From 830cd9eecafaa56e450150dc4a019bb49d30d408 Mon Sep 17 00:00:00 2001
From: Luc Maisonobe
+ * This class creates some wrapper objetcs around regular
+ * {@link UnivariateFunction univariate functions} (or {@link
+ * UnivariateVectorFunction univariate vector functions} or {@link
+ * UnivariateMatrixFunction univariate matrix functions}). These
+ * wrapper objects compute derivatives in addition to function
+ * value.
+ *
+ * The wrapper objects work by calling the underlying function on
+ * a sampling grid around the current point and perform polynomial
+ * interpolation. A finite differences scheme with n points is
+ * theoretically able to compute derivatives up to order n-1, but
+ * it is generally better to have a slight margin. The step size must
+ * also be small enough in order for the polynomial approximation to
+ * be good in the current point neighborhood, but it should not be too
+ * small because numerical instability appears quickly (there are several
+ * differences of close points). Choosing the number of points and
+ * the step size is highly problem dependent.
+ *
+ * As an example of good and bad settings, lets consider the quintic
+ * polynomial function {@code f(x) = (x-1)*(x-0.5)*x*(x+0.5)*(x+1)}.
+ * Since it is a polynomial, finite differences with at least 6 points
+ * should theoretically recover the exact same polynomial and hence
+ * compute accurate derivatives for any order. However, due to numerical
+ * errors, we get the following results for a 7 points finite differences
+ * for abscissae in the [-10, 10] range:
+ *
+ *
+ * This example shows that the small step size is really bad, even simply
+ * for second order derivative!
+ *
+ * Beware that wrong settings for the finite differences differentiator + * can lead to highly unstable and inaccurate results, especially for + * high derivation orders. Using very small step sizes is often a + * bad idea. + *
+ * @param nbPoints number of points to use + * @param stepSize step size (gap between each point) + * @exception NotPositiveException if {@code stepsize <= 0} (note that + * {@link NotPositiveException} extends {@link NumberIsTooSmallException}) + * @exception NumberIsTooSmallException {@code nbPoint <= 1} + */ + public FiniteDifferencesDifferentiator(final int nbPoints, final double stepSize) + throws NotPositiveException, NumberIsTooSmallException { + + if (nbPoints <= 1) { + throw new NumberIsTooSmallException(stepSize, 1, false); + } + this.nbPoints = nbPoints; + + if (stepSize <= 0) { + throw new NotPositiveException(stepSize); + } + this.stepSize = stepSize; + + } + + /** + * Get the number of points to use. + * @return number of points to use + */ + public int getNbPoints() { + return nbPoints; + } + + /** + * Get the step size. + * @return step size + */ + public double getStepSize() { + return stepSize; + } + + /** + * Evaluate derivatives from a centered sample. + * @param t central value and derivatives + * @param y function values at {@code t + stepSize * (i - 0.5 * (nbPoints - 1))} + * @return value and derivatives at {@code t} + * @exception NumberIsTooLargeException if the requested derivation order + * is larger or equal to the number of points + */ + private DerivativeStructure evaluate(final DerivativeStructure t, final double[] y) + throws NumberIsTooLargeException { + + // check we can achieve the requested derivation order with the sample + final int order = t.getOrder(); + if (order >= nbPoints) { + throw new NumberIsTooLargeException(order, nbPoints, false); + } + + // create divided differences diagonal arrays + final double[] top = new double[nbPoints]; + final