Fixed links and some formatting in user guide.
git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1291882 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
66ea7501d4
commit
829bb2b714
|
@ -63,21 +63,21 @@
|
|||
are only four interfaces defining the common behavior of optimizers, one for each
|
||||
supported type of objective function:
|
||||
<ul>
|
||||
<li><a href="../apidocs/org/apache/commons/math3/optimization/UnivariateRealOptimizer.html">
|
||||
UnivariateRealOptimizer</a> for <a
|
||||
href="../apidocs/org/apache/commons/math3/analysis/UnivariateRealFunction.html">
|
||||
<li><a href="../apidocs/org/apache/commons/math3/optimization/univariate/UnivariateOptimizer.html">
|
||||
UnivariateOptimizer</a> for <a
|
||||
href="../apidocs/org/apache/commons/math3/analysis/UnivariateFunction.html">
|
||||
univariate real functions</a></li>
|
||||
<li><a href="../apidocs/org/apache/commons/math3/optimization/MultivariateRealOptimizer.html">
|
||||
MultivariateRealOptimizer</a> for <a
|
||||
href="../apidocs/org/apache/commons/math3/analysis/MultivariateRealFunction.html">
|
||||
<li><a href="../apidocs/org/apache/commons/math3/optimization/MultivariateOptimizer.html">
|
||||
MultivariateOptimizer</a> for <a
|
||||
href="../apidocs/org/apache/commons/math3/analysis/MultivariateFunction.html">
|
||||
multivariate real functions</a></li>
|
||||
<li><a href="../apidocs/org/apache/commons/math3/optimization/DifferentiableMultivariateRealOptimizer.html">
|
||||
DifferentiableMultivariateRealOptimizer</a> for <a
|
||||
href="../apidocs/org/apache/commons/math3/analysis/DifferentiableMultivariateRealFunction.html">
|
||||
<li><a href="../apidocs/org/apache/commons/math3/optimization/DifferentiableMultivariateOptimizer.html">
|
||||
DifferentiableMultivariateOptimizer</a> for <a
|
||||
href="../apidocs/org/apache/commons/math3/analysis/DifferentiableMultivariateFunction.html">
|
||||
differentiable multivariate real functions</a></li>
|
||||
<li><a href="../apidocs/org/apache/commons/math3/optimization/DifferentiableMultivariateVectorialOptimizer.html">
|
||||
DifferentiableMultivariateVectorialOptimizer</a> for <a
|
||||
href="../apidocs/org/apache/commons/math3/analysis/DifferentiableMultivariateVectorialFunction.html">
|
||||
<li><a href="../apidocs/org/apache/commons/math3/optimization/DifferentiableMultivariateVectorOptimizer.html">
|
||||
DifferentiableMultivariateVectorOptimizer</a> for <a
|
||||
href="../apidocs/org/apache/commons/math3/analysis/DifferentiableMultivariateVectorFunction.html">
|
||||
differentiable multivariate vectorial functions</a></li>
|
||||
</ul>
|
||||
</p>
|
||||
|
@ -85,15 +85,15 @@
|
|||
<p>
|
||||
Despite there are only four types of supported optimizers, it is possible to optimize
|
||||
a transform a <a
|
||||
href="../apidocs/org/apache/commons/math3/analysis/MultivariateVectorialFunction.html">
|
||||
href="../apidocs/org/apache/commons/math3/analysis/MultivariateVectorFunction.html">
|
||||
non-differentiable multivariate vectorial function</a> by converting it to a <a
|
||||
href="../apidocs/org/apache/commons/math3/analysis/MultivariateRealFunction.html">
|
||||
href="../apidocs/org/apache/commons/math3/analysis/MultivariateFunction.html">
|
||||
non-differentiable multivariate real function</a> thanks to the <a
|
||||
href="../apidocs/org/apache/commons/math3/optimization/LeastSquaresConverter.html">
|
||||
LeastSquaresConverter</a> helper class. The transformed function can be optimized using
|
||||
any implementation of the <a
|
||||
href="../apidocs/org/apache/commons/math3/optimization/MultivariateRealOptimizer.html">
|
||||
MultivariateRealOptimizer</a> interface.
|
||||
href="../apidocs/org/apache/commons/math3/optimization/MultivariateOptimizer.html">
|
||||
MultivariateOptimizer</a> interface.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
|
@ -106,8 +106,8 @@
|
|||
</subsection>
|
||||
<subsection name="12.2 Univariate Functions" href="univariate">
|
||||
<p>
|
||||
A <a href="../apidocs/org/apache/commons/math3/optimization/UnivariateRealOptimizer.html">
|
||||
UnivariateRealOptimizer</a> is used to find the minimal values of a univariate real-valued
|
||||
A <a href="../apidocs/org/apache/commons/math3/optimization/univariate/UnivariateOptimizer.html">
|
||||
UnivariateOptimizer</a> is used to find the minimal values of a univariate real-valued
|
||||
function <code>f</code>.
