternately, this acknowledgment may appear in the software itself, + * if and wherever such third-party acknowledgments normally appear.
          6. + *
          7. WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS" + * WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER, THE + * UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND + * THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES + * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE + * OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY + * OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR + * USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF + * THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4) + * DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION + * UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL + * BE CORRECTED.
          8. + *
          9. LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT + * HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF + * ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT, + * INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF + * ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF + * PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER + * SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT + * (INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE, + * EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE + * POSSIBILITY OF SUCH LOSS OR DAMAGES.
          10. + *
            + + * @author Argonne National Laboratory. MINPACK project. March 1980 (original fortran minpack tests) + * @author Burton S. Garbow (original fortran minpack tests) + * @author Kenneth E. Hillstrom (original fortran minpack tests) + * @author Jorge J. More (original fortran minpack tests) + * @author Luc Maisonobe (non-minpack tests and minpack tests Java translation) + */ +public class GaussNewtonOptimizerTest + extends AbstractLeastSquaresOptimizerAbstractTest { + + @Override + public AbstractLeastSquaresOptimizer createOptimizer() { + return new GaussNewtonOptimizer(new SimpleVectorValueChecker(1.0e-6, 1.0e-6)); + } + + @Override + @Test(expected = ConvergenceException.class) + public void testMoreEstimatedParametersSimple() { + /* + * Exception is expected with this optimizer + */ + super.testMoreEstimatedParametersSimple(); + } + + @Override + @Test(expected=ConvergenceException.class) + public void testMoreEstimatedParametersUnsorted() { + /* + * Exception is expected with this optimizer + */ + super.testMoreEstimatedParametersUnsorted(); + } + + @Test(expected=TooManyEvaluationsException.class) + public void testMaxEvaluations() throws Exception { + CircleVectorial circle = new CircleVectorial(); + circle.addPoint( 30.0, 68.0); + circle.addPoint( 50.0, -6.0); + circle.addPoint(110.0, -20.0); + circle.addPoint( 35.0, 15.0); + circle.addPoint( 45.0, 97.0); + + GaussNewtonOptimizer optimizer + = new GaussNewtonOptimizer(new SimpleVectorValueChecker(1e-30, 1e-30)); + + optimizer.optimize(new MaxEval(100), + circle.getModelFunction(), + circle.getModelFunctionJacobian(), + new Target(new double[] { 0, 0, 0, 0, 0 }), + new Weight(new double[] { 1, 1, 1, 1, 1 }), + new InitialGuess(new double[] { 98.680, 47.345 })); + } + + @Override + @Test(expected=ConvergenceException.class) + public void testCircleFittingBadInit() { + /* + * This test does not converge with this optimizer. + */ + super.testCircleFittingBadInit(); + } + + @Override + @Test(expected = ConvergenceException.class) + public void testHahn1() + throws IOException { + /* + * TODO This test leads to a singular problem with the Gauss-Newton + * optimizer. This should be inquired. + */ + super.testHahn1(); + } +} diff --git a/src/test/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/LevenbergMarquardtOptimizerTest.java b/src/test/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/LevenbergMarquardtOptimizerTest.java new file mode 100644 index 000000000..20a81ffb2 --- /dev/null +++ b/src/test/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/LevenbergMarquardtOptimizerTest.java @@ -0,0 +1,403 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.commons.math3.optim.nonlinear.vector.jacobian; + +import java.io.Serializable; +import java.util.ArrayList; +import java.util.List; +import org.apache.commons.math3.optim.PointVectorValuePair; +import org.apache.commons.math3.optim.InitialGuess; +import org.apache.commons.math3.optim.MaxEval; +import org.apache.commons.math3.optim.nonlinear.vector.Target; +import org.apache.commons.math3.optim.nonlinear.vector.Weight; +import org.apache.commons.math3.optim.nonlinear.vector.ModelFunction; +import org.apache.commons.math3.optim.nonlinear.vector.ModelFunctionJacobian; +import org.apache.commons.math3.analysis.MultivariateVectorFunction; +import org.apache.commons.math3.analysis.MultivariateMatrixFunction; +import org.apache.commons.math3.exception.ConvergenceException; +import org.apache.commons.math3.exception.DimensionMismatchException; +import org.apache.commons.math3.exception.TooManyEvaluationsException; +import org.apache.commons.math3.geometry.euclidean.twod.Vector2D; +import org.apache.commons.math3.linear.SingularMatrixException; +import org.apache.commons.math3.util.FastMath; +import org.apache.commons.math3.util.Precision; +import org.junit.Assert; +import org.junit.Test; +import org.junit.Ignore; + +/** + *

            Some of the unit tests are re-implementations of the MINPACK file17 and file22 test files. + * The redistribution policy for MINPACK is available here, for + * convenience, it is reproduced below.

            + + * + * + * + *
            + * Minpack Copyright Notice (1999) University of Chicago. + * All rights reserved + *
            + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + *
              + *
            1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer.
            2. + *
            3. Redistributions in binary form must reproduce the above + * copyright notice, this list of conditions and the following + * disclaimer in the documentation and/or other materials provided + * with the distribution.
            4. + *
            5. The end-user documentation included with the redistribution, if any, + * must include the following acknowledgment: + * This product includes software developed by the University of + * Chicago, as Operator of Argonne National Laboratory. + * Alternately, this acknowledgment may appear in the software itself, + * if and wherever such third-party acknowledgments normally appear.
            6. + *
            7. WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS" + * WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER, THE + * UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND + * THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES + * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE + * OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY + * OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR + * USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF + * THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4) + * DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION + * UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL + * BE CORRECTED.
            8. + *
            9. LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT + * HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF + * ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT, + * INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF + * ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF + * PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER + * SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT + * (INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE, + * EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE + * POSSIBILITY OF SUCH LOSS OR DAMAGES.
            10. + *
              + + * @author Argonne National Laboratory. MINPACK project. March 1980 (original fortran minpack tests) + * @author Burton S. Garbow (original fortran minpack tests) + * @author Kenneth E. Hillstrom (original fortran minpack tests) + * @author Jorge J. More (original fortran minpack tests) + * @author Luc Maisonobe (non-minpack tests and minpack tests Java translation) + */ +public class LevenbergMarquardtOptimizerTest + extends AbstractLeastSquaresOptimizerAbstractTest { + @Override + public AbstractLeastSquaresOptimizer createOptimizer() { + return new LevenbergMarquardtOptimizer(); + } + + @Override + @Test(expected=SingularMatrixException.class) + public void testNonInvertible() { + /* + * Overrides the method from parent class, since the default singularity + * threshold (1e-14) does not trigger the expected exception. + */ + LinearProblem problem = new LinearProblem(new double[][] { + { 1, 2, -3 }, + { 2, 1, 3 }, + { -3, 0, -9 } + }, new double[] { 1, 1, 1 }); + + AbstractLeastSquaresOptimizer optimizer = createOptimizer(); + PointVectorValuePair optimum + = optimizer.optimize(new MaxEval(100), + problem.getModelFunction(), + problem.getModelFunctionJacobian(), + problem.getTarget(), + new Weight(new double[] { 1, 1, 1 }), + new InitialGuess(new double[] { 0, 0, 0 })); + Assert.assertTrue(FastMath.sqrt(optimizer.getTargetSize()) * optimizer.getRMS() > 0.6); + + optimizer.computeCovariances(optimum.getPoint(), 1.5e-14); + } + + @Test + public void testControlParameters() { + CircleVectorial circle = new CircleVectorial(); + circle.addPoint( 30.0, 68.0); + circle.addPoint( 50.0, -6.0); + circle.addPoint(110.0, -20.0); + circle.addPoint( 35.0, 15.0); + circle.addPoint( 45.0, 97.0); + checkEstimate(circle.getModelFunction(), + circle.getModelFunctionJacobian(), + 0.1, 10, 1.0e-14, 1.0e-16, 1.0e-10, false); + checkEstimate(circle.getModelFunction(), + circle.getModelFunctionJacobian(), + 0.1, 10, 1.0e-15, 1.0e-17, 1.0e-10, true); + checkEstimate(circle.getModelFunction(), + circle.getModelFunctionJacobian(), + 0.1, 5, 1.0e-15, 1.0e-16, 1.0e-10, true); + circle.addPoint(300, -300); + checkEstimate(circle.getModelFunction(), + circle.getModelFunctionJacobian(), + 0.1, 20, 1.0e-18, 1.0e-16, 1.0e-10, true); + } + + private void checkEstimate(ModelFunction problem, + ModelFunctionJacobian problemJacobian, + double initialStepBoundFactor, int maxCostEval, + double costRelativeTolerance, double parRelativeTolerance, + double orthoTolerance, boolean shouldFail) { + try { + LevenbergMarquardtOptimizer optimizer + = new LevenbergMarquardtOptimizer(initialStepBoundFactor, + costRelativeTolerance, + parRelativeTolerance, + orthoTolerance, + Precision.SAFE_MIN); + optimizer.optimize(new MaxEval(maxCostEval), + problem, + problemJacobian, + new Target(new double[] { 0, 0, 0, 0, 0 }), + new Weight(new double[] { 1, 1, 1, 1, 1 }), + new InitialGuess(new double[] { 98.680, 47.345 })); + Assert.assertTrue(!shouldFail); + } catch (DimensionMismatchException ee) { + Assert.assertTrue(shouldFail); + } catch (TooManyEvaluationsException ee) { + Assert.assertTrue(shouldFail); + } + } + + /** + * Non-linear test case: fitting of decay curve (from Chapter 8 of + * Bevington's textbook, "Data reduction and analysis for the physical sciences"). + * XXX The expected ("reference") values may not be accurate and the tolerance too + * relaxed for this test to be currently really useful (the issue is under + * investigation). + */ + @Test + public void testBevington() { + final double[][] dataPoints = { + // column 1 = times + { 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, + 165, 180, 195, 210, 225, 240, 255, 270, 285, 300, + 315, 330, 345, 360, 375, 390, 405, 420, 435, 450, + 465, 480, 495, 510, 525, 540, 555, 570, 585, 600, + 615, 630, 645, 660, 675, 690, 705, 720, 735, 750, + 765, 780, 795, 810, 825, 840, 855, 870, 885, }, + // column 2 = measured counts + { 775, 479, 380, 302, 185, 157, 137, 119, 110, 89, + 74, 61, 66, 68, 48, 54, 51, 46, 55, 29, + 28, 37, 49, 26, 35, 29, 31, 24, 25, 35, + 24, 30, 26, 28, 21, 18, 20, 27, 17, 17, + 14, 17, 24, 11, 22, 17, 12, 10, 13, 16, + 9, 9, 14, 21, 17, 13, 12, 18, 10, }, + }; + + final BevingtonProblem problem = new BevingtonProblem(); + + final int len = dataPoints[0].length; + final double[] weights = new double[len]; + for (int i = 0; i < len; i++) { + problem.addPoint(dataPoints[0][i], + dataPoints[1][i]); + + weights[i] = 1 / dataPoints[1][i]; + } + + final LevenbergMarquardtOptimizer optimizer + = new LevenbergMarquardtOptimizer(); + + final PointVectorValuePair optimum + = optimizer.optimize(new MaxEval(100), + problem.getModelFunction(), + problem.getModelFunctionJacobian(), + new Target(dataPoints[1]), + new Weight(weights), + new InitialGuess(new double[] { 10, 900, 80, 27, 225 })); + + final double[] solution = optimum.getPoint(); + final double[] expectedSolution = { 10.4, 958.3, 131.4, 33.9, 205.0 }; + + final double[][] covarMatrix = optimizer.computeCovariances(solution, 1e-14); + final double[][] expectedCovarMatrix = { + { 3.38, -3.69, 27.98, -2.34, -49.24 }, + { -3.69, 2492.26, 81.89, -69.21, -8.9 }, + { 27.98, 81.89, 468.99, -44.22, -615.44 }, + { -2.34, -69.21, -44.22, 6.39, 53.80 }, + { -49.24, -8.9, -615.44, 53.8, 929.45 } + }; + + final int numParams = expectedSolution.length; + + // Check that the computed solution is within the reference error range. + for (int i = 0; i < numParams; i++) { + final double error = FastMath.sqrt(expectedCovarMatrix[i][i]); + Assert.assertEquals("Parameter " + i, expectedSolution[i], solution[i], error); + } + + // Check that each entry of the computed covariance matrix is within 10% + // of the reference matrix entry. + for (int i = 0; i < numParams; i++) { + for (int j = 0; j < numParams; j++) { + Assert.assertEquals("Covariance matrix [" + i + "][" + j + "]", + expectedCovarMatrix[i][j], + covarMatrix[i][j], + FastMath.abs(0.1 * expectedCovarMatrix[i][j])); + } + } + } + + @Test + public void testCircleFitting2() { + final double xCenter = 123.456; + final double yCenter = 654.321; + final double xSigma = 10; + final double ySigma = 15; + final double radius = 111.111; + // The test is extremely sensitive to the seed. + final long seed = 59421061L; + final RandomCirclePointGenerator factory + = new RandomCirclePointGenerator(xCenter, yCenter, radius, + xSigma, ySigma, + seed); + final CircleProblem circle = new CircleProblem(xSigma, ySigma); + + final int numPoints = 10; + for (Vector2D p : factory.generate(numPoints)) { + circle.addPoint(p.getX(), p.getY()); + } + + // First guess for the center's coordinates and radius. + final double[] init = { 90, 659, 115 }; + + final LevenbergMarquardtOptimizer optimizer + = new LevenbergMarquardtOptimizer(); + final PointVectorValuePair optimum = optimizer.optimize(new MaxEval(100), + circle.getModelFunction(), + circle.getModelFunctionJacobian(), + new Target(circle.target()), + new Weight(circle.weight()), + new InitialGuess(init)); + + final double[] paramFound = optimum.getPoint(); + + // Retrieve errors estimation. + final double[] asymptoticStandardErrorFound = optimizer.computeSigma(paramFound, 1e-14); + + // Check that the parameters are found within the assumed error bars. + Assert.assertEquals(xCenter, paramFound[0], asymptoticStandardErrorFound[0]); + Assert.assertEquals(yCenter, paramFound[1], asymptoticStandardErrorFound[1]); + Assert.assertEquals(radius, paramFound[2], asymptoticStandardErrorFound[2]); + } + + private static class QuadraticProblem { + private List x; + private List y; + + public QuadraticProblem() { + x = new ArrayList(); + y = new ArrayList(); + } + + public void addPoint(double x, double y) { + this.x.add(x); + this.y.add(y); + } + + public ModelFunction getModelFunction() { + return new ModelFunction(new MultivariateVectorFunction() { + public double[] value(double[] variables) { + double[] values = new double[x.size()]; + for (int i = 0; i < values.length; ++i) { + values[i] = (variables[0] * x.get(i) + variables[1]) * x.get(i) + variables[2]; + } + return values; + } + }); + } + + public ModelFunctionJacobian getModelFunctionJacobian() { + return new ModelFunctionJacobian(new MultivariateMatrixFunction() { + public double[][] value(double[] params) { + double[][] jacobian = new double[x.size()][3]; + for (int i = 0; i < jacobian.length; ++i) { + jacobian[i][0] = x.get(i) * x.get(i); + jacobian[i][1] = x.get(i); + jacobian[i][2] = 1.0; + } + return jacobian; + } + }); + } + } + + private static class BevingtonProblem { + private List time; + private List count; + + public BevingtonProblem() { + time = new ArrayList(); + count = new ArrayList(); + } + + public void addPoint(double t, double c) { + time.add(t); + count.add(c); + } + + public ModelFunction getModelFunction() { + return new ModelFunction(new MultivariateVectorFunction() { + public double[] value(double[] params) { + double[] values = new double[time.size()]; + for (int i = 0; i < values.length; ++i) { + final double t = time.get(i); + values[i] = params[0] + + params[1] * Math.exp(-t / params[3]) + + params[2] * Math.exp(-t / params[4]); + } + return values; + } + }); + } + + public ModelFunctionJacobian getModelFunctionJacobian() { + return new ModelFunctionJacobian(new MultivariateMatrixFunction() { + public double[][] value(double[] params) { + double[][] jacobian = new double[time.size()][5]; + + for (int i = 0; i < jacobian.length; ++i) { + final double t = time.get(i); + jacobian[i][0] = 1; + + final double p3 = params[3]; + final double p4 = params[4]; + final double tOp3 = t / p3; + final double tOp4 = t / p4; + jacobian[i][1] = Math.exp(-tOp3); + jacobian[i][2] = Math.exp(-tOp4); + jacobian[i][3] = params[1] * Math.exp(-tOp3) * tOp3 / p3; + jacobian[i][4] = params[2] * Math.exp(-tOp4) * tOp4 / p4; + } + return jacobian; + } + }); + } + } +} diff --git a/src/test/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/MinpackTest.java b/src/test/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/MinpackTest.java new file mode 100644 index 000000000..18e1ac6f5 --- /dev/null +++ b/src/test/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/MinpackTest.java @@ -0,0 +1,1499 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.commons.math3.optim.nonlinear.vector.jacobian; + +import java.io.Serializable; +import java.util.Arrays; +import org.apache.commons.math3.exception.TooManyEvaluationsException; +import org.apache.commons.math3.analysis.MultivariateVectorFunction; +import org.apache.commons.math3.analysis.MultivariateMatrixFunction; +import org.apache.commons.math3.optim.PointVectorValuePair; +import org.apache.commons.math3.optim.InitialGuess; +import org.apache.commons.math3.optim.MaxEval; +import org.apache.commons.math3.optim.nonlinear.vector.Target; +import org.apache.commons.math3.optim.nonlinear.vector.Weight; +import org.apache.commons.math3.optim.nonlinear.vector.ModelFunction; +import org.apache.commons.math3.optim.nonlinear.vector.ModelFunctionJacobian; +import org.apache.commons.math3.util.FastMath; +import org.junit.Assert; +import org.junit.Test; + +/** + *

              Some of the unit tests are re-implementations of the MINPACK file17 and file22 test files. + * The redistribution policy for MINPACK is available here, for + * convenience, it is reproduced below.