double[] bottom = new double[nbPoints]; + + for (int i = 0; i < nbPoints; ++i) { + + // update the bottom diagonal of the divided differences array + bottom[i] = y[i]; + for (int j = 1; j <= i; ++j) { + bottom[i - j] = (bottom[i - j + 1] - bottom[i - j]) / (j * stepSize); + } + + // update the top diagonal of the divided differences array + top[i] = bottom[0]; + + } + + // evaluate interpolation polynomial (represented by top diagonal) at t + final int parameters = t.getFreeParameters(); + final double[] derivatives = t.getAllDerivatives(); + DerivativeStructure interpolation = new DerivativeStructure(parameters, order, 0.0); + DerivativeStructure monomial = new DerivativeStructure(parameters, order, 1.0); + for (int i = 0; i < nbPoints; ++i) { + interpolation = interpolation.add(monomial.multiply(top[i])); + derivatives[0] = stepSize * (0.5 * (nbPoints - 1) - i); + final DerivativeStructure deltaX = new DerivativeStructure(parameters, order, derivatives); + monomial = monomial.multiply(deltaX); + } + + return interpolation; + + } + + /** {@inheritDoc} + *The returned object cannot compute derivatives to arbitrary orders. The + * value function will throw a {@link NumberIsTooLargeException} if the requested + * derivation order is larger or equal to the number of points. + *
+ */ + public UnivariateDifferentiableFunction differentiate(final UnivariateFunction function) { + return new UnivariateDifferentiableFunction() { + + /** {@inheritDoc} */ + public double value(final double x) throws MathIllegalArgumentException { + return function.value(x); + } + + /** {@inheritDoc} */ + public DerivativeStructure value(final DerivativeStructure t) + throws MathIllegalArgumentException { + + // get sample points centered around t value + final double t0 = t.getValue(); + final double[] y = new double[nbPoints]; + for (int i = 0; i < nbPoints; ++i) { + final double xi = t0 + stepSize * (i - 0.5 * (nbPoints - 1)); + y[i] = function.value(xi); + } + + // evaluate derivatives + return evaluate(t, y); + + } + + }; + } + + /** {@inheritDoc} + *The returned object cannot compute derivatives to arbitrary orders. The + * value function will throw a {@link NumberIsTooLargeException} if the requested + * derivation order is larger or equal to the number of points. + *
+ */ + public UnivariateDifferentiableVectorFunction differentiate(final UnivariateVectorFunction function) { + return new UnivariateDifferentiableVectorFunction() { + + /** {@inheritDoc} */ + public double[]value(final double x) throws MathIllegalArgumentException { + return function.value(x); + } + + /** {@inheritDoc} */ + public DerivativeStructure[] value(final DerivativeStructure t) + throws MathIllegalArgumentException { + + // get sample points centered around t value + final double t0 = t.getValue(); + double[][] y = null; + for (int i = 0; i < nbPoints; ++i) { + final double xi = t0 + stepSize * (i - 0.5 * (nbPoints - 1)); + final double[] v = function.value(xi); + if (i == 0) { + y = new double[v.length][nbPoints]; + } + for (int j = 0; j < v.length; ++j) { + y[j][i] = v[j]; + } + } + + // evaluate derivatives + final DerivativeStructure[] value = new DerivativeStructure[y.length]; + for (int j = 0; j < value.length; ++j) { + value[j] = evaluate(t, y[j]); + } + + return value; + + } + + }; + } + + /** {@inheritDoc} + *The returned object cannot compute derivatives to arbitrary orders. The + * value function will throw a {@link NumberIsTooLargeException} if the requested + * derivation order is larger or equal to the number of points. + *
