[MATH-1205] Major refactoring of the descriptive statistics package.

This commit is contained in:
Thomas Neidhart 2015-04-13 22:11:35 +02:00
parent e31fde875c
commit 845e1d5423
43 changed files with 537 additions and 775 deletions

View File

@ -54,6 +54,31 @@ If the output is not quite correct, check for invisible trailing spaces!
</release>
<release version="4.0" date="XXXX-XX-XX" description="">
<action dev="tn" type="remove" issue="MATH-1205">
Removed methods "test(...)" from "AbstractUnivariateStatistic".
The already existing methods "MathArrays#verifyValues(...)" shall
be used instead.
</action>
<action dev="tn" type="update" issue="MATH-1205">
The abstract class "AbstractStorelessUnivariateStatistic" does not
extend anymore from "AbstractUnivariateStatistic".
</action>
<action dev="tn" type="update" issue="MATH-1205">
Default implementation of
"AbstractStorelessUnivariateStatistic#equals(Object)"
will only return true if both instances have the same type. Previously
different statistics were considered to be equal if their current state
happened to be equal.
</action>
<action dev="tn" type="update" issue="MATH-1205">
Default implementations of "AbstractStorelessUnivariateStatistic#evaluate(...)"
do not alter the internal state anymore. Instead a temporary copy of
the statistic is created for evaluation purposes.
</action>
<action dev="tn" type="fix" issue="MATH-1205">
Methods "evaluate(...)" of class "Variance" changed the internal state
although it was stated differently in the javadoc.
</action>
<action dev="luc" type="fix" issue="MATH-1191">
Fixed ignored method parameters in QRDecomposition protected methods.
</action>