              + + * + * + * + *
              + * Minpack Copyright Notice (1999) University of Chicago. + * All rights reserved + *
              + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + *
                + *
              1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer.
              2. + *
              3. Redistributions in binary form must reproduce the above + * copyright notice, this list of conditions and the following + * disclaimer in the documentation and/or other materials provided + * with the distribution.
              4. + *
              5. The end-user documentation included with the redistribution, if any, + * must include the following acknowledgment: + * This product includes software developed by the University of + * Chicago, as Operator of Argonne National Laboratory. + * Alternately, this acknowledgment may appear in the software itself, + * if and wherever such third-party acknowledgments normally appear.
              6. + *
              7. WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS" + * WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER, THE + * UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND + * THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES + * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE + * OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY + * OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR + * USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF + * THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4) + * DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION + * UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL + * BE CORRECTED.
              8. + *
              9. LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT + * HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF + * ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT, + * INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF + * ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF + * PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER + * SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT + * (INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE, + * EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE + * POSSIBILITY OF SUCH LOSS OR DAMAGES.
              10. + *
                + + * @author Argonne National Laboratory. MINPACK project. March 1980 (original fortran minpack tests) + * @author Burton S. Garbow (original fortran minpack tests) + * @author Kenneth E. Hillstrom (original fortran minpack tests) + * @author Jorge J. More (original fortran minpack tests) + * @author Luc Maisonobe (non-minpack tests and minpack tests Java translation) + */ +public class MinpackTest { + + @Test + public void testMinpackLinearFullRank() { + minpackTest(new LinearFullRankFunction(10, 5, 1.0, + 5.0, 2.23606797749979), false); + minpackTest(new LinearFullRankFunction(50, 5, 1.0, + 8.06225774829855, 6.70820393249937), false); + } + + @Test + public void testMinpackLinearRank1() { + minpackTest(new LinearRank1Function(10, 5, 1.0, + 291.521868819476, 1.4638501094228), false); + minpackTest(new LinearRank1Function(50, 5, 1.0, + 3101.60039334535, 3.48263016573496), false); + } + + @Test + public void testMinpackLinearRank1ZeroColsAndRows() { + minpackTest(new LinearRank1ZeroColsAndRowsFunction(10, 5, 1.0), false); + minpackTest(new LinearRank1ZeroColsAndRowsFunction(50, 5, 1.0), false); + } + + @Test + public void testMinpackRosenbrok() { + minpackTest(new RosenbrockFunction(new double[] { -1.2, 1.0 }, + FastMath.sqrt(24.2)), false); + minpackTest(new RosenbrockFunction(new double[] { -12.0, 10.0 }, + FastMath.sqrt(1795769.0)), false); + minpackTest(new RosenbrockFunction(new double[] { -120.0, 100.0 }, + 11.0 * FastMath.sqrt(169000121.0)), false); + } + + @Test + public void testMinpackHelicalValley() { + minpackTest(new HelicalValleyFunction(new double[] { -1.0, 0.0, 0.0 }, + 50.0), false); + minpackTest(new HelicalValleyFunction(new double[] { -10.0, 0.0, 0.0 }, + 102.95630140987), false); + minpackTest(new HelicalValleyFunction(new double[] { -100.0, 0.0, 0.0}, + 991.261822123701), false); + } + + @Test + public void testMinpackPowellSingular() { + minpackTest(new PowellSingularFunction(new double[] { 3.0, -1.0, 0.0, 1.0 }, + 14.6628782986152), false); + minpackTest(new PowellSingularFunction(new double[] { 30.0, -10.0, 0.0, 10.0 }, + 1270.9838708654), false); + minpackTest(new PowellSingularFunction(new double[] { 300.0, -100.0, 0.0, 100.0 }, + 126887.903284750), false); + } + + @Test + public void testMinpackFreudensteinRoth() { + minpackTest(new FreudensteinRothFunction(new double[] { 0.5, -2.0 }, + 20.0124960961895, 6.99887517584575, + new double[] { + 11.4124844654993, + -0.896827913731509 + }), false); + minpackTest(new FreudensteinRothFunction(new double[] { 5.0, -20.0 }, + 12432.833948863, 6.9988751744895, + new double[] { + 11.41300466147456, + -0.896796038685959 + }), false); + minpackTest(new FreudensteinRothFunction(new double[] { 50.0, -200.0 }, + 11426454.595762, 6.99887517242903, + new double[] { + 11.412781785788564, + -0.8968051074920405 + }), false); + } + + @Test + public void testMinpackBard() { + minpackTest(new BardFunction(1.0, 6.45613629515967, 0.0906359603390466, + new double[] { + 0.0824105765758334, + 1.1330366534715, + 2.34369463894115 + }), false); + minpackTest(new BardFunction(10.0, 36.1418531596785, 4.17476870138539, + new double[] { + 0.840666673818329, + -158848033.259565, + -164378671.653535 + }), false); + minpackTest(new BardFunction(100.0, 384.114678637399, 4.17476870135969, + new double[] { + 0.840666673867645, + -158946167.205518, + -164464906.857771 + }), false); + } + + @Test + public void testMinpackKowalikOsborne() { + minpackTest(new KowalikOsborneFunction(new double[] { 0.25, 0.39, 0.415, 0.39 }, + 0.0728915102882945, + 0.017535837721129, + new double[] { + 0.192807810476249, + 0.191262653354071, + 0.123052801046931, + 0.136053221150517 + }), false); + minpackTest(new KowalikOsborneFunction(new double[] { 2.5, 3.9, 4.15, 3.9 }, + 2.97937007555202, + 0.032052192917937, + new double[] { + 728675.473768287, + -14.0758803129393, + -32977797.7841797, + -20571594.1977912 + }), false); + minpackTest(new KowalikOsborneFunction(new double[] { 25.0, 39.0, 41.5, 39.0 }, + 29.9590617016037, + 0.0175364017658228, + new double[] { + 0.192948328597594, + 0.188053165007911, + 0.122430604321144, + 0.134575665392506 + }), false); + } + + @Test + public void testMinpackMeyer() { + minpackTest(new MeyerFunction(new double[] { 0.02, 4000.0, 250.0 }, + 41153.4665543031, 9.37794514651874, + new double[] { + 0.00560963647102661, + 6181.34634628659, + 345.223634624144 + }), false); + minpackTest(new MeyerFunction(new double[] { 0.2, 40000.0, 2500.0 }, + 4168216.89130846, 792.917871779501, + new double[] { + 1.42367074157994e-11, + 33695.7133432541, + 901.268527953801 + }), true); + } + + @Test + public void testMinpackWatson() { + minpackTest(new WatsonFunction(6, 0.0, + 5.47722557505166, 0.0478295939097601, + new double[] { + -0.0157249615083782, 1.01243488232965, + -0.232991722387673, 1.26043101102818, + -1.51373031394421, 0.99299727291842 + }), false); + minpackTest(new WatsonFunction(6, 10.0, + 6433.12578950026, 0.0478295939096951, + new double[] { + -0.0157251901386677, 1.01243485860105, + -0.232991545843829, 1.26042932089163, + -1.51372776706575, 0.99299573426328 + }), false); + minpackTest(new WatsonFunction(6, 100.0, + 674256.040605213, 0.047829593911544, + new double[] { + -0.0157247019712586, 1.01243490925658, + -0.232991922761641, 1.26043292929555, + -1.51373320452707, 0.99299901922322 + }), false); + minpackTest(new WatsonFunction(9, 0.0, + 5.47722557505166, 0.00118311459212420, + new double[] { + -0.153070644166722e-4, 0.999789703934597, + 0.0147639634910978, 0.146342330145992, + 1.00082109454817, -2.61773112070507, + 4.10440313943354, -3.14361226236241, + 1.05262640378759 + }), false); + minpackTest(new WatsonFunction(9, 10.0, + 12088.127069307, 0.00118311459212513, + new double[] { + -0.153071334849279e-4, 0.999789703941234, + 0.0147639629786217, 0.146342334818836, + 1.00082107321386, -2.61773107084722, + 4.10440307655564, -3.14361222178686, + 1.05262639322589 + }), false); + minpackTest(new WatsonFunction(9, 100.0, + 1269109.29043834, 0.00118311459212384, + new double[] { + -0.153069523352176e-4, 0.999789703958371, + 0.0147639625185392, 0.146342341096326, + 1.00082104729164, -2.61773101573645, + 4.10440301427286, -3.14361218602503, + 1.05262638516774 + }), false); + minpackTest(new WatsonFunction(12, 0.0, + 5.47722557505166, 0.217310402535861e-4, + new double[] { + -0.660266001396382e-8, 1.00000164411833, + -0.000563932146980154, 0.347820540050756, + -0.156731500244233, 1.05281515825593, + -3.24727109519451, 7.2884347837505, + -10.271848098614, 9.07411353715783, + -4.54137541918194, 1.01201187975044 + }), false); + minpackTest(new WatsonFunction(12, 10.0, + 19220.7589790951, 0.217310402518509e-4, + new double[] { + -0.663710223017410e-8, 1.00000164411787, + -0.000563932208347327, 0.347820540486998, + -0.156731503955652, 1.05281517654573, + -3.2472711515214, 7.28843489430665, + -10.2718482369638, 9.07411364383733, + -4.54137546533666, 1.01201188830857 + }), false); + minpackTest(new WatsonFunction(12, 100.0, + 2018918.04462367, 0.217310402539845e-4, + new double[] { + -0.663806046485249e-8, 1.00000164411786, + -0.000563932210324959, 0.347820540503588, + -0.156731504091375, 1.05281517718031, + -3.24727115337025, 7.28843489775302, + -10.2718482410813, 9.07411364688464, + -4.54137546660822, 1.0120118885369 + }), false); + } + + @Test + public void testMinpackBox3Dimensional() { + minpackTest(new Box3DimensionalFunction(10, new double[] { 0.0, 10.0, 20.0 }, + 32.1115837449572), false); + } + + @Test + public void testMinpackJennrichSampson() { + minpackTest(new JennrichSampsonFunction(10, new double[] { 0.3, 0.4 }, + 64.5856498144943, 11.1517793413499, + new double[] { +// 0.2578330049, 0.257829976764542 + 0.2578199266368004, 0.25782997676455244 + }), false); + } + + @Test + public void testMinpackBrownDennis() { + minpackTest(new BrownDennisFunction(20, + new double[] { 25.0, 5.0, -5.0, -1.0 }, + 2815.43839161816, 292.954288244866, + new double[] { + -11.59125141003, 13.2024883984741, + -0.403574643314272, 0.236736269844604 + }), false); + minpackTest(new BrownDennisFunction(20, + new double[] { 250.0, 50.0, -50.0, -10.0 }, + 555073.354173069, 292.954270581415, + new double[] { + -11.5959274272203, 13.2041866926242, + -0.403417362841545, 0.236771143410386 + }), false); + minpackTest(new BrownDennisFunction(20, + new double[] { 2500.0, 500.0, -500.0, -100.0 }, + 61211252.2338581, 292.954306151134, + new double[] { + -11.5902596937374, 13.2020628854665, + -0.403688070279258, 0.236665033746463 + }), false); + } + + @Test + public void testMinpackChebyquad() { + minpackTest(new ChebyquadFunction(1, 8, 1.0, + 1.88623796907732, 1.88623796907732, + new double[] { 0.5 }), false); + minpackTest(new ChebyquadFunction(1, 8, 10.0, + 5383344372.34005, 1.88424820499951, + new double[] { 0.9817314924684 }), false); + minpackTest(new ChebyquadFunction(1, 8, 100.0, + 0.118088726698392e19, 1.88424820499347, + new double[] { 0.9817314852934 }), false); + minpackTest(new ChebyquadFunction(8, 8, 1.0, + 0.196513862833975, 0.0593032355046727, + new double[] { + 0.0431536648587336, 0.193091637843267, + 0.266328593812698, 0.499999334628884, + 0.500000665371116, 0.733671406187302, + 0.806908362156733, 0.956846335141266 + }), false); + minpackTest(new ChebyquadFunction(9, 9, 1.0, + 0.16994993465202, 0.0, + new double[] { + 0.0442053461357828, 0.199490672309881, + 0.23561910847106, 0.416046907892598, + 0.5, 0.583953092107402, + 0.764380891528940, 0.800509327690119, + 0.955794653864217 + }), false); + minpackTest(new ChebyquadFunction(10, 10, 1.0, + 0.183747831178711, 0.0806471004038253, + new double[] { + 0.0596202671753563, 0.166708783805937, + 0.239171018813509, 0.398885290346268, + 0.398883667870681, 0.601116332129320, + 0.60111470965373, 0.760828981186491, + 0.833291216194063, 0.940379732824644 + }), false); + } + + @Test + public void testMinpackBrownAlmostLinear() { + minpackTest(new BrownAlmostLinearFunction(10, 0.5, + 16.5302162063499, 0.0, + new double[] { + 0.979430303349862, 0.979430303349862, + 0.979430303349862, 0.979430303349862, + 0.979430303349862, 0.979430303349862, + 0.979430303349862, 0.979430303349862, + 0.979430303349862, 1.20569696650138 + }), false); + minpackTest(new BrownAlmostLinearFunction(10, 5.0, + 9765624.00089211, 0.0, + new double[] { + 0.979430303349865, 0.979430303349865, + 0.979430303349865, 0.979430303349865, + 0.979430303349865, 0.979430303349865, + 0.979430303349865, 0.979430303349865, + 0.979430303349865, 1.20569696650135 + }), false); + minpackTest(new BrownAlmostLinearFunction(10, 50.0, + 0.9765625e17, 0.0, + new double[] { + 1.0, 1.0, 1.0, 1.0, 1.0, + 1.0, 1.0, 1.0, 1.0, 