|
||||
</p>
|
||||
<p>
|
||||
|
@ -174,10 +174,10 @@
|
|||
<p>
|
||||
The first two simplex-based methods do not handle simple bounds constraints by themselves.
|
||||
However there are two adapters(<a
|
||||
href="../apidocs/org/apache/commons/math3/optimization/direct/MultivariateRealFunctionMappingAdapter.html">
|
||||
MultivariateRealFunctionMappingAdapter</a> and <a
|
||||
href="../apidocs/org/apache/commons/math3/optimization/direct/MultivariateRealFunctionPenaltyAdapter.html">
|
||||
MultivariateRealFunctionPenaltyAdapter</a>) that can be used to wrap the user function in
|
||||
href="../apidocs/org/apache/commons/math3/optimization/direct/MultivariateFunctionMappingAdapter.html">
|
||||
MultivariateFunctionMappingAdapter</a> and <a
|
||||
href="../apidocs/org/apache/commons/math3/optimization/direct/MultivariateFunctionPenaltyAdapter.html">
|
||||
MultivariateFunctionPenaltyAdapter</a>) that can be used to wrap the user function in
|
||||
such a way the wrapped function is unbounded and can be used with these optimizers, despite
|
||||
the fact the underlying function is still bounded and will be called only with feasible
|
||||
points that fulfill the constraints. Note however that using these adapters are only a
|
||||
|
@ -238,8 +238,8 @@
|
|||
<p>
|
||||
In order to solve a vectorial optimization problem, the user must provide it as
|
||||
an object implementing the <a
|
||||
href="../apidocs/org/apache/commons/math3/analysis/DifferentiableMultivariateVectorialFunction.html">
|
||||
DifferentiableMultivariateVectorialFunction</a> interface. The object will be provided to
|
||||
href="../apidocs/org/apache/commons/math3/analysis/DifferentiableMultivariateVectorFunction.html">
|
||||
DifferentiableMultivariateVectorFunction</a> interface. The object will be provided to
|
||||
the <code>estimate</code> method of the optimizer, along with the target and weight arrays,
|
||||
thus allowing the optimizer to compute the residuals at will. The last parameter to the
|
||||
<code>estimate</code> method is the point from which the optimizer will start its
|
||||
|
@ -251,9 +251,10 @@
|
|||
<dd>
|
||||
|
||||
|
||||
We are looking to find the best parameters [a, b, c] for the quadratic function <b><tt> f(x)=a*x^2 + b*x + c </tt></b>.
|
||||
The data set below was generated using [a = 8, b = 10, c = 16]. A random number between zero and one was added
|
||||
to each y value calculated.
|
||||
We are looking to find the best parameters [a, b, c] for the quadratic function
|
||||
<b><code>f(x) = a x<sup>2</sup> + b x + c</code></b>.
|
||||
The data set below was generated using [a = 8, b = 10, c = 16].
|
||||
A random number between zero and one was added to each y value calculated.
|
||||
|
||||
<table cellspacing="0" cellpadding="3">
|
||||
<tr>
|
||||
|
@ -303,7 +304,7 @@
|
|||
</table>
|
||||
|
||||
<p>
|
||||
First we need to implement the interface <a href="../apidocs/org/apache/commons/math3/analysis/DifferentiableMultivariateVectorialFunction.html">DifferentiableMultivariateVectorialFunction</a>.
|
||||
First we need to implement the interface <a href="../apidocs/org/apache/commons/math3/analysis/DifferentiableMultivariateVectorFunction.html">DifferentiableMultivariateVectorFunction</a>.