+ */ + public UnivariateDifferentiableMatrixFunction differentiate(final UnivariateMatrixFunction function) { + return new UnivariateDifferentiableMatrixFunction() { + + /** {@inheritDoc} */ + public double[][] value(final double x) throws MathIllegalArgumentException { + return function.value(x); + } + + /** {@inheritDoc} */ + public DerivativeStructure[][] value(final DerivativeStructure t) + throws MathIllegalArgumentException { + + // get sample points centered around t value + final double t0 = t.getValue(); + double[][][] y = null; + for (int i = 0; i < nbPoints; ++i) { + final double xi = t0 + stepSize * (i - 0.5 * (nbPoints - 1)); + final double[][] v = function.value(xi); + if (i == 0) { + y = new double[v.length][v[0].length][nbPoints]; + } + for (int j = 0; j < v.length; ++j) { + for (int k = 0; k < v[j].length; ++k) { + y[j][k][i] = v[j][k]; + } + } + } + + // evaluate derivatives + final DerivativeStructure[][] value = new DerivativeStructure[y.length][y[0].length]; + for (int j = 0; j < value.length; ++j) { + for (int k = 0; k < y[j].length; ++k) { + value[j][k] = evaluate(t, y[j][k]); + } + } + + return value; + + } + + }; + } + +} diff --git a/src/test/java/org/apache/commons/math3/analysis/differentiation/FiniteDifferencesDifferentiatorTest.java b/src/test/java/org/apache/commons/math3/analysis/differentiation/FiniteDifferencesDifferentiatorTest.java new file mode 100644 index 000000000..f2487522b --- /dev/null +++ b/src/test/java/org/apache/commons/math3/analysis/differentiation/FiniteDifferencesDifferentiatorTest.java @@ -0,0 +1,264 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.commons.math3.analysis.differentiation; + +import org.apache.commons.math3.TestUtils; +import org.apache.commons.math3.analysis.QuinticFunction; +import org.apache.commons.math3.analysis.UnivariateFunction; +import org.apache.commons.math3.analysis.UnivariateMatrixFunction; +import org.apache.commons.math3.analysis.UnivariateVectorFunction; +import org.apache.commons.math3.analysis.function.Gaussian; +import org.apache.commons.math3.analysis.function.Sin; +import org.apache.commons.math3.exception.NotPositiveException; +import org.apache.commons.math3.exception.NumberIsTooSmallException; +import org.apache.commons.math3.util.FastMath; +import org.junit.Assert; +import org.junit.Test; + +/** + * Test for class {@link FiniteDifferencesDifferentiator}. + */ +public class FiniteDifferencesDifferentiatorTest { + + @Test(expected=NumberIsTooSmallException.class) + public void testWrongNumberOfPoints() { + new FiniteDifferencesDifferentiator(1, 1.0); + } + + @Test(expected=NotPositiveException.class) + public void testWrongStepSize() { + new FiniteDifferencesDifferentiator(3, 0.0); + } + + @Test + public void testSerialization() { + FiniteDifferencesDifferentiator differentiator = + new FiniteDifferencesDifferentiator(3, 1.0e-3); + FiniteDifferencesDifferentiator recovered = + (FiniteDifferencesDifferentiator) TestUtils.serializeAndRecover(differentiator); + Assert.assertEquals(differentiator.getNbPoints(), recovered.getNbPoints()); + Assert.assertEquals(differentiator.getStepSize(), recovered.getStepSize(), 1.0e-15); + } + + @Test + public void testConstant() { + FiniteDifferencesDifferentiator differentiator = + new FiniteDifferencesDifferentiator(5, 0.01); + UnivariateDifferentiableFunction f = + differentiator.differentiate(new UnivariateFunction() { + public double value(double x) { + return 42.0; + } + }); + for (double x = -10; x < 10; x += 0.1) { + DerivativeStructure y = f.value(new DerivativeStructure(1, 2, 0, x)); + Assert.assertEquals(42.0, y.getValue(), 1.0e-15); + Assert.assertEquals( 0.0, y.getPartialDerivative(1), 