View File

@ -19,37 +19,34 @@ package org.apache.commons.math4.stat.descriptive;
import org.apache.commons.math4.exception.MathIllegalArgumentException;
import org.apache.commons.math4.exception.NullArgumentException;
import org.apache.commons.math4.exception.util.LocalizedFormats;
import org.apache.commons.math4.util.MathArrays;
import org.apache.commons.math4.util.MathUtils;
import org.apache.commons.math4.util.Precision;
/**
*
* Abstract implementation of the {@link StorelessUnivariateStatistic} interface.
* Abstract base class for implementations of the
* {@link StorelessUnivariateStatistic} interface.
* <p>
* Provides default <code>evaluate()</code> and <code>incrementAll(double[])</code>
* implementations.</p>
* Provides default {@code evaluate(double[],...)} and {@code incrementAll(double[])}
* implementations.
* <p>
* <strong>Note that these implementations are not synchronized.</strong></p>
*
* <strong>Note that these implementations are not synchronized.</strong>
*/
public abstract class AbstractStorelessUnivariateStatistic
extends AbstractUnivariateStatistic
implements StorelessUnivariateStatistic {
/**
* This default implementation calls {@link #clear}, then invokes
* {@link #increment} in a loop over the the input array, and then uses
* {@link #getResult} to compute the return value.
* This default implementation creates a copy of this {@link StorelessUnivariateStatistic}
* instance, calls {@link #clear} on it, then calls {@link #incrementAll} with the specified
* portion of the input array, and then uses {@link #getResult} to compute the return value.
* <p>
* Note that this implementation changes the internal state of the
* statistic. Its side effects are the same as invoking {@link #clear} and
* then {@link #incrementAll(double[])}.</p>
* Note that this implementation does not change the internal state of the statistic.
* <p>
* Implementations may override this method with a more efficient and
* possibly more accurate implementation that works directly with the
* input array.</p>
* Implementations may override this method with a more efficient and possibly more
* accurate implementation that works directly with the input array.
* <p>
* If the array is null, a MathIllegalArgumentException is thrown.</p>
* If the array is null, a MathIllegalArgumentException is thrown.
*
* @param values input array
* @return the value of the statistic applied to the input array
* @throws MathIllegalArgumentException if values is null
@ -64,20 +61,18 @@ public abstract class AbstractStorelessUnivariateStatistic
}
/**
* This default implementation calls {@link #clear}, then invokes
* {@link #increment} in a loop over the specified portion of the input
* array, and then uses {@link #getResult} to compute the return value.
* This default implementation creates a copy of this {@link StorelessUnivariateStatistic}
* instance, calls {@link #clear} on it, then calls {@link #incrementAll} with the specified
* portion of the input array, and then uses {@link #getResult} to compute the return value.
* <p>
* Note that this implementation changes the internal state of the
* statistic. Its side effects are the same as invoking {@link #clear} and
* then {@link #incrementAll(double[], int, int)}.</p>
* Note that this implementation does not change the internal state of the statistic.
* <p>
* Implementations may override this method with a more efficient and
* possibly more accurate implementation that works directly with the
* input array.</p>
* Implementations may override this method with a more efficient and possibly more
* accurate implementation that works directly with the input array.
* <p>
* If the array is null or the index parameters are not valid, an
* MathIllegalArgumentException is thrown.</p>
* MathIllegalArgumentException is thrown.
*
* @param values the input array
* @param begin the index of the first element to include
* @param length the number of elements to include