1.0 + }), false); + minpackTest(new BrownAlmostLinearFunction(30, 0.5, + 83.476044467848, 0.0, + new double[] { + 0.997754216442807, 0.997754216442807, + 0.997754216442807, 0.997754216442807, + 0.997754216442807, 0.997754216442807, + 0.997754216442807, 0.997754216442807, + 0.997754216442807, 0.997754216442807, + 0.997754216442807, 0.997754216442807, + 0.997754216442807, 0.997754216442807, + 0.997754216442807, 0.997754216442807, + 0.997754216442807, 0.997754216442807, + 0.997754216442807, 0.997754216442807, + 0.997754216442807, 0.997754216442807, + 0.997754216442807, 0.997754216442807, + 0.997754216442807, 0.997754216442807, + 0.997754216442807, 0.997754216442807, + 0.997754216442807, 1.06737350671578 + }), false); + minpackTest(new BrownAlmostLinearFunction(40, 0.5, + 128.026364472323, 0.0, + new double[] { + 1.00000000000002, 1.00000000000002, + 1.00000000000002, 1.00000000000002, + 1.00000000000002, 1.00000000000002, + 1.00000000000002, 1.00000000000002, + 1.00000000000002, 1.00000000000002, + 1.00000000000002, 1.00000000000002, + 1.00000000000002, 1.00000000000002, + 1.00000000000002, 1.00000000000002, + 1.00000000000002, 1.00000000000002, + 1.00000000000002, 1.00000000000002, + 1.00000000000002, 1.00000000000002, + 1.00000000000002, 1.00000000000002, + 1.00000000000002, 1.00000000000002, + 1.00000000000002, 1.00000000000002, + 1.00000000000002, 1.00000000000002, + 1.00000000000002, 1.00000000000002, + 1.00000000000002, 1.00000000000002, + 0.999999999999121 + }), false); + } + + @Test + public void testMinpackOsborne1() { + minpackTest(new Osborne1Function(new double[] { 0.5, 1.5, -1.0, 0.01, 0.02, }, + 0.937564021037838, 0.00739249260904843, + new double[] { + 0.375410049244025, 1.93584654543108, + -1.46468676748716, 0.0128675339110439, + 0.0221227011813076 + }), false); + } + + @Test + public void testMinpackOsborne2() { + minpackTest(new Osborne2Function(new double[] { + 1.3, 0.65, 0.65, 0.7, 0.6, + 3.0, 5.0, 7.0, 2.0, 4.5, 5.5 + }, + 1.44686540984712, 0.20034404483314, + new double[] { + 1.30997663810096, 0.43155248076, + 0.633661261602859, 0.599428560991695, + 0.754179768272449, 0.904300082378518, + 1.36579949521007, 4.82373199748107, + 2.39868475104871, 4.56887554791452, + 5.67534206273052 + }), false); + } + + private void minpackTest(MinpackFunction function, boolean exceptionExpected) { + LevenbergMarquardtOptimizer optimizer + = new LevenbergMarquardtOptimizer(FastMath.sqrt(2.22044604926e-16), + FastMath.sqrt(2.22044604926e-16), + 2.22044604926e-16); + try { + PointVectorValuePair optimum + = optimizer.optimize(new MaxEval(400 * (function.getN() + 1)), + function.getModelFunction(), + function.getModelFunctionJacobian(), + new Target(function.getTarget()), + new Weight(function.getWeight()), + new InitialGuess(function.getStartPoint())); + Assert.assertFalse(exceptionExpected); + function.checkTheoreticalMinCost(optimizer.getRMS()); + function.checkTheoreticalMinParams(optimum); + } catch (TooManyEvaluationsException e) { + Assert.assertTrue(exceptionExpected); + } + } + + private static abstract class MinpackFunction { + protected int n; + protected int m; + protected double[] startParams; + protected double theoreticalMinCost; + protected double[] theoreticalMinParams; + protected double costAccuracy; + protected double paramsAccuracy; + + protected MinpackFunction(int m, double[] startParams, + double theoreticalMinCost, + double[] theoreticalMinParams) { + this.m = m; + this.n = startParams.length; + this.startParams = startParams.clone(); + this.theoreticalMinCost = theoreticalMinCost; + this.theoreticalMinParams = theoreticalMinParams; + this.costAccuracy = 1.0e-8; + this.paramsAccuracy = 1.0e-5; + } + + protected static double[] buildArray(int n, double x) { + double[] array = new double[n]; + Arrays.fill(array, x); + return array; + } + + public double[] getTarget() { + return buildArray(m, 0.0); + } + + public double[] getWeight() { + return buildArray(m, 1.0); + } + + public double[] getStartPoint() { + return startParams.clone(); + } + + protected void setCostAccuracy(double costAccuracy) { + this.costAccuracy = costAccuracy; + } + + protected void setParamsAccuracy(double paramsAccuracy) { + this.paramsAccuracy = paramsAccuracy; + } + + public int getN() { + return startParams.length; + } + + public void checkTheoreticalMinCost(double rms) { + double threshold = costAccuracy * (1.0 + theoreticalMinCost); + Assert.assertEquals(theoreticalMinCost, FastMath.sqrt(m) * rms, threshold); + } + + public void checkTheoreticalMinParams(PointVectorValuePair optimum) { + double[] params = optimum.getPointRef(); + if (theoreticalMinParams != null) { + for (int i = 0; i < theoreticalMinParams.length; ++i) { + double mi = theoreticalMinParams[i]; + double vi = params[i]; + Assert.assertEquals(mi, vi, paramsAccuracy * (1.0 + FastMath.abs(mi))); + } + } + } + + public ModelFunction getModelFunction() { + return new ModelFunction(new MultivariateVectorFunction() { + public double[] value(double[] point) { + return computeValue(point); + } + }); + } + + public ModelFunctionJacobian getModelFunctionJacobian() { + return new ModelFunctionJacobian(new MultivariateMatrixFunction() { + public double[][] value(double[] point) { + return computeJacobian(point); + } + }); + } + + public abstract double[][] computeJacobian(double[] variables); + public abstract double[] computeValue(double[] variables); + } + + private static class LinearFullRankFunction extends MinpackFunction { + private static final long serialVersionUID = -9030323226268039536L; + + public LinearFullRankFunction(int m, int n, double x0, + double theoreticalStartCost, + double theoreticalMinCost) { + super(m, buildArray(n, x0), theoreticalMinCost, + buildArray(n, -1.0)); + } + + @Override + public double[][] computeJacobian(double[] variables) { + double t = 2.0 / m; + double[][] jacobian = new double[m][]; + for (int i = 0; i < m; ++i) { + jacobian[i] = new double[n]; + for (int j = 0; j < n; ++j) { + jacobian[i][j] = (i == j) ? (1 - t) : -t; + } + } + return jacobian; + } + + @Override + public double[] computeValue(double[] variables) { + double sum = 0; + for (int i = 0; i < n; ++i) { + sum += variables[i]; + } + double t = 1 + 2 * sum / m; + double[] f = new double[m]; + for (int i = 0; i < n; ++i) { + f[i] = variables[i] - t; + } + Arrays.fill(f, n, m, -t); + return f; + } + } + + private static class LinearRank1Function extends MinpackFunction { + private static final long serialVersionUID = 8494863245104608300L; + + public LinearRank1Function(int m, int n, double x0, + double theoreticalStartCost, + double theoreticalMinCost) { + super(m, buildArray(n, x0), theoreticalMinCost, null); + } + + @Override + public double[][] computeJacobian(double[] variables) { + double[][] jacobian = new double[m][]; + for (int i = 0; i < m; ++i) { + jacobian[i] = new double[n]; + for (int j = 0; j < n; ++j) { + jacobian[i][j] = (i + 1) * (j + 1); + } + } + return jacobian; + } + + @Override + public double[] computeValue(double[] variables) { + double[] f = new double[m]; + double sum = 0; + for (int i = 0; i < n; ++i) { + sum += (i + 1) * variables[i]; + } + for (int i = 0; i < m; ++i) { + f[i] = (i + 1) * sum - 1; + } + return f; + } + } + + private static class LinearRank1ZeroColsAndRowsFunction extends MinpackFunction { + private static final long serialVersionUID = -3316653043091995018L; + + public LinearRank1ZeroColsAndRowsFunction(int m, int n, double x0) { + super(m, buildArray(n, x0), + FastMath.sqrt((m * (m + 3) - 6) / (2.0 * (2 * m - 3))), + null); + } + + @Override + public double[][] computeJacobian(double[] variables) { + double[][] jacobian = new double[m][]; + for (int i = 0; i < m; ++i) { + jacobian[i] = new double[n]; + jacobian[i][0] = 0; + for (int j = 1; j < (n - 1); ++j) { + if (i == 0) { + jacobian[i][j] = 0; + } else if (i != (m - 1)) { + jacobian[i][j] = i * (j + 1); + } else { + jacobian[i][j] = 0; + } + } + jacobian[i][n - 1] = 0; + } + return jacobian; + } + + @Override + public double[] computeValue(double[] variables) { + double[] f = new double[m]; + double sum = 0; + for (int i = 1; i < (n - 1); ++i) { + sum += (i + 1) * variables[i]; + } + for (int i = 0; i < (m - 1); ++i) { + f[i] = i * sum - 1; + } + f[m - 1] = -1; + return f; + } + } + + private static class RosenbrockFunction extends MinpackFunction { + private static final long serialVersionUID = 2893438180956569134L; + public RosenbrockFunction(double[] startParams, double theoreticalStartCost) { + super(2, startParams, 0.0, buildArray(2, 1.0)); + } + + @Override + public double[][] computeJacobian(double[] variables) { + double x1 = variables[0]; + return new double[][] { { -20 * x1, 10 }, { -1, 0 } }; + } + + @Override + public double[] computeValue(double[] variables) { + double x1 = variables[0]; + double x2 = variables[1]; + return new double[] { 10 * (x2 - x1 * x1), 1 - x1 }; + } + } + + private static class HelicalValleyFunction extends MinpackFunction { + private static final long serialVersionUID = 220613787843200102L; + public HelicalValleyFunction(double[] startParams, + double theoreticalStartCost) { + super(3, startParams, 0.0, new double[] { 1.0, 0.0, 0.0 }); + } + + @Override + public double[][] computeJacobian(double[] variables) { + double x1 = variables[0]; + double x2 = variables[1]; + double tmpSquare = x1 * x1 + x2 * x2; + double tmp1 = twoPi * tmpSquare; + double tmp2 = FastMath.sqrt(tmpSquare); + return new double[][] { + { 100 * x2 / tmp1, -100 * x1 / tmp1, 10 }, + { 10 * x1 / tmp2, 10 * x2 / tmp2, 0 }, + { 0, 0, 1 } + }; + } + + @Override + public double[] computeValue(double[] variables) { + double x1 = variables[0]; + double x2 = variables[1]; + double x3 = variables[2]; + double tmp1; + if (x1 == 0) { + tmp1 = (x2 >= 0) ? 0.25 : -0.25; + } else { + tmp1 = FastMath.atan(x2 / x1) / twoPi; + if (x1 < 0) { + tmp1 += 0.5; + } + } + double tmp2 = FastMath.sqrt(x1 * x1 + x2 * x2); + return new double[] { + 10.0 * (x3 - 10 * tmp1), + 10.0 * (tmp2 - 1), + x3 + }; + } + + private static final double twoPi = 2.0 * FastMath.PI; + } + + private static class PowellSingularFunction extends MinpackFunction { + private static final long serialVersionUID = 7298364171208142405L; + + public PowellSingularFunction(double[] startParams, + double theoreticalStartCost) { + super(4, startParams, 0.0, buildArray(4, 0.0)); + } + + @Override + public double[][] computeJacobian(double[] variables) { + double x1 = variables[0]; + double x2 = variables[1]; + double x3 = variables[2]; + double x4 = variables[3]; + return new double[][] { + { 1, 10, 0, 0 }, + { 0, 0, sqrt5, -sqrt5 }, + { 0, 2 * (x2 - 2 * x3), -4 * (x2 - 2 * x3), 0 }, + { 2 * sqrt10 * (x1 - x4), 0, 0, -2 * sqrt10 * (x1 - x4) } + }; + } + + @Override + public double[] computeValue(double[] variables) { + double x1 = variables[0]; + double x2 = variables[1]; + double x3 = variables[2]; + double x4 = variables[3]; + return new double[] { + x1 + 10 * x2, + sqrt5 * (x3 - x4), + (x2 - 2 * x3) * (x2 - 2 * x3), + sqrt10 * (x1 - x4) * (x1 - x4) + }; + } + + private static final double sqrt5 = FastMath.sqrt( 5.0); + private static final double sqrt10 = FastMath.sqrt(10.0); + } + + private static class FreudensteinRothFunction extends MinpackFunction { + private static final long serialVersionUID = 2892404999344244214L; + + public FreudensteinRothFunction(double[] startParams, + double theoreticalStartCost, + double theoreticalMinCost, + double[] theoreticalMinParams) { + super(2, startParams, theoreticalMinCost, + theoreticalMinParams); + } + + @Override + public double[][] computeJacobian(double[] variables) { + double x2 = variables[1]; + return new double[][] { + { 1, x2 * (10 - 3 * x2) - 2 }, + { 1, x2 * ( 2 + 3 * x2) - 14, } + }; + } + + @Override + public double[] computeValue(double[] variables) { + double x1 = variables[0]; + double x2 = variables[1]; + return new double[] { + -13.0 + x1 + ((5.0 - x2) * x2 - 2.0) * x2, + -29.0 + x1 + ((1.0 + x2) * x2 - 14.0) * x2 + }; + } + } + + private static class BardFunction extends MinpackFunction { + private static final long serialVersionUID = 5990442612572087668L; + + public BardFunction(double x0, + double theoreticalStartCost, + double theoreticalMinCost, + double[] theoreticalMinParams) { + super(15, buildArray(3, x0), theoreticalMinCost, + theoreticalMinParams); + } + + @Override + public double[][] computeJacobian(double[] variables) { + double x2 = variables[1]; + double x3 = variables[2]; + double[][] jacobian = new double[m][]; + for (int i = 0; i < m; ++i) { + double tmp1 = i + 1; + double tmp2 = 15 - i; + double tmp3 = (i <= 7) ? tmp1 : tmp2; + double tmp4 = x2 * tmp2 + x3 * tmp3; + tmp4 *= tmp4; + jacobian[i] = new double[] { -1, tmp1 * tmp2 / tmp4, tmp1 * tmp3 / tmp4 }; + } + return jacobian; + } + + @Override + public double[] computeValue(double[] variables) { + double x1 = variables[0]; + double x2 = variables[1]; + double x3 = variables[2]; + double[] f = new double[m]; + for (int i = 0; i < m; ++i) { + double tmp1 = i + 1; + double tmp2 = 15 - i; + double tmp3 = (i <= 7) ? tmp1 : tmp2; + f[i] = y[i] - (x1 + tmp1 / (x2 * tmp2 + x3 * tmp3)); + } + return f; + } + + private static final double[] y = { + 0.14, 0.18, 0.22, 0.25, 0.29, + 0.32, 0.35, 0.39, 0.37, 0.58, + 0.73, 0.96, 1.34, 2.10, 4.39 + }; + } + + private static class KowalikOsborneFunction extends MinpackFunction { + private static final long serialVersionUID = -4867445739880495801L; + + public KowalikOsborneFunction(double[] startParams, + double theoreticalStartCost, + double theoreticalMinCost, + double[] theoreticalMinParams) { + super(11, startParams, theoreticalMinCost, + theoreticalMinParams); + if (theoreticalStartCost > 20.0) { + setCostAccuracy(2.0e-4); + setParamsAccuracy(5.0e-3); + } + } + + @Override + public double[][] computeJacobian(double[] variables) { + double x1 = variables[0]; + double x2 = variables[1]; + double x3 = variables[2]; + double x4 = variables[3]; + double[][] jacobian = new double[m][]; + for (int i = 0; i < m; ++i) { + double tmp = v[i] * (v[i] + x3) + x4; + double j1 = -v[i] * (v[i] + x2) / tmp; + double j2 = -v[i] * x1 / tmp; + double j3 = j1 * j2; + double j4 = j3 / v[i]; + jacobian[i] = new double[] { j1, j2, j3, j4 }; + } + return jacobian; + } + + @Override + public double[] computeValue(double[] variables) { + double x1 = variables[0]; + double x2 = variables[1]; + double x3 = variables[2]; + double x4 = variables[3]; + double[] f = new double[m]; + for (int i = 0; i < m; ++i) { + f[i] = y[i] - x1 * (v[i] * (v[i] + x2)) / (v[i] * (v[i] + x3) + x4); + } + return f; + } + + private static final double[] v = { + 4.0, 2.0, 1.0, 0.5, 0.25, 0.167, 0.125, 0.1, 0.0833, 0.0714, 0.0625 + }; + + private static final double[] y = { + 0.1957, 0.1947, 0.1735, 0.1600, 0.0844, 0.0627, + 0.0456, 0.0342, 0.0323, 0.0235, 0.0246 + }; + } + + private static class MeyerFunction extends MinpackFunction { + private static final long serialVersionUID = -838060619150131027L; + + public MeyerFunction(double[] startParams, + double theoreticalStartCost, + double theoreticalMinCost, + double[] theoreticalMinParams) { + super(16, startParams, theoreticalMinCost, + theoreticalMinParams); + if (theoreticalStartCost > 1.0e6) { + setCostAccuracy(7.0e-3); + setParamsAccuracy(2.0e-2); + } + } + + @Override + public double[][] computeJacobian(double[] variables) { + double x1 = variables[0]; + double x2 = variables[1]; + double x3 = variables[2]; + double[][] jacobian = new double[m][]; + for (int i = 0; i < m; ++i) { + double temp = 5.0 * (i + 1) + 45.0 + x3; + double tmp1 = x2 / temp; + double tmp2 = FastMath.exp(tmp1); + double tmp3 = x1 * tmp2 / temp; + jacobian[i] = new double[] { tmp2, tmp3, -tmp1 * tmp3 }; + } + return jacobian; + } + + @Override + public double[] computeValue(double[] variables) { + double x1 = variables[0]; + double x2 = variables[1]; + double x3 = variables[2]; + double[] f = new double[m]; + for (int i = 0; i < m; ++i) { + f[i] = x1 * FastMath.exp(x2 / (5.0 * (i + 1) + 45.0 + x3)) - y[i]; + } + return f; + } + + private static final double[] y = { + 34780.0, 28610.0, 23650.0, 19630.0, + 16370.0, 13720.0, 11540.0, 9744.0, + 8261.0, 7030.0, 6005.0, 5147.0, + 4427.0, 3820.0, 3307.0, 2872.0 + }; + } + + private static class WatsonFunction extends MinpackFunction { + private static final long serialVersionUID = -9034759294980218927L; + + public WatsonFunction(int n, double x0, + double theoreticalStartCost, + double theoreticalMinCost, + double[] theoreticalMinParams) { + super(31, buildArray(n, x0), theoreticalMinCost, + theoreticalMinParams); + } + + @Override + public double[][] computeJacobian(double[] variables) { + double[][] jacobian = new double[m][]; + + for (int i = 0; i < (m - 2); ++i) { + double div = (i + 1) / 29.0; + double s2 = 0.0; + double dx = 1.0; + for (int j = 0; j < n; ++j) { + s2 += dx * variables[j]; + dx *= div; + } + double temp= 2 * div * s2; + dx = 1.0 / div; + jacobian[i] = new double[n]; + for (int j = 0; j < n; ++j) { + jacobian[i][j] = dx * (j - temp); + dx *= div; + } + } + + jacobian[m - 2] = new double[n]; + jacobian[m - 2][0] = 1; + + jacobian[m - 1] = new double[n]; + jacobian[m - 1][0]= -2 * variables[0]; + jacobian[m - 1][1]= 1; + + return jacobian; + } + + @Override + public double[] computeValue(double[] variables) { + double[] f = new double[m]; + for (int i = 0; i < (m - 2); ++i) { + double div = (i + 1) / 29.0; + double s1 = 0; + double dx = 1; + for (int j = 1; j < n; ++j) { + s1 += j * dx * variables[j]; + dx *= div; + } + double s2 = 0; + dx = 1; + for (int j = 0; j < n; ++j) { + s2 += dx * variables[j]; + dx *= div; + } + f[i] = s1 - s2 * s2 - 1; + } + + double x1 = variables[0]; + double x2 = variables[1]; + f[m - 2] = x1; + f[m - 1] = x2 - x1 * x1 - 1; + + return f; + } + } + + private static class Box3DimensionalFunction extends MinpackFunction { + private static final long serialVersionUID = 5511403858142574493L; + + public Box3DimensionalFunction(int m, double[] startParams, + double theoreticalStartCost) { + super(m, startParams, 0.0, + new double[] { 1.0, 10.0, 1.0 }); + } + + @Override + public double[][] computeJacobian(double[] variables) { + double x1 = variables[0]; + double x2 = variables[1]; + double[][] jacobian = new double[m][]; + for (int i = 0; i < m; ++i) { + double tmp = (i + 1) / 10.0; + jacobian[i] = new double[] { + -tmp * FastMath.exp(-tmp * x1), + tmp * FastMath.exp(-tmp * x2), + FastMath.exp(-i - 1) - FastMath.exp(-tmp) + }; + } + return jacobian; + } + + @Override + public double[] computeValue(double[] variables) { + double x1 = variables[0]; + double x2 = variables[1]; + double x3 = variables[2]; + double[] f = new double[m]; + for (int i = 0; i < m; ++i) { + double tmp = (i + 1) / 10.0; + f[i] = FastMath.exp(-tmp * x1) - FastMath.exp(-tmp * x2) + + (FastMath.exp(-i - 1) - FastMath.exp(-tmp)) * x3; + } + return f; + } + } + + private static class JennrichSampsonFunction extends MinpackFunction { + private static final long serialVersionUID = -2489165190443352947L; + + public JennrichSampsonFunction(int m, double[] startParams, + double theoreticalStartCost, + double theoreticalMinCost, + double[] theoreticalMinParams) { + super(m, startParams, theoreticalMinCost, + theoreticalMinParams); + } + + @Override + public double[][] computeJacobian(double[] variables) { + double x1 = variables[0]; + double x2 = variables[1]; + double[][] jacobian = new double[m][]; + for (int i = 0; i < m; ++i) { + double t = i + 1; + jacobian[i] = new double[] { -t * FastMath.exp(t * x1), -t * FastMath.exp(t * x2) }; + } + return jacobian; + } + + @Override + public double[] computeValue(double[] variables) { + double x1 = variables[0]; + double x2 = variables[1]; + double[] f = new double[m]; + for (int i = 0; i < m; ++i) { + double temp = i + 1; + f[i] = 2 + 2 * temp - FastMath.exp(temp * x1) - FastMath.exp(temp * x2); + } + return f; + } + } + + private static class BrownDennisFunction extends MinpackFunction { + private static final long serialVersionUID = 8340018645694243910L; + + public BrownDennisFunction(int m, double[] startParams, + double theoreticalStartCost, + double theoreticalMinCost, + double[] theoreticalMinParams) { + super(m, startParams, theoreticalMinCost, + theoreticalMinParams); + setCostAccuracy(2.5e-8); + } + + @Override + public double[][] computeJacobian(double[] variables) { + double x1 = variables[0]; + double x2 = variables[1]; + double x3 = variables[2]; + double x4 = variables[3]; + double[][] jacobian = new double[m][]; + for (int i = 0; i < m; ++i) { + double temp = (i + 1) / 5.0; + double ti = FastMath.sin(temp); + double tmp1 = x1 + temp * x2 - FastMath.exp(temp); + double tmp2 = x3 + ti * x4 - FastMath.cos(temp); + jacobian[i] = new double[] { + 2 * tmp1, 2 * temp * tmp1, 2 * tmp2, 2 * ti * tmp2 + }; + } + return jacobian; + } + + @Override + public double[] computeValue(double[] variables) { + double x1 = variables[0]; + double x2 = variables[1]; + double x3 = variables[2]; + double x4 = variables[3]; + double[] f = new double[m]; + for (int i = 0; i < m; ++i) { + double temp = (i + 1) / 5.0; + double tmp1 = x1 + temp * x2 - FastMath.exp(temp); + double tmp2 = x3 + FastMath.sin(temp) * x4 - FastMath.cos(temp); + f[i] = tmp1 * tmp1 + tmp2 * tmp2; + } + return f; + } + } + + private static class ChebyquadFunction extends MinpackFunction { + private static final long serialVersionUID = -2394877275028008594L; + + private static double[] buildChebyquadArray(int n, double factor) { + double[] array = new double[n]; + double inv = factor / (n + 1); + for (int i = 0; i < n; ++i) { + array[i] = (i + 1) * inv; + } + return array; + } + + public ChebyquadFunction(int n, int m, double factor, + double theoreticalStartCost, + double theoreticalMinCost, + double[] theoreticalMinParams) { + super(m, buildChebyquadArray(n, factor), theoreticalMinCost, + theoreticalMinParams); + } + + @Override + public double[][] computeJacobian(double[] variables) { + double[][] jacobian = new double[m][]; + for (int i = 0; i < m; ++i) { + jacobian[i] = new double[n]; + } + + double dx = 1.0 / n; + for (int j = 0; j < n; ++j) { + double tmp1 = 1; + double tmp2 = 2 * variables[j] - 1; + double temp = 2 * tmp2; + double tmp3 = 0; + double tmp4 = 2; + for (int i = 0; i < m; ++i) { + jacobian[i][j] = dx * tmp4; + double ti = 4 * tmp2 + temp * tmp4 - tmp3; + tmp3 = tmp4; + tmp4 = ti; + ti = temp * tmp2 - tmp1; + tmp1 = tmp2; + tmp2 = ti; + } + } + + return jacobian; + } + + @Override + public double[] computeValue(double[] variables) { + double[] f = new double[m]; + + for (int j = 0; j < n; ++j) { + double tmp1 = 1; + double tmp2 = 2 * variables[j] - 1; + double temp = 2 * tmp2; + for (int i = 0; i < m; ++i) { + f[i] += tmp2; + double ti = temp * tmp2 - tmp1; + tmp1 = tmp2; + tmp2 = ti; + } + } + + double dx = 1.0 / n; + boolean iev = false; + for (int i = 0; i < m; ++i) { + f[i] *= dx; + if (iev) { + f[i] += 1.0 / (i * (i + 2)); + } + iev = ! iev; + } + + return f; + } + } + + private static class BrownAlmostLinearFunction extends MinpackFunction { + private static final long serialVersionUID = 8239594490466964725L; + + public BrownAlmostLinearFunction(int m, double factor, + double theoreticalStartCost, + double theoreticalMinCost, + double[] theoreticalMinParams) { + super(m, buildArray(m, factor), theoreticalMinCost, + theoreticalMinParams); + } + + @Override + public double[][] computeJacobian(double[] variables) { + double[][] jacobian = new double[m][]; + for (int i = 0; i < m; ++i) { + jacobian[i] = new double[n]; + } + + double prod = 1; + for (int j = 0; j < n; ++j) { + prod *= variables[j]; + for (int i = 0; i < n; ++i) { + jacobian[i][j] = 1; + } + jacobian[j][j] = 2; + } + + for (int j = 0; j < n; ++j) { + double temp = variables[j]; + if (temp == 0) { + temp = 1; + prod = 1; + for (int k = 0; k < n; ++k) { + if (k != j) { + prod *= variables[k]; + } + } + } + jacobian[n - 1][j] = prod / temp; + } + + return jacobian; + } + + @Override + public double[] computeValue(double[] variables) { + double[] f = new double[m]; + double sum = -(n + 1); + double prod = 1; + for (int j = 0; j < n; ++j) { + sum += variables[j]; + prod *= variables[j]; + } + for (int i = 0; i < n; ++i) { + f[i] = variables[i] + sum; + } + f[n - 1] = prod - 1; + return f; + } + } + + private static class Osborne1Function extends MinpackFunction { + private static final long serialVersionUID = 4006743521149849494L; + + public Osborne1Function(double[] startParams, + double theoreticalStartCost, + double theoreticalMinCost, + double[] theoreticalMinParams) { + super(33, startParams, theoreticalMinCost, + theoreticalMinParams); + } + + @Override + public double[][] computeJacobian(double[] variables) { + double x2 = variables[1]; + double x3 = variables[2]; + double x4 = variables[3]; + double x5 = variables[4]; + double[][] jacobian = new double[m][]; + for (int i = 0; i < m; ++i) { + double temp = 10.0 * i; + double tmp1 = FastMath.exp(-temp * x4); + double tmp2 = FastMath.exp(-temp * x5); + jacobian[i] = new double[] { + -1, -tmp1, -tmp2, temp * x2 * tmp1, temp * x3 * tmp2 + }; + } + return jacobian; + } + + @Override + public double[] computeValue(double[] variables) { + double x1 = variables[0]; + double x2 = variables[1]; + double x3 = variables[2]; + double x4 = variables[3]; + double x5 = variables[4]; + double[] f = new double[m]; + for (int i = 0; i < m; ++i) { + double temp = 10.0 * i; + double tmp1 = FastMath.exp(-temp * x4); + double tmp2 = FastMath.exp(-temp * x5); + f[i] = y[i] - (x1 + x2 * tmp1 + x3 * tmp2); + } + return f; + } + + private static final double[] y = { + 0.844, 0.908, 0.932, 0.936, 0.925, 0.908, 0.881, 0.850, 0.818, 0.784, 0.751, + 0.718, 0.685, 0.658, 0.628, 0.603, 0.580, 0.558, 0.538, 0.522, 0.506, 0.490, + 0.478, 0.467, 0.457, 0.448, 0.438, 0.431, 0.424, 0.420, 0.414, 0.411, 0.406 + }; + } + + private static class Osborne2Function extends MinpackFunction { + private static final long serialVersionUID = -8418268780389858746L; + + public Osborne2Function(double[] startParams, + double theoreticalStartCost, + double theoreticalMinCost, + double[] theoreticalMinParams) { + super(65, startParams, theoreticalMinCost, + theoreticalMinParams); + } + + @Override + public double[][] computeJacobian(double[] variables) { + double x01 = variables[0]; + double x02 = variables[1]; + double x03 = variables[2]; + double x04 = variables[3]; + double x05 = variables[4]; + double x06 = variables[5]; + double x07 = variables[6]; + double x08 = variables[7]; + double x09 = variables[8]; + double x10 = variables[9]; + double x11 = variables[10]; + double[][] jacobian = new double[m][]; + for (int i = 0; i < m; ++i) { + double temp = i / 10.0; + double tmp1 = FastMath.exp(-x05 * temp); + double tmp2 = FastMath.exp(-x06 * (temp - x09) * (temp - x09)); + double tmp3 = FastMath.exp(-x07 * (temp - x10) * (temp - x10)); + double tmp4 = FastMath.exp(-x08 * (temp - x11) * (temp - x11)); + jacobian[i] = new double[] { + -tmp1, + -tmp2, + -tmp3, + -tmp4, + temp * x01 * tmp1, + x02 * (temp - x09) * (temp - x09) * tmp2, + x03 * (temp - x10) * (temp - x10) * tmp3, + x04 * (temp - x11) * (temp - x11) * tmp4, + -2 * x02 * x06 * (temp - x09) * tmp2, + -2 * x03 * x07 * (temp - x10) * tmp3, + -2 * x04 * x08 * (temp - x11) * tmp4 + }; + } + return jacobian; + } + + @Override + public double[] computeValue(double[] variables) { + double x01 = variables[0]; + double x02 = variables[1]; + double x03 = variables[2]; + double x04 = variables[3]; + double x05 = variables[4]; + double x06 = variables[5]; + double x07 = variables[6]; + double x08 = variables[7]; + double x09 = variables[8]; + double x10 = variables[9]; + double x11 = variables[10]; + double[] f = new double[m]; + for (int i = 0; i < m; ++i) { + double temp = i / 10.0; + double tmp1 = FastMath.exp(-x05 * temp); + double tmp2 = FastMath.exp(-x06 * (temp - x09) * (temp - x09)); + double tmp3 = FastMath.exp(-x07 * (temp - x10) * (temp - x10)); + double tmp4 = FastMath.exp(-x08 * (temp - x11) * (temp - x11)); + f[i] = y[i] - (x01 * tmp1 + x02 * tmp2 + x03 * tmp3 + x04 * tmp4); + } + return f; + } + + private static final double[] y = { + 1.366, 1.191, 1.112, 1.013, 0.991, + 0.885, 0.831, 0.847, 0.786, 0.725, + 0.746, 0.679, 0.608, 0.655, 0.616, + 0.606, 0.602, 0.626, 0.651, 0.724, + 0.649, 0.649, 0.694, 0.644, 0.624, + 0.661, 0.612, 0.558, 0.533, 0.495, + 0.500, 0.423, 0.395, 0.375, 0.372, + 0.391, 0.396, 0.405, 0.428, 0.429, + 0.523, 0.562, 0.607, 0.653, 0.672, + 0.708, 0.633, 0.668, 0.645, 0.632, + 0.591, 0.559, 0.597, 0.625, 0.739, + 0.710, 0.729, 0.720, 0.636, 0.581, + 0.428, 0.292, 0.162, 0.098, 0.054 + }; + } +} diff --git a/src/test/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/RandomCirclePointGenerator.java b/src/test/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/RandomCirclePointGenerator.java new file mode 100644 index 000000000..2c747157b --- /dev/null +++ b/src/test/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/RandomCirclePointGenerator.java @@ -0,0 +1,91 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.nonlinear.vector.jacobian; + +import org.apache.commons.math3.random.RandomGenerator; +import org.apache.commons.math3.random.Well44497b; +import org.apache.commons.math3.util.MathUtils; +import org.apache.commons.math3.util.FastMath; +import org.apache.commons.math3.distribution.RealDistribution; +import org.apache.commons.math3.distribution.UniformRealDistribution; +import org.apache.commons.math3.distribution.NormalDistribution; +import org.apache.commons.math3.geometry.euclidean.twod.Vector2D; + +/** + * Factory for generating a cloud of points that approximate a circle. + */ +public class RandomCirclePointGenerator { + /** RNG for the x-coordinate of the center. */ + private final RealDistribution cX; + /** RNG for the y-coordinate of the center. */ + private final RealDistribution cY; + /** RNG for the parametric position of the point. */ + private final RealDistribution tP; + /** Radius of the circle. */ + private final double radius; + + /** + * @param x Abscissa of the circle center. + * @param y Ordinate of the circle center. + * @param radius Radius of the circle. + * @param xSigma Error on the x-coordinate of the circumference points. + * @param ySigma Error on the y-coordinate of the circumference points. + * @param seed RNG seed. + */ + public RandomCirclePointGenerator(double x, + double y, + double radius, + double xSigma, + double ySigma, + long seed) { + final RandomGenerator rng = new Well44497b(seed); + this.radius = radius; + cX = new NormalDistribution(rng, x, xSigma, + NormalDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY); + cY = new NormalDistribution(rng, y, ySigma, + NormalDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY); + tP = new UniformRealDistribution(rng, 0, MathUtils.TWO_PI, + UniformRealDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY); + } + + /** + * Point generator. + * + * @param n Number of points to create. + * @return the cloud of {@code n} points. + */ + public Vector2D[] generate(int n) { + final Vector2D[] cloud = new Vector2D[n]; + for (int i = 0; i < n; i++) { + cloud[i] = create(); + } + return cloud; + } + + /** + * Create one point. + * + * @return a point. + */ + private Vector2D create() { + final double t = tP.sample(); + final double pX = cX.sample() + radius * FastMath.cos(t); + final double pY = cY.sample() + radius * FastMath.sin(t); + + return new Vector2D(pX, pY); + } +} diff --git a/src/test/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/RandomStraightLinePointGenerator.java b/src/test/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/RandomStraightLinePointGenerator.java new file mode 100644 index 000000000..91e4baecb --- /dev/null +++ b/src/test/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/RandomStraightLinePointGenerator.java @@ -0,0 +1,98 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.commons.math3.optim.nonlinear.vector.jacobian; + +import java.awt.geom.Point2D; +import org.apache.commons.math3.random.RandomGenerator; +import org.apache.commons.math3.random.Well44497b; +import org.apache.commons.math3.distribution.RealDistribution; +import org.apache.commons.math3.distribution.UniformRealDistribution; +import org.apache.commons.math3.distribution.NormalDistribution; + +/** + * Factory for generating a cloud of points that approximate a straight line. + */ +public class RandomStraightLinePointGenerator { + /** Slope. */ + private final double slope; + /** Intercept. */ + private final double intercept; + /** RNG for the x-coordinate. */ + private final RealDistribution x; + /** RNG for the error on the y-coordinate. */ + private final RealDistribution error; + + /** + * The generator will create a cloud of points whose x-coordinates + * will be randomly sampled between {@code xLo} and {@code xHi}, and + * the corresponding y-coordinates will be computed as + *
                
                +     *  y = a x + b + N(0, error)
                +     * 
                + * where {@code N(mean, sigma)} is a Gaussian distribution with the + * given mean and standard deviation. + * + * @param a Slope. + * @param b Intercept. + * @param sigma Standard deviation on the y-coordinate of the point. + * @param lo Lowest value of the x-coordinate. + * @param hi Highest value of the x-coordinate. + * @param seed RNG seed. + */ + public RandomStraightLinePointGenerator(double a, + double b, + double sigma, + double lo, + double hi, + long seed) { + final RandomGenerator rng = new Well44497b(seed); + slope = a; + intercept = b; + error = new NormalDistribution(rng, 0, sigma, + NormalDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY); + x = new UniformRealDistribution(rng, lo, hi, + UniformRealDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY); + } + + /** + * Point generator. + * + * @param n Number of points to create. + * @return the cloud of {@code n} points. + */ + public Point2D.Double[] generate(int n) { + final Point2D.Double[] cloud = new Point2D.Double[n]; + for (int i = 0; i < n; i++) { + cloud[i] = create(); + } + return cloud; + } + + /** + * Create one point. + * + * @return a point. + */ + private Point2D.Double create() { + final double abscissa = x.sample(); + final double yModel = slope * abscissa + intercept; + final double ordinate = yModel + error.sample(); + + return new Point2D.Double(abscissa, ordinate); + } +} diff --git a/src/test/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/StatisticalReferenceDataset.java b/src/test/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/StatisticalReferenceDataset.java new file mode 100644 index 000000000..93dcbbf88 --- /dev/null +++ b/src/test/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/StatisticalReferenceDataset.java @@ -0,0 +1,383 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.nonlinear.vector.jacobian; + +import java.io.BufferedReader; +import java.io.IOException; +import java.util.ArrayList; +import org.apache.commons.math3.analysis.MultivariateVectorFunction; +import org.apache.commons.math3.analysis.MultivariateMatrixFunction; +import org.apache.commons.math3.optim.nonlinear.vector.ModelFunction; +import org.apache.commons.math3.optim.nonlinear.vector.ModelFunctionJacobian; +import org.apache.commons.math3.util.MathArrays; + +/** + * This class gives access to the statistical reference datasets provided by the + * NIST (available + * here). + * Instances of this class can be created by invocation of the + * {@link StatisticalReferenceDatasetFactory}. + */ +public abstract class StatisticalReferenceDataset { + + /** The name of this dataset. */ + private final String name; + + /** The total number of observations (data points). */ + private final int numObservations; + + /** The total number of parameters. */ + private final int numParameters; + + /** The total number of starting points for the optimizations. */ + private final int numStartingPoints; + + /** The values of the predictor. */ + private final double[] x; + + /** The values of the response. */ + private final double[] y; + + /** + * The starting values. {@code startingValues[j][i]} is the value of the + * {@code i}-th parameter in the {@code j}-th set of starting values. + */ + private final double[][] startingValues; + + /** The certified values of the parameters. */ + private final double[] a; + + /** The certified values of the standard deviation of the parameters. */ + private final double[] sigA; + + /** The certified value of the residual sum of squares. */ + private double residualSumOfSquares; + + /** The least-squares problem. */ + private final LeastSquaresProblem problem; + + /** + * Creates a new instance of this class from the specified data file. The + * file must follow the StRD format. + * + * @param in the data file + * @throws IOException if an I/O error occurs + */ + public StatisticalReferenceDataset(final BufferedReader in) + throws IOException { + + final ArrayList lines = new ArrayList(); + for (String line = in.readLine(); line != null; line = in.readLine()) { + lines.add(line); + } + int[] index = findLineNumbers("Data", lines); + if (index == null) { + throw new AssertionError("could not find line indices for data"); + } + this.numObservations = index[1] - index[0] + 1; + this.x = new double[this.numObservations]; + this.y = new double[this.numObservations]; + for (int i = 0; i < this.numObservations; i++) { + final String line = lines.get(index[0] + i - 1); + final String[] tokens = line.trim().split(" ++"); + // Data columns are in reverse order!!! + this.y[i] = Double.parseDouble(tokens[0]); + this.x[i] = Double.parseDouble(tokens[1]); + } + + index = findLineNumbers("Starting Values", lines); + if (index == null) { + throw new AssertionError( + "could not find line indices for starting values"); + } + this.numParameters = index[1] - index[0] + 1; + + double[][] start = null; + this.a = new double[numParameters]; + this.sigA = new double[numParameters]; + for (int i = 0; i < numParameters; i++) { + final String line = lines.get(index[0] + i - 1); + final String[] tokens = line.trim().split(" ++"); + if (start == null) { + start = new double[tokens.length - 4][numParameters]; + } + for (int j = 2; j < tokens.length - 2; j++) { + start[j - 2][i] = Double.parseDouble(tokens[j]); + } + this.a[i] = Double.parseDouble(tokens[tokens.length - 2]); + this.sigA[i] = Double.parseDouble(tokens[tokens.length - 1]); + } + if (start == null) { + throw new IOException("could not find starting values"); + } + this.numStartingPoints = start.length; + this.startingValues = start; + + double dummyDouble = Double.NaN; + String dummyString = null; + for (String line : lines) { + if (line.contains("Dataset Name:")) { + dummyString = line + .substring(line.indexOf("Dataset Name:") + 13, + line.indexOf("(")).trim(); + } + if (line.contains("Residual Sum of Squares")) { + final String[] tokens = line.split(" ++"); + dummyDouble = Double.parseDouble(tokens[4].trim()); + } + } + if (Double.isNaN(dummyDouble)) { + throw new IOException( + "could not find certified value of residual sum of squares"); + } + this.residualSumOfSquares = dummyDouble; + + if (dummyString == null) { + throw new IOException("could not find dataset name"); + } + this.name = dummyString; + + this.problem = new LeastSquaresProblem(); + } + + class LeastSquaresProblem { + public ModelFunction getModelFunction() { + return new ModelFunction(new MultivariateVectorFunction() { + public double[] value(final double[] a) { + final int n = getNumObservations(); + final double[] yhat = new double[n]; + for (int i = 0; i < n; i++) { + yhat[i] = getModelValue(getX(i), a); + } + return yhat; + } + }); + } + + public ModelFunctionJacobian getModelFunctionJacobian() { + return new ModelFunctionJacobian(new MultivariateMatrixFunction() { + public double[][] value(final double[] a) + throws IllegalArgumentException { + final int n = getNumObservations(); + final double[][] j = new double[n][]; + for (int i = 0; i < n; i++) { + j[i] = getModelDerivatives(getX(i), a); + } + return j; + } + }); + } + } + + /** + * Returns the name of this dataset. + * + * @return the name of the dataset + */ + public String getName() { + return name; + } + + /** + * Returns the total number of observations (data points). + * + * @return the number of observations + */ + public int getNumObservations() { + return numObservations; + } + + /** + * Returns a copy of the data arrays. The data is laid out as follows