1.0e-15); + Assert.assertEquals( 0.0, y.getPartialDerivative(2), 1.0e-15); + } + } + + @Test + public void testLinear() { + FiniteDifferencesDifferentiator differentiator = + new FiniteDifferencesDifferentiator(5, 0.01); + UnivariateDifferentiableFunction f = + differentiator.differentiate(new UnivariateFunction() { + public double value(double x) { + return 2 - 3 * x; + } + }); + for (double x = -10; x < 10; x += 0.1) { + DerivativeStructure y = f.value(new DerivativeStructure(1, 2, 0, x)); + Assert.assertEquals(2 - 3 * x, y.getValue(), 1.0e-20); + Assert.assertEquals(-3.0, y.getPartialDerivative(1), 4.0e-13); + Assert.assertEquals( 0.0, y.getPartialDerivative(2), 5.0e-11); + } + } + + @Test + public void testGaussian() { + FiniteDifferencesDifferentiator differentiator = + new FiniteDifferencesDifferentiator(9, 0.02); + UnivariateDifferentiableFunction gaussian = new Gaussian(1.0, 2.0); + UnivariateDifferentiableFunction f = + differentiator.differentiate(gaussian); + double[] expectedError = new double[] { + 2.776e-17, 1.742e-15, 2.385e-13, 1.329e-11, 2.668e-9, 8.873e-8 + }; + double[] maxError = new double[expectedError.length]; + for (double x = -10; x < 10; x += 0.1) { + DerivativeStructure dsX = new DerivativeStructure(1, maxError.length - 1, 0, x); + DerivativeStructure yRef = gaussian.value(dsX); + DerivativeStructure y = f.value(dsX); + for (int order = 0; order <= yRef.getOrder(); ++order) { + maxError[order] = FastMath.max(maxError[order], + FastMath.abs(yRef.getPartialDerivative(order) - + y.getPartialDerivative(order))); + } + } + for (int i = 0; i < maxError.length; ++i) { + Assert.assertEquals(expectedError[i], maxError[i], 0.01 * expectedError[i]); + } + } + + @Test + public void testStepSizeUnstability() { + UnivariateDifferentiableFunction quintic = new QuinticFunction(); + UnivariateDifferentiableFunction goodStep = + new FiniteDifferencesDifferentiator(7, 0.25).differentiate(quintic); + UnivariateDifferentiableFunction badStep = + new FiniteDifferencesDifferentiator(7, 1.0e-6).differentiate(quintic); + double[] maxErrorGood = new double[7]; + double[] maxErrorBad = new double[7]; + for (double x = -10; x < 10; x += 0.1) { + DerivativeStructure dsX = new DerivativeStructure(1, 6, 0, x); + DerivativeStructure yRef = quintic.value(dsX); + DerivativeStructure yGood = goodStep.value(dsX); + DerivativeStructure yBad = badStep.value(dsX); + for (int order = 0; order <= 6; ++order) { + maxErrorGood[order] = FastMath.max(maxErrorGood[order], + FastMath.abs(yRef.getPartialDerivative(order) - + yGood.getPartialDerivative(order))); + maxErrorBad[order] = FastMath.max(maxErrorBad[order], + FastMath.abs(yRef.getPartialDerivative(order) - + yBad.getPartialDerivative(order))); + } + } + + // the 0.25 step size is good for finite differences in the quintic on this abscissa range for 7 points + // the errors are fair + final double[] expectedGood = new double[] { + 7.276e-12, 7.276e-11, 9.968e-10, 3.092e-9, 5.432e-8, 8.196e-8, 1.818e-6 + }; + + // the 1.0e-6 step size is far too small for finite differences in the quintic on this abscissa range for 7 points + // the errors are huge! + final double[] expectedBad = new double[] { + 1.792e-22, 6.926e-5, 56.25, 1.783e8, 2.468e14, 3.056e20, 5.857e26 + }; + + for (int i = 0; i < maxErrorGood.length; ++i) { + Assert.assertEquals(expectedGood[i], maxErrorGood[i], 0.01 * expectedGood[i]); + Assert.assertEquals(expectedBad[i], maxErrorBad[i], 0.01 * expectedBad[i]); + } + + } + + @Test + public void testVectorFunction() { + + FiniteDifferencesDifferentiator differentiator = + new FiniteDifferencesDifferentiator(7, 