@ -86,13 +81,16 @@ public abstract class AbstractStorelessUnivariateStatistic
* @see org.apache.commons.math4.stat.descriptive.UnivariateStatistic#evaluate(double[], int, int)
*/
@Override
public double evaluate(final double[] values, final int begin,
final int length) throws MathIllegalArgumentException {
if (test(values, begin, length)) {
clear();
incrementAll(values, begin, length);
public double evaluate(final double[] values, final int begin, final int length)
throws MathIllegalArgumentException {
if (MathArrays.verifyValues(values, begin, length)) {
final StorelessUnivariateStatistic stat = copy();
stat.clear();
stat.incrementAll(values, begin, length);
return stat.getResult();
}
return getResult();
return Double.NaN;
}
/**
@ -123,11 +121,11 @@ public abstract class AbstractStorelessUnivariateStatistic
* This default implementation just calls {@link #increment} in a loop over
* the input array.
* <p>
* Throws IllegalArgumentException if the input values array is null.</p>
* Throws IllegalArgumentException if the input values array is null.
*
* @param values values to add
* @throws MathIllegalArgumentException if values is null
* @see org.apache.commons.math4.stat.descriptive.StorelessUnivariateStatistic#incrementAll(double[])
* @see StorelessUnivariateStatistic#incrementAll(double[])
*/
@Override
public void incrementAll(double[] values) throws MathIllegalArgumentException {
@ -141,17 +139,17 @@ public abstract class AbstractStorelessUnivariateStatistic
* This default implementation just calls {@link #increment} in a loop over
* the specified portion of the input array.
* <p>
* Throws IllegalArgumentException if the input values array is null.</p>
* Throws IllegalArgumentException if the input values array is null.
*
* @param values array holding values to add
* @param begin index of the first array element to add
* @param length number of array elements to add
* @throws MathIllegalArgumentException if values is null
* @see org.apache.commons.math4.stat.descriptive.StorelessUnivariateStatistic#incrementAll(double[], int, int)
* @see StorelessUnivariateStatistic#incrementAll(double[], int, int)
*/
@Override
public void incrementAll(double[] values, int begin, int length) throws MathIllegalArgumentException {
if (test(values, begin, length)) {
if (MathArrays.verifyValues(values, begin, length)) {
int k = begin + length;
for (int i = begin; i < k; i++) {
increment(values[i]);
@ -160,9 +158,11 @@ public abstract class AbstractStorelessUnivariateStatistic
}
/**
* Returns true iff <code>object</code> is an
* <code>AbstractStorelessUnivariateStatistic</code> returning the same
* values as this for <code>getResult()</code> and <code>getN()</code>
* Returns true iff <code>object</code> is the same type of
* {@link StorelessUnivariateStatistic} (the object's class equals this
* instance) returning the same values as this for <code>getResult()</code>
* and <code>getN()</code>.
*
* @param object object to test equality against.
* @return true if object returns the same value as this
*/
@ -171,22 +171,22 @@ public abstract class AbstractStorelessUnivariateStatistic
if (object == this ) {
return true;
}
if (object instanceof AbstractStorelessUnivariateStatistic == false) {
if (object == null || object.getClass() != this.getClass()) {
return false;
}
AbstractStorelessUnivariateStatistic stat = (AbstractStorelessUnivariateStatistic) object;
StorelessUnivariateStatistic stat = (StorelessUnivariateStatistic) object;
return Precision.equalsIncludingNaN(stat.getResult(), this.getResult()) &&
Precision.equalsIncludingNaN(stat.getN(), this.getN());
}
/**
* Returns hash code based on getResult() and getN()
* Returns hash code based on getResult() and getN().
*
* @return hash code
*/
@Override
public int hashCode() {
return 31* (31 + MathUtils.hash(getResult())) + MathUtils.hash(getN());
return 31 * (31 + MathUtils.hash(getResult())) + MathUtils.hash(getN());
}
}