              11. + * {@code data[0][i] = x[i]},
              12. {@code data[1][i] = y[i]},
              13. + * + * @return the array of data points. + */ + public double[][] getData() { + return new double[][] { + MathArrays.copyOf(x), MathArrays.copyOf(y) + }; + } + + /** + * Returns the x-value of the {@code i}-th data point. + * + * @param i the index of the data point + * @return the x-value + */ + public double getX(final int i) { + return x[i]; + } + + /** + * Returns the y-value of the {@code i}-th data point. + * + * @param i the index of the data point + * @return the y-value + */ + public double getY(final int i) { + return y[i]; + } + + /** + * Returns the total number of parameters. + * + * @return the number of parameters + */ + public int getNumParameters() { + return numParameters; + } + + /** + * Returns the certified values of the paramters. + * + * @return the values of the parameters + */ + public double[] getParameters() { + return MathArrays.copyOf(a); + } + + /** + * Returns the certified value of the {@code i}-th parameter. + * + * @param i the index of the parameter + * @return the value of the parameter + */ + public double getParameter(final int i) { + return a[i]; + } + + /** + * Reurns the certified values of the standard deviations of the parameters. + * + * @return the standard deviations of the parameters + */ + public double[] getParametersStandardDeviations() { + return MathArrays.copyOf(sigA); + } + + /** + * Returns the certified value of the standard deviation of the {@code i}-th + * parameter. + * + * @param i the index of the parameter + * @return the standard deviation of the parameter + */ + public double getParameterStandardDeviation(final int i) { + return sigA[i]; + } + + /** + * Returns the certified value of the residual sum of squares. + * + * @return the residual sum of squares + */ + public double getResidualSumOfSquares() { + return residualSumOfSquares; + } + + /** + * Returns the total number of starting points (initial guesses for the + * optimization process). + * + * @return the number of starting points + */ + public int getNumStartingPoints() { + return numStartingPoints; + } + + /** + * Returns the {@code i}-th set of initial values of the parameters. + * + * @param i the index of the starting point + * @return the starting point + */ + public double[] getStartingPoint(final int i) { + return MathArrays.copyOf(startingValues[i]); + } + + /** + * Returns the least-squares problem corresponding to fitting the model to + * the specified data. + * + * @return the least-squares problem + */ + public LeastSquaresProblem getLeastSquaresProblem() { + return problem; + } + + /** + * Returns the value of the model for the specified values of the predictor + * variable and the parameters. + * + * @param x the predictor variable + * @param a the parameters + * @return the value of the model + */ + public abstract double getModelValue(final double x, final double[] a); + + /** + * Returns the values of the partial derivatives of the model with respect + * to the parameters. + * + * @param x the predictor variable + * @param a the parameters + * @return the partial derivatives + */ + public abstract double[] getModelDerivatives(final double x, + final double[] a); + + /** + *

                + * Parses the specified text lines, and extracts the indices of the first + * and last lines of the data defined by the specified {@code key}. This key + * must be one of + *

                + *
                  + *
                • {@code "Starting Values"},
                • + *
                • {@code "Certified Values"},
                • + *
                • {@code "Data"}.
                • + *
                + *

                + * In the NIST data files, the line indices are separated by the keywords + * {@code "lines"} and {@code "to"}. + *

                + * + * @param lines the line of text to be parsed + * @return an array of two {@code int}s. First value is the index of the + * first line, second value is the index of the last line. + * {@code null} if the line could not be parsed. + */ + private static int[] findLineNumbers(final String key, + final Iterable lines) { + for (String text : lines) { + boolean flag = text.contains(key) && text.contains("lines") && + text.contains("to") && text.contains(")"); + if (flag) { + final int[] numbers = new int[2]; + final String from = text.substring(text.indexOf("lines") + 5, + text.indexOf("to")); + numbers[0] = Integer.parseInt(from.trim()); + final String to = text.substring(text.indexOf("to") + 2, + text.indexOf(")")); + numbers[1] = Integer.parseInt(to.trim()); + return numbers; + } + } + return null; + } +} diff --git a/src/test/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/StatisticalReferenceDatasetFactory.java b/src/test/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/StatisticalReferenceDatasetFactory.java new file mode 100644 index 000000000..c35910b5b --- /dev/null +++ b/src/test/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/StatisticalReferenceDatasetFactory.java @@ -0,0 +1,201 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.nonlinear.vector.jacobian; + +import java.io.BufferedReader; +import java.io.IOException; +import java.io.InputStream; +import java.io.InputStreamReader; +import org.apache.commons.math3.util.FastMath; + +/** + * A factory to create instances of {@link StatisticalReferenceDataset} from + * available resources. + */ +public class StatisticalReferenceDatasetFactory { + + private StatisticalReferenceDatasetFactory() { + // Do nothing + } + + /** + * Creates a new buffered reader from the specified resource name. + * + * @param name the name of the resource + * @return a buffered reader + * @throws IOException if an I/O error occured + */ + public static BufferedReader createBufferedReaderFromResource(final String name) + throws IOException { + final InputStream resourceAsStream; + resourceAsStream = StatisticalReferenceDatasetFactory.class + .getResourceAsStream(name); + if (resourceAsStream == null) { + throw new IOException("could not find resource " + name); + } + return new BufferedReader(new InputStreamReader(resourceAsStream)); + } + + public static StatisticalReferenceDataset createKirby2() + throws IOException { + final BufferedReader in = createBufferedReaderFromResource("Kirby2.dat"); + StatisticalReferenceDataset dataset = null; + try { + dataset = new StatisticalReferenceDataset(in) { + + @Override + public double getModelValue(final double x, final double[] a) { + final double p = a[0] + x * (a[1] + x * a[2]); + final double q = 1.0 + x * (a[3] + x * a[4]); + return p / q; + } + + @Override + public double[] getModelDerivatives(final double x, + final double[] a) { + final double[] dy = new double[5]; + final double p = a[0] + x * (a[1] + x * a[2]); + final double q = 1.0 + x * (a[3] + x * a[4]); + dy[0] = 1.0 / q; + dy[1] = x / q; + dy[2] = x * dy[1]; + dy[3] = -x * p / (q * q); + dy[4] = x * dy[3]; + return dy; + } + }; + } finally { + in.close(); + } + return dataset; + } + + public static StatisticalReferenceDataset createHahn1() + throws IOException { + final BufferedReader in = createBufferedReaderFromResource("Hahn1.dat"); + StatisticalReferenceDataset dataset = null; + try { + dataset = new StatisticalReferenceDataset(in) { + + @Override + public double getModelValue(final double x, final double[] a) { + final double p = a[0] + x * (a[1] + x * (a[2] + x * a[3])); + final double q = 1.0 + x * (a[4] + x * (a[5] + x * a[6])); + return p / q; + } + + @Override + public double[] getModelDerivatives(final double x, + final double[] a) { + final double[] dy = new double[7]; + final double p = a[0] + x * (a[1] + x * (a[2] + x * a[3])); + final double q = 1.0 + x * (a[4] + x * (a[5] + x * a[6])); + dy[0] = 1.0 / q; + dy[1] = x * dy[0]; + dy[2] = x * dy[1]; + dy[3] = x * dy[2]; + dy[4] = -x * p / (q * q); + dy[5] = x * dy[4]; + dy[6] = x * dy[5]; + return dy; + } + }; + } finally { + in.close(); + } + return dataset; + } + + public static StatisticalReferenceDataset createMGH17() + throws IOException { + final BufferedReader in = createBufferedReaderFromResource("MGH17.dat"); + StatisticalReferenceDataset dataset = null; + try { + dataset = new StatisticalReferenceDataset(in) { + + @Override + public double getModelValue(final double x, final double[] a) { + return a[0] + a[1] * FastMath.exp(-a[3] * x) + a[2] * + FastMath.exp(-a[4] * x); + } + + @Override + public double[] getModelDerivatives(final double x, + final double[] a) { + final double[] dy = new double[5]; + dy[0] = 1.0; + dy[1] = FastMath.exp(-x * a[3]); + dy[2] = FastMath.exp(-x * a[4]); + dy[3] = -x * a[1] * dy[1]; + dy[4] = -x * a[2] * dy[2]; + return dy; + } + }; + } finally { + in.close(); + } + return dataset; + } + + public static StatisticalReferenceDataset createLanczos1() + throws IOException { + final BufferedReader in = + createBufferedReaderFromResource("Lanczos1.dat"); + StatisticalReferenceDataset dataset = null; + try { + dataset = new StatisticalReferenceDataset(in) { + + @Override + public double getModelValue(final double x, final double[] a) { + System.out.println(a[0]+", "+a[1]+", "+a[2]+", "+a[3]+", "+a[4]+", "+a[5]); + return a[0] * FastMath.exp(-a[3] * x) + + a[1] * FastMath.exp(-a[4] * x) + + a[2] * FastMath.exp(-a[5] * x); + } + + @Override + public double[] getModelDerivatives(final double x, + final double[] a) { + final double[] dy = new double[6]; + dy[0] = FastMath.exp(-x * a[3]); + dy[1] = FastMath.exp(-x * a[4]); + dy[2] = FastMath.exp(-x * a[5]); + dy[3] = -x * a[0] * dy[0]; + dy[4] = -x * a[1] * dy[1]; + dy[5] = -x * a[2] * dy[2]; + return dy; + } + }; + } finally { + in.close(); + } + return dataset; + } + + /** + * Returns an array with all available reference datasets. + * + * @return the array of datasets + * @throws IOException if an I/O error occurs + */ + public StatisticalReferenceDataset[] createAll() + throws IOException { + return new StatisticalReferenceDataset[] { + createKirby2(), createMGH17() + }; + } +} diff --git a/src/test/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/StraightLineProblem.java b/src/test/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/StraightLineProblem.java new file mode 100644 index 000000000..09c16df97 --- /dev/null +++ b/src/test/java/org/apache/commons/math3/optim/nonlinear/vector/jacobian/StraightLineProblem.java @@ -0,0 +1,167 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.commons.math3.optim.nonlinear.vector.jacobian; + +import java.util.ArrayList; +import org.apache.commons.math3.analysis.MultivariateVectorFunction; +import org.apache.commons.math3.analysis.MultivariateMatrixFunction; +import org.apache.commons.math3.analysis.UnivariateFunction; +import org.apache.commons.math3.stat.regression.SimpleRegression; +import org.apache.commons.math3.optim.nonlinear.vector.ModelFunction; +import org.apache.commons.math3.optim.nonlinear.vector.ModelFunctionJacobian; + +/** + * Class that models a straight line defined as {@code y = a x + b}. + * The parameters of problem are: + *
                  + *
                • {@code a}
                • + *
                • {@code b}
                • + *
                + * The model functions are: + *
                  + *
                • for each pair (a, b), the y-coordinate of the line.