|
||||
This requires the implementation of the method signatures:
|
||||
</p>
|
||||
|
||||
|
@ -318,24 +319,23 @@ We'll tackle the implementation of the <code>MultivariateMatrixFunction jacobian
|
|||
In this case the Jacobian is the partial derivative of the function with respect
|
||||
to the parameters a, b and c. These derivatives are computed as follows:
|
||||
<ul>
|
||||
<li>d(ax^2+bx+c)/da = x2</li>
|
||||
<li>d(ax^2+bx+c)/db = x</li>
|
||||
<li>d(ax^2+bx+c)/dc = 1</li>
|
||||
<li>d(ax<sup>2</sup> + bx + c)/da = x<sup>2</sup></li>
|
||||
<li>d(ax<sup>2</sup> + bx + c)/db = x</li>
|
||||
<li>d(ax<sup>2</sup> + bx + c)/dc = 1</li>
|
||||
</ul>
|
||||
</p>
|
||||
|
||||
<p>
|
||||
For a quadratic which has three variables the Jacobian Matrix will have three columns, one for each variable, and the number
|
||||
of rows will equal the number of rows in our data set, which in this case is ten. So for example for <b><tt>[a = 1, b=1, c=1]</tt></b>
|
||||
the Jacobian Matrix is (Exluding the first column which shows the value of x):
|
||||
of rows will equal the number of rows in our data set, which in this case is ten. So for example for <tt>[a = 1, b = 1, c = 1]</tt>, the Jacobian Matrix is (excluding the first column which shows the value of x):
|
||||
</p>
|
||||
|
||||
<table cellspacing="0" cellpadding="3">
|
||||
<tr>
|
||||
<td valign="bottom" align="left" style=" font-size:10pt;"><b>x</b></td>
|
||||
<td valign="bottom" align="left" style=" font-size:10pt;"><b>d(ax^2+bx+c)/da</b></td>
|
||||
<td valign="bottom" align="left" style=" font-size:10pt;"><b>d(ax^2+bx+c)/db</b></td>
|
||||
<td valign="bottom" align="left" style=" font-size:10pt;"><b>d(ax^2+bx+c)/dc</b></td>
|
||||
<td valign="bottom" align="left" style=" font-size:10pt;"><b>d(ax<sup>2</sup> + bx + c)/da</b></td>
|
||||
<td valign="bottom" align="left" style=" font-size:10pt;"><b>d(ax<sup>2</sup> + bx + c)/db</b></td>
|
||||
<td valign="bottom" align="left" style=" font-size:10pt;"><b>d(ax<sup>2</sup> + bx + c)/dc</b></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td valign="bottom" align="center" style=" font-size:10pt;">1</td>
|
||||
|
@ -405,8 +405,7 @@ parameter is an ArrayList containing the independent values of the data set):
|
|||
</p>
|
||||
|
||||
<source>
|
||||
private double[][] jacobian(double[] variables)
|
||||
{
|
||||
private double[][] jacobian(double[] variables) {
|
||||
double[][] jacobian = new double[x.size()][3];
|
||||
for (int i = 0; i < jacobian.length; ++i) {
|
||||
jacobian[i][0] = x.get(i) * x.get(i);
|
||||
|
@ -416,8 +415,7 @@ parameter is an ArrayList containing the independent values of the data set):
|
|||
return jacobian;
|
||||
}
|
||||
|
||||
public MultivariateMatrixFunction jacobian()
|
||||
{
|
||||
public MultivariateMatrixFunction jacobian() {
|
||||
return new MultivariateMatrixFunction() {
|
||||
private static final long serialVersionUID = -8673650298627399464L;
|
||||
public double[][] value(double[] point) {
|
||||
|
@ -458,7 +456,8 @@ Below is the the class containing all the implementation details
|
|||
</p>
|
||||
|
||||
<source>
|
||||
private static class QuadraticProblem implements DifferentiableMultivariateVectorialFunction, Serializable {
|
||||
private static class QuadraticProblem
|
||||
implements DifferentiableMultivariateVectorFunction, Serializable {
|
||||
|
||||
private static final long serialVersionUID = 7072187082052755854L;
|
||||
private List<Double> x;
|
||||
|
@ -474,11 +473,9 @@ private static class QuadraticProblem implements DifferentiableMultivariateVecto
|
|||
this.y.add(y);
|
||||
}
|
||||
|
||||
public double[] calculateTarget()
|
||||
{
|
||||
public double[] calculateTarget() {
|
||||
double[] target = new double[y.size()];
|
||||
for (int i = 0; i < y.size(); i++)
|
||||
{
|
||||
for (int i = 0; i < y.size(); i++) {
|
||||
target[i] = y.get(i).doubleValue();
|
||||
}
|
||||
return target;
|
||||
|
@ -522,34 +519,30 @@ optimal set of quadratic curve fitting parameters:
|
|||
<source>
|
||||
QuadraticProblem problem = new QuadraticProblem();
|
||||
|
||||
problem.addPoint (1, 34.234064369);
|
||||
problem.addPoint (2, 68.2681162306);
|
||||
problem.addPoint (3, 118.6158990846);
|
||||
problem.addPoint (4, 184.1381972386);
|
||||
problem.addPoint (5, 266.5998779163);
|
||||
problem.addPoint (6, 364.1477352516);
|
||||
problem.addPoint (7, 478.0192260919);