View File

@ -24,16 +24,10 @@ import org.apache.commons.math4.exception.util.LocalizedFormats;
import org.apache.commons.math4.util.MathArrays;
/**
* Abstract base class for all implementations of the
* {@link UnivariateStatistic} interface.
* Abstract base class for implementations of the {@link UnivariateStatistic} interface.
* <p>
* Provides a default implementation of <code>evaluate(double[]),</code>
* delegating to <code>evaluate(double[], int, int)</code> in the natural way.
* </p>
* <p>
* Also includes a <code>test</code> method that performs generic parameter
* validation for the <code>evaluate</code> methods.</p>
*
*/
public abstract class AbstractUnivariateStatistic
implements UnivariateStatistic {
@ -41,6 +35,28 @@ public abstract class AbstractUnivariateStatistic
/** Stored data. */
private double[] storedData;
/**
* {@inheritDoc}
*/
@Override
public double evaluate(final double[] values) throws MathIllegalArgumentException {
MathArrays.verifyValues(values, 0, 0);
return evaluate(values, 0, values.length);
}
/**
* {@inheritDoc}
*/
@Override
public abstract double evaluate(final double[] values, final int begin, final int length)
throws MathIllegalArgumentException;
/**
* {@inheritDoc}
*/
@Override
public abstract UnivariateStatistic copy();
/**
* Set the data array.
* <p>
@ -80,7 +96,7 @@ public abstract class AbstractUnivariateStatistic
* @see #evaluate()
*/
public void setData(final double[] values, final int begin, final int length)
throws MathIllegalArgumentException {
throws MathIllegalArgumentException {
if (values == null) {
throw new NullArgumentException(LocalizedFormats.INPUT_ARRAY);
}
@ -113,154 +129,4 @@ public abstract class AbstractUnivariateStatistic
return evaluate(storedData);
}
/**
* {@inheritDoc}
*/
@Override
public double evaluate(final double[] values) throws MathIllegalArgumentException {
test(values, 0, 0);
return evaluate(values, 0, values.length);
}
/**
* {@inheritDoc}
*/
@Override
public abstract double evaluate(final double[] values, final int begin, final int length)
throws MathIllegalArgumentException;
/**
* {@inheritDoc}
*/
@Override
public abstract UnivariateStatistic copy();
/**
* This method is used by <code>evaluate(double[], int, int)</code> methods
* to verify that the input parameters designate a subarray of positive length.
* <p>
* <ul>
* <li>returns <code>true</code> iff the parameters designate a subarray of
* positive length</li>
* <li>throws <code>MathIllegalArgumentException</code> if the array is null or
* or the indices are invalid</li>
* <li>returns <code>false</li> if the array is non-null, but
* <code>length</code> is 0.
* </ul></p>
*
* @param values the input array
* @param begin index of the first array element to include
* @param length the number of elements to include
* @return true if the parameters are valid and designate a subarray of positive length
* @throws MathIllegalArgumentException if the indices are invalid or the array is null
*/
protected boolean test(
final double[] values,
final int begin,
final int length) throws MathIllegalArgumentException {
return MathArrays.verifyValues(values, begin, length, false);
}
/**
* This method is used by <code>evaluate(double[], int, int)</code> methods
* to verify that the input parameters designate a subarray of positive length.
* <p>
* <ul>
* <li>returns <code>true</code> iff the parameters designate a subarray of
* non-negative length</li>
* <li>throws <code>IllegalArgumentException</code> if the array is null or
* or the indices are invalid</li>
* <li>returns <code>false</li> if the array is non-null, but
* <code>length</code> is 0 unless <code>allowEmpty</code> is <code>true</code>
* </ul></p>
*
* @param values the input array
* @param begin index of the first array element to include
* @param length the number of elements to include
* @param allowEmpty if <code>true</code> then zero length arrays are allowed
* @return true if the parameters are valid
* @throws MathIllegalArgumentException if the indices are invalid or the array is null
* @since 3.0
*/
protected boolean test(final double[] values, final int begin,
final int length, final boolean allowEmpty) throws MathIllegalArgumentException {
return MathArrays.verifyValues(values, begin, length, allowEmpty);
}
/**
* This method is used by <code>evaluate(double[], double[], int, int)</code> methods
* to verify that the begin and length parameters designate a subarray of positive length
* and the weights are all non-negative, non-NaN, finite, and not all zero.
* <p>
* <ul>
* <li>returns <code>true</code> iff the parameters designate a subarray of
* positive length and the weights array contains legitimate values.</li>
* <li>throws <code>IllegalArgumentException</code> if any of the following are true:
* <ul><li>the values array is null</li>
* <li>the weights array is null</li>
* <li>the weights array does not have the same length as the values array</li>
* <li>the weights array contains one or more infinite values</li>
* <li>the weights array contains one or more NaN values</li>
* <li>the weights array contains negative values</li>
* <li>the start and length arguments do not determine a valid array</li></ul>
* </li>
* <li>returns <code>false</li> if the array is non-null, but
* <code>length</code> is 0.
* </ul></p>
*
* @param values the input array
* @param weights the weights array
* @param begin index of the first array element to include
* @param length the number of elements to include
* @return true if the parameters are valid and designate a subarray of positive length
* @throws MathIllegalArgumentException if the indices are invalid or the array is null
* @since 2.1
*/
protected boolean test(
final double[] values,
final double[] weights,
final int begin,
final int length) throws MathIllegalArgumentException {
return MathArrays.verifyValues(values, weights, begin, length, false);
}
/**
* This method is used by <code>evaluate(double[], double[], int, int)</code> methods
* to verify that the begin and length parameters designate a subarray of positive length
* and the weights are all non-negative, non-NaN, finite, and not all zero.
* <p>
* <ul>
* <li>returns <code>true</code> iff the parameters designate a subarray of
* non-negative length and the weights array contains legitimate values.</li>
* <li>throws <code>MathIllegalArgumentException</code> if any of the following are true:
* <ul><li>the values array is null</li>
* <li>the weights array is null</li>
* <li>the weights array does not have the same length as the values array</li>
* <li>the weights array contains one or more infinite values</li>
* <li>the weights array contains one or more NaN values</li>
* <li>the weights array contains negative values</li>
* <li>the start and length arguments do not determine a valid array</li></ul>
* </li>
* <li>returns <code>false</li> if the array is non-null, but
* <code>length</code> is 0 unless <code>allowEmpty</code> is <code>true</code>.
* </ul></p>
*
* @param values the input array.
* @param weights the weights array.
* @param begin index of the first array element to include.
* @param length the number of elements to include.
* @param allowEmpty if {@code true} than allow zero length arrays to pass.
* @return {@code true} if the parameters are valid.
* @throws NullArgumentException if either of the arrays are null
* @throws MathIllegalArgumentException if the array indices are not valid,
* the weights array contains NaN, infinite or negative elements, or there
* are no positive weights.
* @since 3.0
*/
protected boolean test(final double[] values, final double[] weights,
final int begin, final int length, final boolean allowEmpty) throws MathIllegalArgumentException {
return MathArrays.verifyValues(values, weights, begin, length, allowEmpty);
}
}

