Javadoc (MATH-677).
git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1227015 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
2689ee367b
commit
7f6912730e
|
@ -266,13 +266,14 @@ public class FastFourierTransformer implements Serializable {
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Perform the base-4 Cooley-Tukey FFT algorithm (including inverse).
|
* Returns the FFT of the specified real data set. Performs the base-4
|
||||||
|
* Cooley-Tukey FFT algorithm.
|
||||||
*
|
*
|
||||||
* @param f the real data array to be transformed
|
* @param f the real data array to be transformed
|
||||||
* @param isInverse the indicator of forward or inverse transform
|
* @param isInverse {@code true} if inverse transform is to be carried out
|
||||||
* @return the complex transformed array
|
* @return the complex transformed array
|
||||||
* @throws IllegalArgumentException if any parameters are invalid
|
* @throws MathIllegalArgumentException if the length of the data array is
|
||||||
* @throws MathIllegalArgumentException if array length is not a power of 2
|
* not a power of two
|
||||||
*/
|
*/
|
||||||
protected Complex[] fft(double[] f, boolean isInverse)
|
protected Complex[] fft(double[] f, boolean isInverse)
|
||||||
throws MathIllegalArgumentException {
|
throws MathIllegalArgumentException {
|
||||||
|
@ -313,12 +314,13 @@ public class FastFourierTransformer implements Serializable {
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Perform the base-4 Cooley-Tukey FFT algorithm (including inverse).
|
* Returns the FFT of the specified complex data set. Performs the base-4
|
||||||
|
* Cooley-Tukey FFT algorithm.
|
||||||
*
|
*
|
||||||
* @param data the complex data array to be transformed
|
* @param data the complex data array to be transformed
|
||||||
* @return the complex transformed array
|
* @return the complex transformed array
|
||||||
* @throws IllegalArgumentException if any parameters are invalid
|
* @throws MathIllegalArgumentException if the length of the data array is
|
||||||
* @throws MathIllegalArgumentException if array length is not a power of 2
|
* not a power of two
|
||||||
*/
|
*/
|
||||||
protected Complex[] fft(Complex[] data)
|
protected Complex[] fft(Complex[] data)
|
||||||
throws MathIllegalArgumentException {
|
throws MathIllegalArgumentException {
|
||||||
|
@ -390,12 +392,16 @@ public class FastFourierTransformer implements Serializable {
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Sample the given univariate real function on the given interval.
|
|
||||||
* <p>
|
* <p>
|
||||||
* The interval is divided equally into N sections and sample points
|
* Sample the given univariate real function on the given interval.
|
||||||
* are taken from min to max-(max-min)/N. Usually f(x) is periodic
|
* </p>
|
||||||
* such that f(min) = f(max) (note max is not sampled), but we don't
|
* <p>
|
||||||
* require that.</p>
|
* The interval is divided equally into {@code n} sections and sample points
|
||||||
|
* are taken from {@code min} to {@code max - (max - min) / N}. Usually
|
||||||
|
* {@code f(x)} is periodic such that {@code f(min) = f(max)} (note that
|
||||||
|
* {@code max} is not sampled), but this condition is not required by the
|
||||||
|
* present method.
|
||||||
|
* </p>
|
||||||
*
|
*
|
||||||
* @param f the function to be sampled
|
* @param f the function to be sampled
|
||||||
* @param min the (inclusive) lower bound for the interval
|
* @param min the (inclusive) lower bound for the interval
|
||||||
|
@ -460,10 +466,10 @@ public class FastFourierTransformer implements Serializable {
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Returns true if the argument is power of 2.
|
* Returns true if the argument is a power of 2.
|
||||||
*
|
*
|
||||||
* @param n the number to test
|
* @param n the number to test
|
||||||
* @return true if the argument is power of 2
|
* @return true if the argument is a power of 2
|
||||||
*/
|
*/
|
||||||
public static boolean isPowerOf2(long n) {
|
public static boolean isPowerOf2(long n) {
|
||||||
return (n > 0) && ((n & (n - 1)) == 0);
|
return (n > 0) && ((n & (n - 1)) == 0);
|
||||||
|
|
Loading…
Reference in New Issue