0.01); + UnivariateDifferentiableVectorFunction f = + differentiator.differentiate(new UnivariateVectorFunction() { + + public double[] value(double x) { + return new double[] { FastMath.cos(x), FastMath.sin(x) }; + } + + }); + + for (double x = -10; x < 10; x += 0.1) { + DerivativeStructure[] y = f.value(new DerivativeStructure(1, 2, 0, x)); + double cos = FastMath.cos(x); + double sin = FastMath.sin(x); + Assert.assertEquals(cos, y[0].getValue(), 2.0e-16); + Assert.assertEquals(sin, y[1].getValue(), 2.0e-16); + Assert.assertEquals(-sin, y[0].getPartialDerivative(1), 5.0e-14); + Assert.assertEquals( cos, y[1].getPartialDerivative(1), 5.0e-14); + Assert.assertEquals(-cos, y[0].getPartialDerivative(2), 6.0e-12); + Assert.assertEquals(-sin, y[1].getPartialDerivative(2), 6.0e-12); + } + + } + + @Test + public void testMatrixFunction() { + + FiniteDifferencesDifferentiator differentiator = + new FiniteDifferencesDifferentiator(7, 0.01); + UnivariateDifferentiableMatrixFunction f = + differentiator.differentiate(new UnivariateMatrixFunction() { + + public double[][] value(double x) { + return new double[][] { + { FastMath.cos(x), FastMath.sin(x) }, + { FastMath.cosh(x), FastMath.sinh(x) } + }; + } + + }); + + for (double x = -1; x < 1; x += 0.02) { + DerivativeStructure[][] y = f.value(new DerivativeStructure(1, 2, 0, x)); + double cos = FastMath.cos(x); + double sin = FastMath.sin(x); + double cosh = FastMath.cosh(x); + double sinh = FastMath.sinh(x); + Assert.assertEquals(cos, y[0][0].getValue(), 7.0e-18); + Assert.assertEquals(sin, y[0][1].getValue(), 7.0e-18); + Assert.assertEquals(cosh, y[1][0].getValue(), 3.0e-16); + Assert.assertEquals(sinh, y[1][1].getValue(), 3.0e-16); + Assert.assertEquals(-sin, y[0][0].getPartialDerivative(1), 2.0e-14); + Assert.assertEquals( cos, y[0][1].getPartialDerivative(1), 2.0e-14); + Assert.assertEquals( sinh, y[1][0].getPartialDerivative(1), 3.0e-14); + Assert.assertEquals( cosh, y[1][1].getPartialDerivative(1), 3.0e-14); + Assert.assertEquals(-cos, y[0][0].getPartialDerivative(2), 3.0e-12); + Assert.assertEquals(-sin, y[0][1].getPartialDerivative(2), 3.0e-12); + Assert.assertEquals( cosh, y[1][0].getPartialDerivative(2), 6.0e-12); + Assert.assertEquals( sinh, y[1][1].getPartialDerivative(2), 6.0e-12); + } + + } + + @Test + public void testSeveralFreeParameters() { + FiniteDifferencesDifferentiator differentiator = + new FiniteDifferencesDifferentiator(5, 0.001); + UnivariateDifferentiableFunction sine = new Sin(); + UnivariateDifferentiableFunction f = + differentiator.differentiate(sine); + double[] expectedError = new double[] { + 1.110e-16, 2.66e-12, 4.803e-9, 5.486e-5 + }; + double[] maxError = new double[expectedError.length]; + for (double x = -2; x < 2; x += 0.1) { + for (double y = -2; y < 2; y += 0.1) { + DerivativeStructure dsX = new DerivativeStructure(2, maxError.length - 1, 0, x); + DerivativeStructure dsY = new DerivativeStructure(2, maxError.length - 1, 1, y); + DerivativeStructure dsT = dsX.multiply(3).subtract(dsY.multiply(2)); + DerivativeStructure sRef = sine.value(dsT); + DerivativeStructure s = f.value(dsT); + for (int xOrder = 0; xOrder <= sRef.getOrder(); ++xOrder) { + for (int yOrder = 0; yOrder <= sRef.getOrder(); ++yOrder) { + if (xOrder + yOrder <= sRef.getOrder()) { + maxError[xOrder +yOrder] = FastMath.max(maxError[xOrder + yOrder], + FastMath.abs(sRef.getPartialDerivative(xOrder, yOrder) - + s.getPartialDerivative(xOrder, yOrder))); + } + } + } + } + } + for (int i = 0; i < maxError.length; ++i) { + Assert.assertEquals(expectedError[i], maxError[i], 0.01 * expectedError[i]); + } + } + +}