                • + *
                + */ +class StraightLineProblem { + /** Cloud of points assumed to be fitted by a straight line. */ + private final ArrayList points; + /** Error (on the y-coordinate of the points). */ + private final double sigma; + + /** + * @param error Assumed error for the y-coordinate. + */ + public StraightLineProblem(double error) { + points = new ArrayList(); + sigma = error; + } + + public void addPoint(double px, double py) { + points.add(new double[] { px, py }); + } + + /** + * @return the list of x-coordinates. + */ + public double[] x() { + final double[] v = new double[points.size()]; + for (int i = 0; i < points.size(); i++) { + final double[] p = points.get(i); + v[i] = p[0]; // x-coordinate. + } + + return v; + } + + /** + * @return the list of y-coordinates. + */ + public double[] y() { + final double[] v = new double[points.size()]; + for (int i = 0; i < points.size(); i++) { + final double[] p = points.get(i); + v[i] = p[1]; // y-coordinate. + } + + return v; + } + + public double[] target() { + return y(); + } + + public double[] weight() { + final double weight = 1 / (sigma * sigma); + final double[] w = new double[points.size()]; + for (int i = 0; i < points.size(); i++) { + w[i] = weight; + } + + return w; + } + + public ModelFunction getModelFunction() { + return new ModelFunction(new MultivariateVectorFunction() { + public double[] value(double[] params) { + final Model line = new Model(params[0], params[1]); + + final double[] model = new double[points.size()]; + for (int i = 0; i < points.size(); i++) { + final double[] p = points.get(i); + model[i] = line.value(p[0]); + } + + return model; + } + }); + } + + public ModelFunctionJacobian getModelFunctionJacobian() { + return new ModelFunctionJacobian(new MultivariateMatrixFunction() { + public double[][] value(double[] point) { + return jacobian(point); + } + }); + } + + /** + * Directly solve the linear problem, using the {@link SimpleRegression} + * class. + */ + public double[] solve() { + final SimpleRegression regress = new SimpleRegression(true); + for (double[] d : points) { + regress.addData(d[0], d[1]); + } + + final double[] result = { regress.getSlope(), regress.getIntercept() }; + return result; + } + + private double[][] jacobian(double[] params) { + final double[][] jacobian = new double[points.size()][2]; + + for (int i = 0; i < points.size(); i++) { + final double[] p = points.get(i); + // Partial derivative wrt "a". + jacobian[i][0] = p[0]; + // Partial derivative wrt "b". + jacobian[i][1] = 1; + } + + return jacobian; + } + + /** + * Linear function. + */ + public static class Model implements UnivariateFunction { + final double a; + final double b; + + public Model(double a, + double b) { + this.a = a; + this.b = b; + } + + public double value(double x) { + return a * x + b; + } + } +} diff --git a/src/test/java/org/apache/commons/math3/optim/univariate/BracketFinderTest.java b/src/test/java/org/apache/commons/math3/optim/univariate/BracketFinderTest.java new file mode 100644 index 000000000..af725adaa --- /dev/null +++ b/src/test/java/org/apache/commons/math3/optim/univariate/BracketFinderTest.java @@ -0,0 +1,117 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.univariate; + +import org.apache.commons.math3.analysis.UnivariateFunction; +import org.apache.commons.math3.optim.GoalType; +import org.junit.Assert; +import org.junit.Test; + +/** + * Test for {@link BracketFinder}. + */ +public class BracketFinderTest { + + @Test + public void testCubicMin() { + final BracketFinder bFind = new BracketFinder(); + final UnivariateFunction func = new UnivariateFunction() { + public double value(double x) { + if (x < -2) { + return value(-2); + } + else { + return (x - 1) * (x + 2) * (x + 3); + } + } + }; + + bFind.search(func, GoalType.MINIMIZE, -2 , -1); + final double tol = 1e-15; + // Comparing with results computed in Python. + Assert.assertEquals(-2, bFind.getLo(), tol); + Assert.assertEquals(-1, bFind.getMid(), tol); + Assert.assertEquals(0.61803399999999997, bFind.getHi(), tol); + } + + @Test + public void testCubicMax() { + final BracketFinder bFind = new BracketFinder(); + final UnivariateFunction func = new UnivariateFunction() { + public double value(double x) { + if (x < -2) { + return value(-2); + } + else { + return -(x - 1) * (x + 2) * (x + 3); + } + } + }; + + bFind.search(func, GoalType.MAXIMIZE, -2 , -1); + final double tol = 1e-15; + Assert.assertEquals(-2, bFind.getLo(), tol); + Assert.assertEquals(-1, bFind.getMid(), tol); + Assert.assertEquals(0.61803399999999997, bFind.getHi(), tol); + } + + @Test + public void testMinimumIsOnIntervalBoundary() { + final UnivariateFunction func = new UnivariateFunction() { + public double value(double x) { + return x * x; + } + }; + + final BracketFinder bFind = new BracketFinder(); + + bFind.search(func, GoalType.MINIMIZE, 0, 1); + Assert.assertTrue(bFind.getLo() <= 0); + Assert.assertTrue(0 <= bFind.getHi()); + + bFind.search(func, GoalType.MINIMIZE, -1, 0); + Assert.assertTrue(bFind.getLo() <= 0); + Assert.assertTrue(0 <= bFind.getHi()); + } + + @Test + public void testIntervalBoundsOrdering() { + final UnivariateFunction func = new UnivariateFunction() { + public double value(double x) { + return x * x; + } + }; + + final BracketFinder bFind = new BracketFinder(); + + bFind.search(func, GoalType.MINIMIZE, -1, 1); + Assert.assertTrue(bFind.getLo() <= 0); + Assert.assertTrue(0 <= bFind.getHi()); + + bFind.search(func, GoalType.MINIMIZE, 1, -1); + Assert.assertTrue(bFind.getLo() <= 0); + Assert.assertTrue(0 <= bFind.getHi()); + + bFind.search(func, GoalType.MINIMIZE, 1, 2); + Assert.assertTrue(bFind.getLo() <= 0); + Assert.assertTrue(0 <= bFind.getHi()); + + bFind.search(func, GoalType.MINIMIZE, 2, 1); + Assert.assertTrue(bFind.getLo() <= 0); + Assert.assertTrue(0 <= bFind.getHi()); + } +} diff --git a/src/test/java/org/apache/commons/math3/optim/univariate/BrentOptimizerTest.java b/src/test/java/org/apache/commons/math3/optim/univariate/BrentOptimizerTest.java new file mode 100644 index 000000000..43b956ceb --- /dev/null +++ b/src/test/java/org/apache/commons/math3/optim/univariate/BrentOptimizerTest.java @@ -0,0 +1,301 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.univariate; + + +import org.apache.commons.math3.analysis.QuinticFunction; +import org.apache.commons.math3.analysis.UnivariateFunction; +import org.apache.commons.math3.analysis.function.Sin; +import org.apache.commons.math3.analysis.function.StepFunction; +import org.apache.commons.math3.analysis.FunctionUtils; +import org.apache.commons.math3.exception.NumberIsTooLargeException; +import org.apache.commons.math3.exception.NumberIsTooSmallException; +import org.apache.commons.math3.exception.TooManyEvaluationsException; +import org.apache.commons.math3.optim.ConvergenceChecker; +import org.apache.commons.math3.optim.GoalType; +import org.apache.commons.math3.optim.MaxEval; +import org.apache.commons.math3.stat.descriptive.DescriptiveStatistics; +import org.apache.commons.math3.util.FastMath; +import org.junit.Assert; +import org.junit.Test; + +/** + * @version $Id$ + */ +public final class BrentOptimizerTest { + + @Test + public void testSinMin() { + UnivariateFunction f = new Sin(); + UnivariateOptimizer optimizer = new BrentOptimizer(1e-10, 1e-14); + Assert.assertEquals(3 * Math.PI / 2, optimizer.optimize(new MaxEval(200), + new UnivariateObjectiveFunction(f), + GoalType.MINIMIZE, + new SearchInterval(4, 5)).getPoint(), 1e-8); + Assert.assertTrue(optimizer.getEvaluations() <= 50); + Assert.assertEquals(200, optimizer.getMaxEvaluations()); + Assert.assertEquals(3 * Math.PI / 2, optimizer.optimize(new MaxEval(200), + new UnivariateObjectiveFunction(f), + GoalType.MINIMIZE, + new SearchInterval(1, 5)).getPoint(), 1e-8); + Assert.assertTrue(optimizer.getEvaluations() <= 100); + Assert.assertTrue(optimizer.getEvaluations() >= 15); + try { + optimizer.optimize(new MaxEval(10), + new UnivariateObjectiveFunction(f), + GoalType.MINIMIZE, + new SearchInterval(4, 5)); + Assert.fail("an exception should have been thrown"); + } catch (TooManyEvaluationsException fee) { + // expected + } + } + + @Test + public void testSinMinWithValueChecker() { + final UnivariateFunction f = new Sin(); + final ConvergenceChecker checker = new SimpleUnivariateValueChecker(1e-5, 1e-14); + // The default stopping criterion of Brent's algorithm should not + // pass, but the search will stop at the given relative tolerance + // for the function value. + final UnivariateOptimizer optimizer = new BrentOptimizer(1e-10, 1e-14, checker); + final UnivariatePointValuePair result = optimizer.optimize(new MaxEval(200), + new UnivariateObjectiveFunction(f), + GoalType.MINIMIZE, + new SearchInterval(4, 5)); + Assert.assertEquals(3 * Math.PI / 2, result.getPoint(), 1e-3); + } + + @Test + public void testBoundaries() { + final double lower = -1.0; + final double upper = +1.0; + UnivariateFunction f = new UnivariateFunction() { + public double value(double x) { + if (x < lower) { + throw new NumberIsTooSmallException(x, lower, true); + } else if (x > upper) { + throw new NumberIsTooLargeException(x, upper, true); + } else { + return x; + } + } + }; + UnivariateOptimizer optimizer = new BrentOptimizer(1e-10, 1e-14); + Assert.assertEquals(lower, + optimizer.optimize(new MaxEval(100), + new UnivariateObjectiveFunction(f), + GoalType.MINIMIZE, + new SearchInterval(lower, upper)).getPoint(), + 1.0e-8); + Assert.assertEquals(upper, + optimizer.optimize(new MaxEval(100), + new UnivariateObjectiveFunction(f), + GoalType.MAXIMIZE, + new SearchInterval(lower, upper)).getPoint(), + 1.0e-8); + } + + @Test + public void testQuinticMin() { + // The function has local minima at -0.27195613 and 0.82221643. + UnivariateFunction f = new QuinticFunction(); + UnivariateOptimizer optimizer = new BrentOptimizer(1e-10, 1e-14); + Assert.assertEquals(-0.27195613, optimizer.optimize(new MaxEval(200), + new UnivariateObjectiveFunction(f), + GoalType.MINIMIZE, + new SearchInterval(-0.3, -0.2)).getPoint(), 1.0e-8); + Assert.assertEquals( 0.82221643, optimizer.optimize(new MaxEval(200), + new UnivariateObjectiveFunction(f), + GoalType.MINIMIZE, + new SearchInterval(0.3, 0.9)).getPoint(), 1.0e-8); + Assert.assertTrue(optimizer.getEvaluations() <= 50); + + // search in a large interval + Assert.assertEquals(-0.27195613, optimizer.optimize(new MaxEval(200), + new UnivariateObjectiveFunction(f), + GoalType.MINIMIZE, + new SearchInterval(-1.0, 0.2)).getPoint(), 1.0e-8); + Assert.assertTrue(optimizer.getEvaluations() <= 50); + } + + @Test + public void testQuinticMinStatistics() { + // The function has local minima at -0.27195613 and 0.82221643. + UnivariateFunction f = new QuinticFunction(); + UnivariateOptimizer optimizer = new BrentOptimizer(1e-11, 1e-14); + + final DescriptiveStatistics[] stat = new DescriptiveStatistics[2]; + for (int i = 0; i < stat.length; i++) { + stat[i] = new DescriptiveStatistics(); + } + + final double min = -0.75; + final double max = 0.25; + final int nSamples = 200; + final double delta = (max - min) / nSamples; + for (int i = 0; i < nSamples; i++) { + final double start = min + i * delta; + stat[0].addValue(optimizer.optimize(new MaxEval(40), + new UnivariateObjectiveFunction(f), + GoalType.MINIMIZE, + new SearchInterval(min, max, start)).getPoint()); + stat[1].addValue(optimizer.getEvaluations()); + } + + final double meanOptValue = stat[0].getMean(); + final double medianEval = stat[1].getPercentile(50); + Assert.assertTrue(meanOptValue > -0.2719561281); + Assert.assertTrue(meanOptValue < -0.2719561280); + Assert.assertEquals(23, (int) medianEval); + } + + @Test + public void testQuinticMax() { + // The quintic function has zeros at 0, +-0.5 and +-1. + // The function has a local maximum at 0.27195613. + UnivariateFunction f = new QuinticFunction(); + UnivariateOptimizer optimizer = new BrentOptimizer(1e-12, 1e-14); + Assert.assertEquals(0.27195613, optimizer.optimize(new MaxEval(100), + new UnivariateObjectiveFunction(f), + GoalType.MAXIMIZE, + new SearchInterval(0.2, 0.3)).getPoint(), 1e-8); + try { + optimizer.optimize(new MaxEval(5), + new UnivariateObjectiveFunction(f), + GoalType.MAXIMIZE, + new SearchInterval(0.2, 0.3)); + Assert.fail("an exception should have been thrown"); + } catch (TooManyEvaluationsException miee) { + // expected + } + } + + @Test + public void testMinEndpoints() { + UnivariateFunction f = new Sin(); + UnivariateOptimizer optimizer = new BrentOptimizer(1e-8, 1e-14); + + // endpoint is minimum + double result = optimizer.optimize(new MaxEval(50), + new UnivariateObjectiveFunction(f), + GoalType.MINIMIZE, + new SearchInterval(3 * Math.PI / 2, 5)).getPoint(); + Assert.assertEquals(3 * Math.PI / 2, result, 1e-6); + + result = optimizer.optimize(new MaxEval(50), + new UnivariateObjectiveFunction(f), + GoalType.MINIMIZE, + new SearchInterval(4, 3 * Math.PI / 2)).getPoint(); + Assert.assertEquals(3 * Math.PI / 2, result, 1e-6); + } + + @Test + public void testMath832() { + final UnivariateFunction f = new UnivariateFunction() { + public double value(double x) { + final double sqrtX = FastMath.sqrt(x); + final double a = 1e2 * sqrtX; + final double b = 1e6 / x; + final double c = 1e4 / sqrtX; + + return a + b + c; + } + }; + + UnivariateOptimizer optimizer = new BrentOptimizer(1e-10, 1e-8); + final double result = optimizer.optimize(new MaxEval(1483), + new UnivariateObjectiveFunction(f), + GoalType.MINIMIZE, + new SearchInterval(Double.MIN_VALUE, + Double.MAX_VALUE)).getPoint(); + + Assert.assertEquals(804.9355825, result, 1e-6); + } + + /** + * Contrived example showing that prior to the resolution of MATH-855 + * (second revision), the algorithm would not return the best point if + * it happened to be the initial guess. + */ + @Test + public void testKeepInitIfBest() { + final double minSin = 3 * Math.PI / 2; + final double offset = 1e-8; + final double delta = 1e-7; + final UnivariateFunction f1 = new Sin(); + final UnivariateFunction f2 = new StepFunction(new double[] { minSin, minSin + offset, minSin + 2 * offset}, + new double[] { 0, -1, 0 }); + final UnivariateFunction f = FunctionUtils.add(f1, f2); + // A slightly less stringent tolerance would make the test pass + // even with the previous implementation. + final double relTol = 1e-8; + final UnivariateOptimizer optimizer = new BrentOptimizer(relTol, 1e-100); + final double init = minSin + 1.5 * offset; + final UnivariatePointValuePair result + = optimizer.optimize(new MaxEval(200), + new UnivariateObjectiveFunction(f), + GoalType.MINIMIZE, + new SearchInterval(minSin - 6.789 * delta, + minSin + 9.876 * delta, + init)); + final int numEval = optimizer.getEvaluations(); + + final double sol = result.getPoint(); + final double expected = init; + +// System.out.println("numEval=" + numEval); +// System.out.println("min=" + init + " f=" + f.value(init)); +// System.out.println("sol=" + sol + " f=" + f.value(sol)); +// System.out.println("exp=" + expected + " f=" + f.value(expected)); + + Assert.assertTrue("Best point not reported", f.value(sol) <= f.value(expected)); + } + + /** + * Contrived example showing that prior to the resolution of MATH-855, + * the algorithm, by always returning the last evaluated point, would + * sometimes not report the best point it had found. + */ + @Test + public void testMath855() { + final double minSin = 3 * Math.PI / 2; + final double offset = 1e-8; + final double delta = 1e-7; + final UnivariateFunction f1 = new Sin(); + final UnivariateFunction f2 = new StepFunction(new double[] { minSin, minSin + offset, minSin + 5 * offset }, + new double[] { 0, -1, 0 }); + final UnivariateFunction f = FunctionUtils.add(f1, f2); + final UnivariateOptimizer optimizer = new BrentOptimizer(1e-8, 1e-100); + final UnivariatePointValuePair result + = optimizer.optimize(new MaxEval(200), + new UnivariateObjectiveFunction(f), + GoalType.MINIMIZE, + new SearchInterval(minSin - 6.789 * delta, + minSin + 9.876 * delta)); + final int numEval = optimizer.getEvaluations(); + + final double sol = result.getPoint(); + final double expected = 4.712389027602411; + + // System.out.println("min=" + (minSin + offset) + " f=" + f.value(minSin + offset)); + // System.out.println("sol=" + sol + " f=" + f.value(sol)); + // System.out.println("exp=" + expected + " f=" + f.value(expected)); + + Assert.assertTrue("Best point not reported", f.value(sol) <= f.value(expected)); + } +} diff --git a/src/test/java/org/apache/commons/math3/optim/univariate/MultiStartUnivariateOptimizerTest.java b/src/test/java/org/apache/commons/math3/optim/univariate/MultiStartUnivariateOptimizerTest.java new file mode 100644 index 000000000..9c918554a --- /dev/null +++ b/src/test/java/org/apache/commons/math3/optim/univariate/MultiStartUnivariateOptimizerTest.java @@ -0,0 +1,133 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.univariate; + +import org.apache.commons.math3.analysis.QuinticFunction; +import org.apache.commons.math3.analysis.UnivariateFunction; +import org.apache.commons.math3.analysis.function.Sin; +import org.apache.commons.math3.optim.GoalType; +import org.apache.commons.math3.optim.MaxEval; +import org.apache.commons.math3.random.JDKRandomGenerator; +import org.apache.commons.math3.util.FastMath; +import org.apache.commons.math3.exception.MathIllegalStateException; +import org.junit.Assert; +import org.junit.Test; + +public class MultiStartUnivariateOptimizerTest { + @Test(expected=MathIllegalStateException.class) + public void testMissingMaxEval() { + UnivariateOptimizer underlying = new BrentOptimizer(1e-10, 1e-14); + JDKRandomGenerator g = new JDKRandomGenerator(); + g.setSeed(44428400075l); + MultiStartUnivariateOptimizer optimizer = new MultiStartUnivariateOptimizer(underlying, 10, g); + optimizer.optimize(new UnivariateObjectiveFunction(new Sin()), + GoalType.MINIMIZE, + new SearchInterval(-1, 1)); + } + @Test(expected=MathIllegalStateException.class) + public void testMissingSearchInterval() { + UnivariateOptimizer underlying = new BrentOptimizer(1e-10, 1e-14); + JDKRandomGenerator g = new JDKRandomGenerator(); + g.setSeed(44428400075l); + MultiStartUnivariateOptimizer optimizer = new MultiStartUnivariateOptimizer(underlying, 10, g); + optimizer.optimize(new MaxEval(300), + new UnivariateObjectiveFunction(new Sin()), + GoalType.MINIMIZE); + } + + @Test + public void testSinMin() { + UnivariateFunction f = new Sin(); + UnivariateOptimizer underlying = new BrentOptimizer(1e-10, 1e-14); + JDKRandomGenerator g = new JDKRandomGenerator(); + g.setSeed(44428400075l); + MultiStartUnivariateOptimizer optimizer = new MultiStartUnivariateOptimizer(underlying, 10, g); + optimizer.optimize(new MaxEval(300), + new UnivariateObjectiveFunction(f), + GoalType.MINIMIZE, + new SearchInterval(-100.0, 100.0)); + UnivariatePointValuePair[] optima = optimizer.getOptima(); + for (int i = 1; i < optima.length; ++i) { + double d = (optima[i].getPoint() - optima[i-1].getPoint()) / (2 * FastMath.PI); + Assert.assertTrue(FastMath.abs(d - FastMath.rint(d)) < 1.0e-8); + Assert.assertEquals(-1.0, f.value(optima[i].getPoint()), 1.0e-10); + Assert.assertEquals(f.value(optima[i].getPoint()), optima[i].getValue(), 1.0e-10); + } + Assert.assertTrue(optimizer.getEvaluations() > 200); + Assert.assertTrue(optimizer.getEvaluations() < 300); + } + + @Test + public void testQuinticMin() { + // The quintic function has zeros at 0, +-0.5 and +-1. + // The function has extrema (first derivative is zero) at 0.27195613 and 0.82221643, + UnivariateFunction f = new QuinticFunction(); + UnivariateOptimizer underlying = new BrentOptimizer(1e-9, 1e-14); + JDKRandomGenerator g = new JDKRandomGenerator(); + g.setSeed(4312000053L); + MultiStartUnivariateOptimizer optimizer = new MultiStartUnivariateOptimizer(underlying, 5, g); + + UnivariatePointValuePair optimum + = optimizer.optimize(new MaxEval(300), + new UnivariateObjectiveFunction(f), + GoalType.MINIMIZE, + new SearchInterval(-0.3, -0.2)); + Assert.assertEquals(-0.27195613, optimum.getPoint(), 1e-9); + Assert.assertEquals(-0.0443342695, optimum.getValue(), 1e-9); + + UnivariatePointValuePair[] optima = optimizer.getOptima(); + for (int i = 0; i < optima.length; ++i) { + Assert.assertEquals(f.value(optima[i].getPoint()), optima[i].getValue(), 1e-9); + } + Assert.assertTrue(optimizer.getEvaluations() >= 50); + Assert.assertTrue(optimizer.getEvaluations() <= 100); + } + + @Test + public void testBadFunction() { + UnivariateFunction f = new UnivariateFunction() { + public double value(double x) { + if (x < 0) { + throw new LocalException(); + } + return 0; + } + }; + UnivariateOptimizer underlying = new BrentOptimizer(1e-9, 1e-14); + JDKRandomGenerator g = new JDKRandomGenerator(); + g.setSeed(4312000053L); + MultiStartUnivariateOptimizer optimizer = new MultiStartUnivariateOptimizer(underlying, 5, g); + + try { + optimizer.optimize(new MaxEval(300), + new UnivariateObjectiveFunction(f), + GoalType.MINIMIZE, + new SearchInterval(-0.3, -0.2)); + Assert.fail(); + } catch (LocalException e) { + // Expected. + } + + // Ensure that the exception was thrown because no optimum was found. + Assert.assertTrue(optimizer.getOptima()[0] == null); + } + + private static class LocalException extends RuntimeException { + private static final long serialVersionUID = 1194682757034350629L; + } + +} diff --git a/src/test/java/org/apache/commons/math3/optim/univariate/SimpleUnivariateValueCheckerTest.java b/src/test/java/org/apache/commons/math3/optim/univariate/SimpleUnivariateValueCheckerTest.java new file mode 100644 index 000000000..e7b790472 --- /dev/null +++ b/src/test/java/org/apache/commons/math3/optim/univariate/SimpleUnivariateValueCheckerTest.java @@ -0,0 +1,52 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math3.optim.univariate; + +import org.apache.commons.math3.exception.NotStrictlyPositiveException; +import org.junit.Test; +import org.junit.Assert; + +public class SimpleUnivariateValueCheckerTest { + @Test(expected=NotStrictlyPositiveException.class) + public void testIterationCheckPrecondition() { + new SimpleUnivariateValueChecker(1e-1, 1e-2, 0); + } + + @Test + public void testIterationCheck() { + final int max = 10; + final SimpleUnivariateValueChecker checker = new SimpleUnivariateValueChecker(1e-1, 1e-2, max); + Assert.assertTrue(checker.converged(max, null, null)); + Assert.assertTrue(checker.converged(max + 1, null, null)); + } + + @Test + public void testIterationCheckDisabled() { + final SimpleUnivariateValueChecker checker = new SimpleUnivariateValueChecker(1e-8, 1e-8); + + final UnivariatePointValuePair a = new UnivariatePointValuePair(1d, 1d); + final UnivariatePointValuePair b = new UnivariatePointValuePair(10d, 10d); + + Assert.assertFalse(checker.converged(-1, a, b)); + Assert.assertFalse(checker.converged(0, a, b)); + Assert.assertFalse(checker.converged(1000000, a, b)); + + Assert.assertTrue(checker.converged(-1, a, a)); + Assert.assertTrue(checker.converged(-1, b, b)); + } + +}