trigger an error when the transform is not invertible
git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@777263 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
1ed2b9afc5
commit
7fc6ee7ff4
|
@ -24,6 +24,7 @@ import org.apache.commons.math.fraction.BigFraction;
|
||||||
import org.apache.commons.math.linear.DefaultFieldMatrixPreservingVisitor;
|
import org.apache.commons.math.linear.DefaultFieldMatrixPreservingVisitor;
|
||||||
import org.apache.commons.math.linear.FieldMatrix;
|
import org.apache.commons.math.linear.FieldMatrix;
|
||||||
import org.apache.commons.math.linear.FieldMatrixImpl;
|
import org.apache.commons.math.linear.FieldMatrixImpl;
|
||||||
|
import org.apache.commons.math.linear.InvalidMatrixException;
|
||||||
import org.apache.commons.math.linear.RealMatrix;
|
import org.apache.commons.math.linear.RealMatrix;
|
||||||
import org.apache.commons.math.linear.RealMatrixImpl;
|
import org.apache.commons.math.linear.RealMatrixImpl;
|
||||||
import org.apache.commons.math.linear.decomposition.FieldDecompositionSolver;
|
import org.apache.commons.math.linear.decomposition.FieldDecompositionSolver;
|
||||||
|
@ -100,15 +101,18 @@ public class NordsieckTransformer implements Serializable {
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Build a transformer for a specified order.
|
* Build a transformer for a specified order.
|
||||||
* <p>states considered are y<sub>k-p</sub>, y<sub>k-(p+1)</sub> ...
|
* <p>States considered are y<sub>k-p</sub>, y<sub>k-(p+1)</sub> ...
|
||||||
* y<sub>k-(q-1)</sub> and scaled derivatives considered are
|
* y<sub>k-(q-1)</sub> and scaled derivatives considered are
|
||||||
* h y'<sub>k-r</sub>, h y'<sub>k-(r+1)</sub> ... h y'<sub>k-(s-1)</sub>
|
* h y'<sub>k-r</sub>, h y'<sub>k-(r+1)</sub> ... h y'<sub>k-(s-1)</sub><\p>
|
||||||
* @param p start state index offset in multistep form
|
* @param p start state index offset in multistep form
|
||||||
* @param q end state index offset in multistep form
|
* @param q end state index offset in multistep form
|
||||||
* @param r start state derivative index offset in multistep form
|
* @param r start state derivative index offset in multistep form
|
||||||
* @param s end state derivative index offset in multistep form
|
* @param s end state derivative index offset in multistep form
|
||||||
|
* @exception InvalidMatrixException if the selected indices ranges define a
|
||||||
|
* non-invertible transform (this typically happens when p == q)
|
||||||
*/
|
*/
|
||||||
public NordsieckTransformer(final int p, final int q, final int r, final int s) {
|
public NordsieckTransformer(final int p, final int q, final int r, final int s)
|
||||||
|
throws InvalidMatrixException {
|
||||||
|
|
||||||
// from Nordsieck to multistep
|
// from Nordsieck to multistep
|
||||||
final FieldMatrix<BigFraction> bigNtoM = buildNordsieckToMultistep(p, q, r, s);
|
final FieldMatrix<BigFraction> bigNtoM = buildNordsieckToMultistep(p, q, r, s);
|
||||||
|
@ -128,7 +132,7 @@ public class NordsieckTransformer implements Serializable {
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Build the transform from Nordsieck to multistep.
|
* Build the transform from Nordsieck to multistep.
|
||||||
* <p>states considered are y<sub>k-p</sub>, y<sub>k-(p+1)</sub> ...
|
* <p>States considered are y<sub>k-p</sub>, y<sub>k-(p+1)</sub> ...
|
||||||
* y<sub>k-(q-1)</sub> and scaled derivatives considered are
|
* y<sub>k-(q-1)</sub> and scaled derivatives considered are
|
||||||
* h y'<sub>k-r</sub>, h y'<sub>k-(r+1)</sub> ... h y'<sub>k-(s-1)</sub>
|
* h y'<sub>k-r</sub>, h y'<sub>k-(r+1)</sub> ... h y'<sub>k-(s-1)</sub>
|
||||||
* @param p start state index offset in multistep form
|
* @param p start state index offset in multistep form
|
||||||
|
@ -164,9 +168,9 @@ public class NordsieckTransformer implements Serializable {
|
||||||
// handle previous state scaled derivative h y'<sub>(k-l)</sub>
|
// handle previous state scaled derivative h y'<sub>(k-l)</sub>
|
||||||
// the following expressions are direct applications of Taylor series
|
// the following expressions are direct applications of Taylor series
|
||||||
// h y'<sub>k-1</sub>: [ 0 1 -2 3 -4 5 ...]
|
// h y'<sub>k-1</sub>: [ 0 1 -2 3 -4 5 ...]
|
||||||
// h y'<sub>k-2</sub>: [ 0 1 -4 6 -8 10 ...]
|
// h y'<sub>k-2</sub>: [ 0 1 -4 12 -32 80 ...]
|
||||||
// h y'<sub>k-3</sub>: [ 0 1 -6 9 -12 15 ...]
|
// h y'<sub>k-3</sub>: [ 0 1 -6 27 -108 405 ...]
|
||||||
// h y'<sub>k-4</sub>: [ 0 1 -8 12 -16 20 ...]
|
// h y'<sub>k-4</sub>: [ 0 1 -8 48 -256 1280 ...]
|
||||||
final BigFraction[] row = array[i++];
|
final BigFraction[] row = array[i++];
|
||||||
final BigInteger factor = BigInteger.valueOf(-l);
|
final BigInteger factor = BigInteger.valueOf(-l);
|
||||||
row[0] = BigFraction.ZERO;
|
row[0] = BigFraction.ZERO;
|
||||||
|
|
Loading…
Reference in New Issue