MATH-931
Efficiency improvement and unit test (thanks to Sean Owen). git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1440734 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
92ed793e3e
commit
8204809676
|
@ -55,6 +55,9 @@ This is a minor release: It combines bug fixes and new features.
|
|||
Changes to existing features were made in a backwards-compatible
|
||||
way such as to allow drop-in replacement of the v3.1[.1] JAR file.
|
||||
">
|
||||
<action dev="erans" type="update" issue="MATH-931" due-to="Sean Owen">
|
||||
Greater efficiency in "UnitSphereRandomVectorGenerator".
|
||||
</action>
|
||||
<action dev="tn" type="fix" issue="MATH-930">
|
||||
Improved class javadoc wrt convergence criteria and added
|
||||
additional constructors to override the default epsilon and cut-off
|
||||
|
|
|
@ -59,18 +59,17 @@ public class UnitSphereRandomVectorGenerator
|
|||
|
||||
/** {@inheritDoc} */
|
||||
public double[] nextVector() {
|
||||
|
||||
final double[] v = new double[dimension];
|
||||
|
||||
double normSq;
|
||||
do {
|
||||
normSq = 0;
|
||||
for (int i = 0; i < dimension; i++) {
|
||||
final double comp = 2 * rand.nextDouble() - 1;
|
||||
v[i] = comp;
|
||||
normSq += comp * comp;
|
||||
}
|
||||
} while (normSq > 1);
|
||||
// See http://mathworld.wolfram.com/SpherePointPicking.html for example.
|
||||
// Pick a point by choosing a standard Gaussian for each element, and then
|
||||
// normalizing to unit length.
|
||||
double normSq = 0;
|
||||
for (int i = 0; i < dimension; i++) {
|
||||
final double comp = rand.nextGaussian();
|
||||
v[i] = comp;
|
||||
normSq += comp * comp;
|
||||
}
|
||||
|
||||
final double f = 1 / FastMath.sqrt(normSq);
|
||||
for (int i = 0; i < dimension; i++) {
|
||||
|
@ -78,7 +77,5 @@ public class UnitSphereRandomVectorGenerator
|
|||
}
|
||||
|
||||
return v;
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -0,0 +1,68 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
package org.apache.commons.math3.random;
|
||||
|
||||
import org.apache.commons.math3.util.FastMath;
|
||||
import org.junit.Assert;
|
||||
import org.junit.Test;
|
||||
|
||||
public class UnitSphereRandomVectorGeneratorTest {
|
||||
/**
|
||||
* Test the distribution of points from {@link UnitSphereRandomVectorGenerator#nextVector()}
|
||||
* in two dimensions.
|
||||
*/
|
||||
@Test
|
||||
public void test2DDistribution() {
|
||||
|
||||
RandomGenerator rg = new JDKRandomGenerator();
|
||||
rg.setSeed(17399225432l);
|
||||
UnitSphereRandomVectorGenerator generator = new UnitSphereRandomVectorGenerator(2, rg);
|
||||
|
||||
// In 2D, angles with a given vector should be uniformly distributed
|
||||
int[] angleBuckets = new int[100];
|
||||
int steps = 1000000;
|
||||
for (int i = 0; i < steps; ++i) {
|
||||
final double[] v = generator.nextVector();
|
||||
Assert.assertEquals(2, v.length);
|
||||
Assert.assertEquals(1, length(v), 1e-10);
|
||||
// Compute angle formed with vector (1,0)
|
||||
// Cosine of angle is their dot product, because both are unit length
|
||||
// Dot product here is just the first element of the vector by construction
|
||||
final double angle = FastMath.acos(v[0]);
|
||||
final int bucket = (int) (angleBuckets.length * (angle / FastMath.PI));
|
||||
++angleBuckets[bucket];
|
||||
}
|
||||
|
||||
// Simplistic test for roughly even distribution
|
||||
final int expectedBucketSize = steps / angleBuckets.length;
|
||||
for (int bucket : angleBuckets) {
|
||||
Assert.assertTrue("Bucket count " + bucket + " vs expected " + expectedBucketSize,
|
||||
FastMath.abs(expectedBucketSize - bucket) < 350);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @return length (L2 norm) of given vector
|
||||
*/
|
||||
private static double length(double[] vector) {
|
||||
double total = 0;
|
||||
for (double d : vector) {
|
||||
total += d * d;
|
||||
}
|
||||
return FastMath.sqrt(total);
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue