Field-based implementation of Adams-Moulton ODE integrator.

This commit is contained in:
Luc Maisonobe 2016-01-06 14:19:07 +01:00
parent 2a690ee895
commit 82cf2774a2
8 changed files with 579 additions and 84 deletions

View File

@ -316,6 +316,33 @@ public abstract class MultistepFieldIntegrator<T extends RealFieldElement<T>>
return nSteps;
}
/** Rescale the instance.
* <p>Since the scaled and Nordsieck arrays are shared with the caller,
* this method has the side effect of rescaling this arrays in the caller too.</p>
* @param newStepSize new step size to use in the scaled and Nordsieck arrays
*/
protected void rescale(final T newStepSize) {
final T ratio = newStepSize.divide(getStepSize());
for (int i = 0; i < scaled.length; ++i) {
scaled[i] = scaled[i].multiply(ratio);
}
final T[][] nData = nordsieck.getDataRef();
T power = ratio;
for (int i = 0; i < nData.length; ++i) {
power = power.multiply(ratio);
final T[] nDataI = nData[i];
for (int j = 0; j < nDataI.length; ++j) {
nDataI[j] = nDataI[j].multiply(power);
}
}
setStepSize(newStepSize);
}
/** Compute step grow/shrink factor according to normalized error.
* @param error normalized error of the current step
* @return grow/shrink factor for next step

View File

@ -255,9 +255,11 @@ public class AdamsBashforthFieldIntegrator<T extends RealFieldElement<T>> extend
start(equations, getStepStart(), finalTime);
// reuse the step that was chosen by the starter integrator
AdamsFieldStepInterpolator<T> interpolator =
new AdamsFieldStepInterpolator<T>(getStepSize(), getStepStart(), scaled, nordsieck,
forward, equations.getMapper());
FieldODEStateAndDerivative<T> stepStart = getStepStart();
FieldODEStateAndDerivative<T> stepEnd =
AdamsFieldStepInterpolator.taylor(stepStart,
stepStart.getTime().add(getStepSize()),
getStepSize(), scaled, nordsieck);
// main integration loop
setIsLastStep(false);
@ -270,7 +272,6 @@ public class AdamsBashforthFieldIntegrator<T extends RealFieldElement<T>> extend
while (error.subtract(1.0).getReal() >= 0.0) {
// predict a first estimate of the state at step end
final FieldODEStateAndDerivative<T> stepEnd = interpolator.getCurrentState();
predictedY = stepEnd.getState();
// evaluate the derivative
@ -290,26 +291,32 @@ public class AdamsBashforthFieldIntegrator<T extends RealFieldElement<T>> extend
// reject the step and attempt to reduce error by stepsize control
final T factor = computeStepGrowShrinkFactor(error);
rescale(filterStep(getStepSize().multiply(factor), forward, false));
interpolator = new AdamsFieldStepInterpolator<T>(getStepSize(), getStepStart(), scaled, nordsieck,
forward, equations.getMapper());
stepEnd = AdamsFieldStepInterpolator.taylor(getStepStart(),
getStepStart().getTime().add(getStepSize()),
getStepSize(),
scaled,
nordsieck);
}
}
// discrete events handling
System.arraycopy(predictedY, 0, y, 0, y.length);
setStepStart(acceptStep(interpolator, finalTime));
setStepStart(acceptStep(new AdamsFieldStepInterpolator<T>(getStepSize(), stepEnd,
predictedScaled, predictedNordsieck, forward,
getStepStart(), stepEnd,
equations.getMapper()),
finalTime));
scaled = predictedScaled;
nordsieck = predictedNordsieck;
if (!isLastStep()) {
System.arraycopy(predictedY, 0, y, 0, y.length);
if (resetOccurred()) {
// some events handler has triggered changes that
// invalidate the derivatives, we need to restart from scratch
start(equations, getStepStart(), finalTime);
interpolator = new AdamsFieldStepInterpolator<T>(getStepSize(), getStepStart(), scaled, nordsieck,
forward, equations.getMapper());
}
// stepsize control for next step
@ -330,8 +337,8 @@ public class AdamsBashforthFieldIntegrator<T extends RealFieldElement<T>> extend
}
rescale(hNew);
interpolator = new AdamsFieldStepInterpolator<T>(getStepSize(), getStepStart(), scaled, nordsieck,
forward, equations.getMapper());
stepEnd = AdamsFieldStepInterpolator.taylor(getStepStart(), getStepStart().getTime().add(getStepSize()),
getStepSize(), scaled, nordsieck);
}
@ -344,31 +351,4 @@ public class AdamsBashforthFieldIntegrator<T extends RealFieldElement<T>> extend
}
/** Rescale the instance.
* <p>Since the scaled and Nordsieck arrays are shared with the caller,
* this method has the side effect of rescaling this arrays in the caller too.</p>
* @param newStepSize new step size to use in the scaled and Nordsieck arrays
*/
public void rescale(final T newStepSize) {
final T ratio = newStepSize.divide(getStepSize());
for (int i = 0; i < scaled.length; ++i) {
scaled[i] = scaled[i].multiply(ratio);
}
final T[][] nData = nordsieck.getDataRef();
T power = ratio;
for (int i = 0; i < nData.length; ++i) {
power = power.multiply(ratio);
final T[] nDataI = nData[i];
for (int j = 0; j < nDataI.length; ++j) {
nDataI[j] = nDataI[j].multiply(power);
}
}
setStepSize(newStepSize);
}
}

View File

@ -43,6 +43,14 @@ class AdamsFieldStepInterpolator<T extends RealFieldElement<T>> extends Abstract
/** Step size used in the first scaled derivative and Nordsieck vector. */
private T scalingH;
/** Reference state.
* <p>Sometimes, the reference state is the same as globalPreviousState,
* sometimes it is the same as globalCurrentState, so we use a separate
* field to avoid any confusion.
* </p>
*/
private final FieldODEStateAndDerivative<T> reference;
/** First scaled derivative. */
private final T[] scaled;
@ -51,22 +59,7 @@ class AdamsFieldStepInterpolator<T extends RealFieldElement<T>> extends Abstract
/** Simple constructor.
* @param stepSize step size used in the scaled and Nordsieck arrays
* @param referenceState reference state from which Taylor expansion are estimated
* @param scaled first scaled derivative
* @param nordsieck Nordsieck vector
* @param isForward integration direction indicator
* @param equationsMapper mapper for ODE equations primary and secondary components
*/
AdamsFieldStepInterpolator(final T stepSize, final FieldODEStateAndDerivative<T> referenceState,
final T[] scaled, final Array2DRowFieldMatrix<T> nordsieck,
final boolean isForward, final FieldEquationsMapper<T> equationsMapper) {
this(stepSize, scaled, nordsieck, isForward,
referenceState, taylor(referenceState, referenceState.getTime().add(stepSize), stepSize, scaled, nordsieck),
equationsMapper);
}
/** Simple constructor.
* @param stepSize step size used in the scaled and Nordsieck arrays
* @param reference reference state from which Taylor expansion are estimated
* @param scaled first scaled derivative
* @param nordsieck Nordsieck vector
* @param isForward integration direction indicator
@ -74,19 +67,20 @@ class AdamsFieldStepInterpolator<T extends RealFieldElement<T>> extends Abstract
* @param globalCurrentState end of the global step
* @param equationsMapper mapper for ODE equations primary and secondary components
*/
private AdamsFieldStepInterpolator(final T stepSize, final T[] scaled,
final Array2DRowFieldMatrix<T> nordsieck,
AdamsFieldStepInterpolator(final T stepSize, final FieldODEStateAndDerivative<T> reference,
final T[] scaled, final Array2DRowFieldMatrix<T> nordsieck,
final boolean isForward,
final FieldODEStateAndDerivative<T> globalPreviousState,
final FieldODEStateAndDerivative<T> globalCurrentState,
final FieldEquationsMapper<T> equationsMapper) {
this(stepSize, scaled, nordsieck,
this(stepSize, reference, scaled, nordsieck,
isForward, globalPreviousState, globalCurrentState,
globalPreviousState, globalCurrentState, equationsMapper);
}
/** Simple constructor.
* @param stepSize step size used in the scaled and Nordsieck arrays
* @param reference reference state from which Taylor expansion are estimated
* @param scaled first scaled derivative
* @param nordsieck Nordsieck vector
* @param isForward integration direction indicator
@ -96,8 +90,8 @@ class AdamsFieldStepInterpolator<T extends RealFieldElement<T>> extends Abstract
* @param softCurrentState end of the restricted step
* @param equationsMapper mapper for ODE equations primary and secondary components
*/
private AdamsFieldStepInterpolator(final T stepSize, final T[] scaled,
final Array2DRowFieldMatrix<T> nordsieck,
private AdamsFieldStepInterpolator(final T stepSize, final FieldODEStateAndDerivative<T> reference,
final T[] scaled, final Array2DRowFieldMatrix<T> nordsieck,
final boolean isForward,
final FieldODEStateAndDerivative<T> globalPreviousState,
final FieldODEStateAndDerivative<T> globalCurrentState,
@ -107,6 +101,7 @@ class AdamsFieldStepInterpolator<T extends RealFieldElement<T>> extends Abstract
super(isForward, globalPreviousState, globalCurrentState,
softPreviousState, softCurrentState, equationsMapper);
this.scalingH = stepSize;
this.reference = reference;
this.scaled = scaled.clone();
this.nordsieck = new Array2DRowFieldMatrix<T>(nordsieck.getData(), false);
}
@ -126,7 +121,7 @@ class AdamsFieldStepInterpolator<T extends RealFieldElement<T>> extends Abstract
FieldODEStateAndDerivative<T> newSoftPreviousState,
FieldODEStateAndDerivative<T> newSoftCurrentState,
FieldEquationsMapper<T> newMapper) {
return new AdamsFieldStepInterpolator<T>(scalingH, scaled, nordsieck,
return new AdamsFieldStepInterpolator<T>(scalingH, reference, scaled, nordsieck,
newForward,
newGlobalPreviousState, newGlobalCurrentState,
newSoftPreviousState, newSoftCurrentState,
@ -139,11 +134,11 @@ class AdamsFieldStepInterpolator<T extends RealFieldElement<T>> extends Abstract
protected FieldODEStateAndDerivative<T> computeInterpolatedStateAndDerivatives(final FieldEquationsMapper<T> equationsMapper,
final T time, final T theta,
final T thetaH, final T oneMinusThetaH) {
return taylor(getPreviousState(), time, scalingH, scaled, nordsieck);
return taylor(reference, time, scalingH, scaled, nordsieck);
}
/** Estimate state by applying Taylor formula.
* @param referenceState reference state
* @param reference reference state
* @param time time at which state must be estimated
* @param stepSize step size used in the scaled and Nordsieck arrays
* @param scaled first scaled derivative
@ -151,12 +146,12 @@ class AdamsFieldStepInterpolator<T extends RealFieldElement<T>> extends Abstract
* @return estimated state
* @param <S> the type of the field elements
*/
private static <S extends RealFieldElement<S>> FieldODEStateAndDerivative<S> taylor(final FieldODEStateAndDerivative<S> referenceState,
public static <S extends RealFieldElement<S>> FieldODEStateAndDerivative<S> taylor(final FieldODEStateAndDerivative<S> reference,
final S time, final S stepSize,
final S[] scaled,
final Array2DRowFieldMatrix<S> nordsieck) {
final S x = time.subtract(referenceState.getTime());
final S x = time.subtract(reference.getTime());
final S normalizedAbscissa = x.divide(stepSize);
S[] stateVariation = MathArrays.buildArray(time.getField(), scaled.length);
@ -178,7 +173,7 @@ class AdamsFieldStepInterpolator<T extends RealFieldElement<T>> extends Abstract
}
}
S[] estimatedState = referenceState.getState();
S[] estimatedState = reference.getState();
for (int j = 0; j < stateVariation.length; ++j) {
stateVariation[j] = stateVariation[j].add(scaled[j].multiply(normalizedAbscissa));
estimatedState[j] = estimatedState[j].add(stateVariation[j]);

View File

@ -0,0 +1,416 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math4.ode.nonstiff;
import java.util.Arrays;
import org.apache.commons.math4.Field;
import org.apache.commons.math4.RealFieldElement;
import org.apache.commons.math4.exception.DimensionMismatchException;
import org.apache.commons.math4.exception.MaxCountExceededException;
import org.apache.commons.math4.exception.NoBracketingException;
import org.apache.commons.math4.exception.NumberIsTooSmallException;
import org.apache.commons.math4.linear.Array2DRowFieldMatrix;
import org.apache.commons.math4.linear.FieldMatrixPreservingVisitor;
import org.apache.commons.math4.ode.FieldExpandableODE;
import org.apache.commons.math4.ode.FieldODEState;
import org.apache.commons.math4.ode.FieldODEStateAndDerivative;
import org.apache.commons.math4.util.MathArrays;
import org.apache.commons.math4.util.MathUtils;
/**
* This class implements implicit Adams-Moulton integrators for Ordinary
* Differential Equations.
*
* <p>Adams-Moulton methods (in fact due to Adams alone) are implicit
* multistep ODE solvers. This implementation is a variation of the classical
* one: it uses adaptive stepsize to implement error control, whereas
* classical implementations are fixed step size. The value of state vector
* at step n+1 is a simple combination of the value at step n and of the
* derivatives at steps n+1, n, n-1 ... Since y'<sub>n+1</sub> is needed to
* compute y<sub>n+1</sub>, another method must be used to compute a first
* estimate of y<sub>n+1</sub>, then compute y'<sub>n+1</sub>, then compute
* a final estimate of y<sub>n+1</sub> using the following formulas. Depending
* on the number k of previous steps one wants to use for computing the next
* value, different formulas are available for the final estimate:</p>
* <ul>
* <li>k = 1: y<sub>n+1</sub> = y<sub>n</sub> + h y'<sub>n+1</sub></li>
* <li>k = 2: y<sub>n+1</sub> = y<sub>n</sub> + h (y'<sub>n+1</sub>+y'<sub>n</sub>)/2</li>
* <li>k = 3: y<sub>n+1</sub> = y<sub>n</sub> + h (5y'<sub>n+1</sub>+8y'<sub>n</sub>-y'<sub>n-1</sub>)/12</li>
* <li>k = 4: y<sub>n+1</sub> = y<sub>n</sub> + h (9y'<sub>n+1</sub>+19y'<sub>n</sub>-5y'<sub>n-1</sub>+y'<sub>n-2</sub>)/24</li>
* <li>...</li>
* </ul>
*
* <p>A k-steps Adams-Moulton method is of order k+1.</p>
*
* <h3>Implementation details</h3>
*
* <p>We define scaled derivatives s<sub>i</sub>(n) at step n as:
* <pre>
* s<sub>1</sub>(n) = h y'<sub>n</sub> for first derivative
* s<sub>2</sub>(n) = h<sup>2</sup>/2 y''<sub>n</sub> for second derivative
* s<sub>3</sub>(n) = h<sup>3</sup>/6 y'''<sub>n</sub> for third derivative
* ...
* s<sub>k</sub>(n) = h<sup>k</sup>/k! y<sup>(k)</sup><sub>n</sub> for k<sup>th</sup> derivative
* </pre></p>
*
* <p>The definitions above use the classical representation with several previous first
* derivatives. Lets define
* <pre>
* q<sub>n</sub> = [ s<sub>1</sub>(n-1) s<sub>1</sub>(n-2) ... s<sub>1</sub>(n-(k-1)) ]<sup>T</sup>
* </pre>
* (we omit the k index in the notation for clarity). With these definitions,
* Adams-Moulton methods can be written:
* <ul>
* <li>k = 1: y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n+1)</li>
* <li>k = 2: y<sub>n+1</sub> = y<sub>n</sub> + 1/2 s<sub>1</sub>(n+1) + [ 1/2 ] q<sub>n+1</sub></li>
* <li>k = 3: y<sub>n+1</sub> = y<sub>n</sub> + 5/12 s<sub>1</sub>(n+1) + [ 8/12 -1/12 ] q<sub>n+1</sub></li>
* <li>k = 4: y<sub>n+1</sub> = y<sub>n</sub> + 9/24 s<sub>1</sub>(n+1) + [ 19/24 -5/24 1/24 ] q<sub>n+1</sub></li>
* <li>...</li>
* </ul></p>
*
* <p>Instead of using the classical representation with first derivatives only (y<sub>n</sub>,
* s<sub>1</sub>(n+1) and q<sub>n+1</sub>), our implementation uses the Nordsieck vector with
* higher degrees scaled derivatives all taken at the same step (y<sub>n</sub>, s<sub>1</sub>(n)
* and r<sub>n</sub>) where r<sub>n</sub> is defined as:
* <pre>
* r<sub>n</sub> = [ s<sub>2</sub>(n), s<sub>3</sub>(n) ... s<sub>k</sub>(n) ]<sup>T</sup>
* </pre>
* (here again we omit the k index in the notation for clarity)
* </p>
*
* <p>Taylor series formulas show that for any index offset i, s<sub>1</sub>(n-i) can be
* computed from s<sub>1</sub>(n), s<sub>2</sub>(n) ... s<sub>k</sub>(n), the formula being exact
* for degree k polynomials.
* <pre>
* s<sub>1</sub>(n-i) = s<sub>1</sub>(n) + &sum;<sub>j&gt;0</sub> (j+1) (-i)<sup>j</sup> s<sub>j+1</sub>(n)
* </pre>
* The previous formula can be used with several values for i to compute the transform between
* classical representation and Nordsieck vector. The transform between r<sub>n</sub>
* and q<sub>n</sub> resulting from the Taylor series formulas above is:
* <pre>
* q<sub>n</sub> = s<sub>1</sub>(n) u + P r<sub>n</sub>
* </pre>
* where u is the [ 1 1 ... 1 ]<sup>T</sup> vector and P is the (k-1)&times;(k-1) matrix built
* with the (j+1) (-i)<sup>j</sup> terms with i being the row number starting from 1 and j being
* the column number starting from 1:
* <pre>
* [ -2 3 -4 5 ... ]
* [ -4 12 -32 80 ... ]
* P = [ -6 27 -108 405 ... ]
* [ -8 48 -256 1280 ... ]
* [ ... ]
* </pre></p>
*
* <p>Using the Nordsieck vector has several advantages:
* <ul>
* <li>it greatly simplifies step interpolation as the interpolator mainly applies
* Taylor series formulas,</li>
* <li>it simplifies step changes that occur when discrete events that truncate
* the step are triggered,</li>
* <li>it allows to extend the methods in order to support adaptive stepsize.</li>
* </ul></p>
*
* <p>The predicted Nordsieck vector at step n+1 is computed from the Nordsieck vector at step
* n as follows:
* <ul>
* <li>Y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n) + u<sup>T</sup> r<sub>n</sub></li>
* <li>S<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, Y<sub>n+1</sub>)</li>
* <li>R<sub>n+1</sub> = (s<sub>1</sub>(n) - S<sub>1</sub>(n+1)) P<sup>-1</sup> u + P<sup>-1</sup> A P r<sub>n</sub></li>
* </ul>
* where A is a rows shifting matrix (the lower left part is an identity matrix):
* <pre>
* [ 0 0 ... 0 0 | 0 ]
* [ ---------------+---]
* [ 1 0 ... 0 0 | 0 ]
* A = [ 0 1 ... 0 0 | 0 ]
* [ ... | 0 ]
* [ 0 0 ... 1 0 | 0 ]
* [ 0 0 ... 0 1 | 0 ]
* </pre>
* From this predicted vector, the corrected vector is computed as follows:
* <ul>
* <li>y<sub>n+1</sub> = y<sub>n</sub> + S<sub>1</sub>(n+1) + [ -1 +1 -1 +1 ... &plusmn;1 ] r<sub>n+1</sub></li>
* <li>s<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, y<sub>n+1</sub>)</li>
* <li>r<sub>n+1</sub> = R<sub>n+1</sub> + (s<sub>1</sub>(n+1) - S<sub>1</sub>(n+1)) P<sup>-1</sup> u</li>
* </ul>
* where the upper case Y<sub>n+1</sub>, S<sub>1</sub>(n+1) and R<sub>n+1</sub> represent the
* predicted states whereas the lower case y<sub>n+1</sub>, s<sub>n+1</sub> and r<sub>n+1</sub>
* represent the corrected states.</p>
*
* <p>The P<sup>-1</sup>u vector and the P<sup>-1</sup> A P matrix do not depend on the state,
* they only depend on k and therefore are precomputed once for all.</p>
*
* @param <T> the type of the field elements
* @since 3.6
*/
public class AdamsMoultonFieldIntegrator<T extends RealFieldElement<T>> extends AdamsFieldIntegrator<T> {
/** Integrator method name. */
private static final String METHOD_NAME = "Adams-Moulton";
/**
* Build an Adams-Moulton integrator with the given order and error control parameters.
* @param field field to which the time and state vector elements belong
* @param nSteps number of steps of the method excluding the one being computed
* @param minStep minimal step (sign is irrelevant, regardless of
* integration direction, forward or backward), the last step can
* be smaller than this
* @param maxStep maximal step (sign is irrelevant, regardless of
* integration direction, forward or backward), the last step can
* be smaller than this
* @param scalAbsoluteTolerance allowed absolute error
* @param scalRelativeTolerance allowed relative error
* @exception NumberIsTooSmallException if order is 1 or less
*/
public AdamsMoultonFieldIntegrator(final Field<T> field, final int nSteps,
final double minStep, final double maxStep,
final double scalAbsoluteTolerance,
final double scalRelativeTolerance)
throws NumberIsTooSmallException {
super(field, METHOD_NAME, nSteps, nSteps + 1, minStep, maxStep,
scalAbsoluteTolerance, scalRelativeTolerance);
}
/**
* Build an Adams-Moulton integrator with the given order and error control parameters.
* @param field field to which the time and state vector elements belong
* @param nSteps number of steps of the method excluding the one being computed
* @param minStep minimal step (sign is irrelevant, regardless of
* integration direction, forward or backward), the last step can
* be smaller than this
* @param maxStep maximal step (sign is irrelevant, regardless of
* integration direction, forward or backward), the last step can
* be smaller than this
* @param vecAbsoluteTolerance allowed absolute error
* @param vecRelativeTolerance allowed relative error
* @exception IllegalArgumentException if order is 1 or less
*/
public AdamsMoultonFieldIntegrator(final Field<T> field, final int nSteps,
final double minStep, final double maxStep,
final double[] vecAbsoluteTolerance,
final double[] vecRelativeTolerance)
throws IllegalArgumentException {
super(field, METHOD_NAME, nSteps, nSteps + 1, minStep, maxStep,
vecAbsoluteTolerance, vecRelativeTolerance);
}
/** {@inheritDoc} */
@Override
public FieldODEStateAndDerivative<T> integrate(final FieldExpandableODE<T> equations,
final FieldODEState<T> initialState,
final T finalTime)
throws NumberIsTooSmallException, DimensionMismatchException,
MaxCountExceededException, NoBracketingException {
sanityChecks(initialState, finalTime);
final T t0 = initialState.getTime();
final T[] y = equations.getMapper().mapState(initialState);
setStepStart(initIntegration(equations, t0, y, finalTime));
final boolean forward = finalTime.subtract(initialState.getTime()).getReal() > 0;
// compute the initial Nordsieck vector using the configured starter integrator
start(equations, getStepStart(), finalTime);
// reuse the step that was chosen by the starter integrator
FieldODEStateAndDerivative<T> stepStart = getStepStart();
FieldODEStateAndDerivative<T> stepEnd =
AdamsFieldStepInterpolator.taylor(stepStart,
stepStart.getTime().add(getStepSize()),
getStepSize(), scaled, nordsieck);
// main integration loop
setIsLastStep(false);
do {
T[] predictedY = null;
final T[] predictedScaled = MathArrays.buildArray(getField(), y.length);
Array2DRowFieldMatrix<T> predictedNordsieck = null;
T error = getField().getZero().add(10);
while (error.subtract(1.0).getReal() >= 0.0) {
// predict a first estimate of the state at step end (P in the PECE sequence)
predictedY = stepEnd.getState();
// evaluate a first estimate of the derivative (first E in the PECE sequence)
final T[] yDot = computeDerivatives(stepEnd.getTime(), predictedY);
// update Nordsieck vector
for (int j = 0; j < predictedScaled.length; ++j) {
predictedScaled[j] = getStepSize().multiply(yDot[j]);
}
predictedNordsieck = updateHighOrderDerivativesPhase1(nordsieck);
updateHighOrderDerivativesPhase2(scaled, predictedScaled, predictedNordsieck);
// apply correction (C in the PECE sequence)
error = predictedNordsieck.walkInOptimizedOrder(new Corrector(y, predictedScaled, predictedY));
if (error.subtract(1.0).getReal() >= 0.0) {
// reject the step and attempt to reduce error by stepsize control
final T factor = computeStepGrowShrinkFactor(error);
rescale(filterStep(getStepSize().multiply(factor), forward, false));
stepEnd = AdamsFieldStepInterpolator.taylor(getStepStart(),
getStepStart().getTime().add(getStepSize()),
getStepSize(),
scaled,
nordsieck);
}
}
// evaluate a final estimate of the derivative (second E in the PECE sequence)
final T[] correctedYDot = computeDerivatives(stepEnd.getTime(), predictedY);
// update Nordsieck vector
final T[] correctedScaled = MathArrays.buildArray(getField(), y.length);
for (int j = 0; j < correctedScaled.length; ++j) {
correctedScaled[j] = getStepSize().multiply(correctedYDot[j]);
}
updateHighOrderDerivativesPhase2(predictedScaled, correctedScaled, predictedNordsieck);
// discrete events handling
stepEnd = new FieldODEStateAndDerivative<T>(stepEnd.getTime(), predictedY, correctedYDot);
setStepStart(acceptStep(new AdamsFieldStepInterpolator<T>(getStepSize(), stepEnd,
correctedScaled, predictedNordsieck, forward,
getStepStart(), stepEnd,
equations.getMapper()),
finalTime));
scaled = correctedScaled;
nordsieck = predictedNordsieck;
if (!isLastStep()) {
System.arraycopy(predictedY, 0, y, 0, y.length);
if (resetOccurred()) {
// some events handler has triggered changes that
// invalidate the derivatives, we need to restart from scratch
start(equations, getStepStart(), finalTime);
}
// stepsize control for next step
final T factor = computeStepGrowShrinkFactor(error);
final T scaledH = getStepSize().multiply(factor);
final T nextT = getStepStart().getTime().add(scaledH);
final boolean nextIsLast = forward ?
nextT.subtract(finalTime).getReal() >= 0 :
nextT.subtract(finalTime).getReal() <= 0;
T hNew = filterStep(scaledH, forward, nextIsLast);
final T filteredNextT = getStepStart().getTime().add(hNew);
final boolean filteredNextIsLast = forward ?
filteredNextT.subtract(finalTime).getReal() >= 0 :
filteredNextT.subtract(finalTime).getReal() <= 0;
if (filteredNextIsLast) {
hNew = finalTime.subtract(getStepStart().getTime());
}
rescale(hNew);
stepEnd = AdamsFieldStepInterpolator.taylor(getStepStart(), getStepStart().getTime().add(getStepSize()),
getStepSize(), scaled, nordsieck);
}
} while (!isLastStep());
final FieldODEStateAndDerivative<T> finalState = getStepStart();
setStepStart(null);
setStepSize(null);
return finalState;
}
/** Corrector for current state in Adams-Moulton method.
* <p>
* This visitor implements the Taylor series formula:
* <pre>
* Y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n+1) + [ -1 +1 -1 +1 ... &plusmn;1 ] r<sub>n+1</sub>
* </pre>
* </p>
*/
private class Corrector implements FieldMatrixPreservingVisitor<T> {
/** Previous state. */
private final T[] previous;
/** Current scaled first derivative. */
private final T[] scaled;
/** Current state before correction. */
private final T[] before;
/** Current state after correction. */
private final T[] after;
/** Simple constructor.
* @param previous previous state
* @param scaled current scaled first derivative
* @param state state to correct (will be overwritten after visit)
*/
Corrector(final T[] previous, final T[] scaled, final T[] state) {
this.previous = previous;
this.scaled = scaled;
this.after = state;
this.before = state.clone();
}
/** {@inheritDoc} */
public void start(int rows, int columns,
int startRow, int endRow, int startColumn, int endColumn) {
Arrays.fill(after, getField().getZero());
}
/** {@inheritDoc} */
public void visit(int row, int column, T value) {
if ((row & 0x1) == 0) {
after[column] = after[column].subtract(value);
} else {
after[column] = after[column].add(value);
}
}
/**
* End visiting the Nordsieck vector.
* <p>The correction is used to control stepsize. So its amplitude is
* considered to be an error, which must be normalized according to
* error control settings. If the normalized value is greater than 1,
* the correction was too large and the step must be rejected.</p>
* @return the normalized correction, if greater than 1, the step
* must be rejected
*/
public T end() {
T error = getField().getZero();
for (int i = 0; i < after.length; ++i) {
after[i] = after[i].add(previous[i].add(scaled[i]));
if (i < mainSetDimension) {
final T yScale = MathUtils.max(previous[i].abs(), after[i].abs());
final T tol = (vecAbsoluteTolerance == null) ?
yScale.multiply(scalRelativeTolerance).add(scalAbsoluteTolerance) :
yScale.multiply(vecRelativeTolerance[i]).add(vecAbsoluteTolerance[i]);
final T ratio = after[i].subtract(before[i]).divide(tol); // (corrected-predicted)/tol
error = error.add(ratio.multiply(ratio));
}
}
return error.divide(mainSetDimension).sqrt();
}
}
}

View File

@ -74,10 +74,10 @@ public abstract class AbstractAdamsFieldIntegratorTest {
public abstract void testIncreasingTolerance();
protected <T extends RealFieldElement<T>> void doTestIncreasingTolerance(final Field<T> field,
int ratioMin, int ratioMax) {
double ratioMin, double ratioMax) {
int previousCalls = Integer.MAX_VALUE;
for (int i = -12; i < -5; ++i) {
for (int i = -12; i < -2; ++i) {
TestFieldProblem1<T> pb = new TestFieldProblem1<T>(field);
double minStep = 0;
double maxStep = pb.getFinalTime().subtract(pb.getInitialState().getTime()).getReal();
@ -106,7 +106,7 @@ public abstract class AbstractAdamsFieldIntegratorTest {
@Test(expected = MaxCountExceededException.class)
public abstract void exceedMaxEvaluations();
protected <T extends RealFieldElement<T>> void doExceedMaxEvaluations(final Field<T> field) {
protected <T extends RealFieldElement<T>> void doExceedMaxEvaluations(final Field<T> field, final int max) {
TestFieldProblem1<T> pb = new TestFieldProblem1<T>(field);
double range = pb.getFinalTime().subtract(pb.getInitialState().getTime()).getReal();
@ -114,7 +114,7 @@ public abstract class AbstractAdamsFieldIntegratorTest {
FirstOrderFieldIntegrator<T> integ = createIntegrator(field, 2, 0, range, 1.0e-12, 1.0e-12);
TestFieldProblemHandler<T> handler = new TestFieldProblemHandler<T>(pb, integ);
integ.addStepHandler(handler);
integ.setMaxEvaluations(650);
integ.setMaxEvaluations(max);
integ.integrate(new FieldExpandableODE<T>(pb), pb.getInitialState(), pb.getFinalTime());
}
@ -132,7 +132,6 @@ public abstract class AbstractAdamsFieldIntegratorTest {
double range = pb.getFinalTime().subtract(pb.getInitialState().getTime()).getReal();
AdamsFieldIntegrator<T> integ = createIntegrator(field, 4, 0, range, 1.0e-12, 1.0e-12);
integ.setStarterIntegrator(new PerfectStarter<T>(pb, (integ.getNSteps() + 5) / 2));
TestFieldProblemHandler<T> handler = new TestFieldProblemHandler<T>(pb, integ);
integ.addStepHandler(handler);
integ.integrate(new FieldExpandableODE<T>(pb), pb.getInitialState(), pb.getFinalTime());

View File

@ -49,15 +49,15 @@ public class AdamsBashforthFieldIntegratorTest extends AbstractAdamsFieldIntegra
@Test
public void testIncreasingTolerance() {
// the 7 and 121 factors are only valid for this test
// the 2.6 and 122 factors are only valid for this test
// and has been obtained from trial and error
// there are no general relationship between local and global errors
doTestIncreasingTolerance(Decimal64Field.getInstance(), 7, 121);
doTestIncreasingTolerance(Decimal64Field.getInstance(), 2.6, 122);
}
@Test(expected = MaxCountExceededException.class)
public void exceedMaxEvaluations() {
doExceedMaxEvaluations(Decimal64Field.getInstance());
doExceedMaxEvaluations(Decimal64Field.getInstance(), 650);
}
@Test

View File

@ -77,7 +77,7 @@ public class AdamsBashforthIntegratorTest {
public void testIncreasingTolerance() throws DimensionMismatchException, NumberIsTooSmallException, MaxCountExceededException, NoBracketingException {
int previousCalls = Integer.MAX_VALUE;
for (int i = -12; i < -5; ++i) {
for (int i = -12; i < -2; ++i) {
TestProblem1 pb = new TestProblem1();
double minStep = 0;
double maxStep = pb.getFinalTime() - pb.getInitialTime();
@ -93,10 +93,10 @@ public class AdamsBashforthIntegratorTest {
pb.getInitialTime(), pb.getInitialState(),
pb.getFinalTime(), new double[pb.getDimension()]);
// the 8 and 122 factors are only valid for this test
// the 2.6 and 122 factors are only valid for this test
// and has been obtained from trial and error
// there are no general relationship between local and global errors
Assert.assertTrue(handler.getMaximalValueError() > ( 8 * scalAbsoluteTolerance));
Assert.assertTrue(handler.getMaximalValueError() > (2.6 * scalAbsoluteTolerance));
Assert.assertTrue(handler.getMaximalValueError() < (122 * scalAbsoluteTolerance));
int calls = pb.getCalls();

View File

@ -0,0 +1,78 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math4.ode.nonstiff;
import org.apache.commons.math4.Field;
import org.apache.commons.math4.RealFieldElement;
import org.apache.commons.math4.exception.MathIllegalStateException;
import org.apache.commons.math4.exception.MaxCountExceededException;
import org.apache.commons.math4.exception.NumberIsTooSmallException;
import org.apache.commons.math4.util.Decimal64Field;
import org.junit.Test;
public class AdamsMoultonFieldIntegratorTest extends AbstractAdamsFieldIntegratorTest {
protected <T extends RealFieldElement<T>> AdamsFieldIntegrator<T>
createIntegrator(Field<T> field, final int nSteps, final double minStep, final double maxStep,
final double scalAbsoluteTolerance, final double scalRelativeTolerance) {
return new AdamsMoultonFieldIntegrator<T>(field, nSteps, minStep, maxStep,
scalAbsoluteTolerance, scalRelativeTolerance);
}
protected <T extends RealFieldElement<T>> AdamsFieldIntegrator<T>
createIntegrator(Field<T> field, final int nSteps, final double minStep, final double maxStep,
final double[] vecAbsoluteTolerance, final double[] vecRelativeTolerance) {
return new AdamsMoultonFieldIntegrator<T>(field, nSteps, minStep, maxStep,
vecAbsoluteTolerance, vecRelativeTolerance);
}
@Test(expected=NumberIsTooSmallException.class)
public void testMinStep() {
doDimensionCheck(Decimal64Field.getInstance());
}
@Test
public void testIncreasingTolerance() {
// the 0.45 and 8.69 factors are only valid for this test
// and has been obtained from trial and error
// there are no general relationship between local and global errors
doTestIncreasingTolerance(Decimal64Field.getInstance(), 0.45, 8.69);
}
@Test(expected = MaxCountExceededException.class)
public void exceedMaxEvaluations() {
doExceedMaxEvaluations(Decimal64Field.getInstance(), 650);
}
@Test
public void backward() {
doBackward(Decimal64Field.getInstance(), 3.0e-9, 3.0e-9, 1.0e-16, "Adams-Moulton");
}
@Test
public void polynomial() {
doPolynomial(Decimal64Field.getInstance(), 5, 2.2e-05, 1.1e-11);
}
@Test(expected=MathIllegalStateException.class)
public void testStartFailure() {
doTestStartFailure(Decimal64Field.getInstance());
}
}