|
||||
problem.addPoint (8, 608.1409492707);
|
||||
problem.addPoint (9, 754.5988686671);
|
||||
problem.addPoint (10, 916.1288180859);
|
||||
problem.addPoint(1, 34.234064369);
|
||||
problem.addPoint(2, 68.2681162306);
|
||||
problem.addPoint(3, 118.6158990846);
|
||||
problem.addPoint(4, 184.1381972386);
|
||||
problem.addPoint(5, 266.5998779163);
|
||||
problem.addPoint(6, 364.1477352516);
|
||||
problem.addPoint(7, 478.0192260919);
|
||||
problem.addPoint(8, 608.1409492707);
|
||||
problem.addPoint(9, 754.5988686671);
|
||||
problem.addPoint(10, 916.1288180859);
|
||||
|
||||
LevenbergMarquardtOptimizer optimizer
|
||||
= new LevenbergMarquardtOptimizer();
|
||||
LevenbergMarquardtOptimizer optimizer = new LevenbergMarquardtOptimizer();
|
||||
|
||||
double[] weights =
|
||||
{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 };
|
||||
final double[] weights = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 };
|
||||
|
||||
double[] initialSolution = {1, 1, 1};
|
||||
final double[] initialSolution = {1, 1, 1};
|
||||
|
||||
VectorialPointValuePair optimum =
|
||||
optimizer.optimize(
|
||||
100,
|
||||
PointVectorValuePair optimum = optimizer.optimize(100,
|
||||
problem,
|
||||
problem.calculateTarget(),
|
||||
weights,
|
||||
initialSolution);
|
||||
|
||||
double[] optimalValues = optimum.getPoint();
|
||||
final double[] optimalValues = optimum.getPoint();
|
||||
|
||||
System.out.println("A: " + optimalValues[0]);
|
||||
System.out.println("B: " + optimalValues[1]);
|
||||
|
@ -574,14 +567,14 @@ C: 16.324008168386605
|
|||
href="../apidocs/org/apache/commons/math3/optimization/general/NonLinearConjugateGradientOptimizer.html">
|
||||
NonLinearConjugateGradientOptimizer</a> class provides a non-linear conjugate gradient algorithm
|
||||
to optimize <a
|
||||
href="../apidocs/org/apache/commons/math3/optimization/DifferentiableMultivariateRealFunction.html">
|
||||
DifferentiableMultivariateRealFunction</a>. Both the Fletcher-Reeves and the Polak-Ribière
|
||||
href="../apidocs/org/apache/commons/math3/analysis/DifferentiableMultivariateFunction.html">
|
||||
DifferentiableMultivariateFunction</a>. Both the Fletcher-Reeves and the Polak-Ribière
|
||||
search direction update methods are supported. It is also possible to set up a preconditioner
|
||||
or to change the line-search algorithm of the inner loop if desired (the default one is a Brent
|
||||
solver).
|
||||
</p>
|
||||
<p>
|
||||
The <a href="../apidocs/org/apache/commons/math3/optimization/general/PowellOptimizer.html">
|
||||
The <a href="../apidocs/org/apache/commons/math3/optimization/direct/PowellOptimizer.html">
|
||||
PowellOptimizer</a> provides an optimization method for non-differentiable functions.
|
||||
</p>
|
||||
</subsection>
|
||||
|
@ -612,8 +605,8 @@ C: 16.324008168386605
|
|||
CurveFitter</a> class provides curve fitting for general curves. Users must
|
||||
provide their own implementation of the curve template as a class implementing
|
||||
the <a
|
||||
href="../apidocs/org/apache/commons/math3/optimization/fitting/ParametricRealFunction.html">
|
||||
ParametricRealFunction</a> interface and they must provide the initial guess of the
|
||||
href="../apidocs/org/apache/commons/math3/analysis/ParametricUnivariateFunction.html">
|
||||
ParametricUnivariateFunction</a> interface and they must provide the initial guess of the
|
||||
parameters. The more specialized <a
|
||||
href="../apidocs/org/apache/commons/math3/optimization/fitting/PolynomialFitter.html">
|
||||
PolynomialFitter</a> and <a
|
||||
|
@ -626,10 +619,10 @@ C: 16.324008168386605
|
|||
</p>
|
||||
<source>PolynomialFitter fitter = new PolynomialFitter(degree, new LevenbergMarquardtOptimizer());
|
||||
fitter.addObservedPoint(-1.00, 2.021170021833143);
|
||||
fitter.addObservedPoint(-0.99 2.221135431136975);
|
||||
fitter.addObservedPoint(-0.98 2.09985277659314);
|
||||
fitter.addObservedPoint(-0.97 2.0211192647627025);
|
||||
// lots of lines ommitted
|
||||
fitter.addObservedPoint(-0.99, 2.221135431136975);
|
||||
fitter.addObservedPoint(-0.98, 2.09985277659314);
|
||||
fitter.addObservedPoint(-0.97, 2.0211192647627025);
|
||||
// ... Lots of lines omitted ...
|
||||
fitter.addObservedPoint( 0.99, -2.4345814727089854);
|
||||
PolynomialFunction fitted = fitter.fit();
|
||||
</source>
|
||||
|
|
Loading…
Reference in New Issue