View File

@ -25,8 +25,11 @@ import org.apache.commons.math4.exception.MathIllegalArgumentException;
* <p>
* This interface is designed to be used for calculating statistics that can be
* computed in one pass through the data without storing the full array of
* sample values.</p>
*
* sample values.
* <p>
* Note: unless otherwise stated, the {@link #evaluate(double[])} and
* {@link #evaluate(double[], int, int)} methods do <b>NOT</b> alter the internal
* state of the respective statistic.
*/
public interface StorelessUnivariateStatistic extends UnivariateStatistic {

View File

@ -22,7 +22,6 @@ import org.apache.commons.math4.util.MathArrays;
/**
* Base interface implemented by all statistics.
*
*/
public interface UnivariateStatistic extends MathArrays.Function {
/**

View File

@ -46,14 +46,12 @@ import org.apache.commons.math4.util.MathUtils;
* multiple threads access an instance of this class concurrently, and at least
* one of the threads invokes the <code>increment()</code> or
* <code>clear()</code> method, it must be synchronized externally.</p>
*
*/
class FirstMoment extends AbstractStorelessUnivariateStatistic
implements Serializable {
/** Serializable version identifier */
private static final long serialVersionUID = 6112755307178490473L;
private static final long serialVersionUID = 20150412L;
/** Count of values that have been added */
protected long n;
@ -161,7 +159,6 @@ class FirstMoment extends AbstractStorelessUnivariateStatistic
throws NullArgumentException {
MathUtils.checkNotNull(source);
MathUtils.checkNotNull(dest);
dest.setData(source.getDataRef());
dest.n = source.n;
dest.m1 = source.m1;
dest.dev = source.dev;

View File

@ -52,12 +52,11 @@ import org.apache.commons.math4.util.MathUtils;
* multiple threads access an instance of this class concurrently, and at least
* one of the threads invokes the <code>increment()</code> or
* <code>clear()</code> method, it must be synchronized externally. </p>
*
*/
class FourthMoment extends ThirdMoment implements Serializable{
/** Serializable version identifier */
private static final long serialVersionUID = 4763990447117157611L;
private static final long serialVersionUID = 20150412L;
/** fourth moment of values that have been added */
private double m4;
@ -72,7 +71,7 @@ class FourthMoment extends ThirdMoment implements Serializable{
/**
* Copy constructor, creates a new {@code FourthMoment} identical
* to the {@code original}
* to the {@code original}.
*
* @param original the {@code FourthMoment} instance to copy
* @throws NullArgumentException if original is null

View File

@ -48,19 +48,17 @@ import org.apache.commons.math4.util.MathUtils;
* multiple threads access an instance of this class concurrently, and at least
* one of the threads invokes the <code>increment()</code> or
* <code>clear()</code> method, it must be synchronized externally.</p>
*
*
*/
public class GeometricMean extends AbstractStorelessUnivariateStatistic implements Serializable {
/** Serializable version identifier */
private static final long serialVersionUID = -8178734905303459453L;
private static final long serialVersionUID = 20150412L;
/** Wrapped SumOfLogs instance */
private StorelessUnivariateStatistic sumOfLogs;
/**
* Create a GeometricMean instance
* Create a GeometricMean instance.
*/
public GeometricMean() {
sumOfLogs = new SumOfLogs();
@ -68,7 +66,7 @@ public class GeometricMean extends AbstractStorelessUnivariateStatistic implemen
/**
* Copy constructor, creates a new {@code GeometricMean} identical
* to the {@code original}
* to the {@code original}.
*
* @param original the {@code GeometricMean} instance to copy
* @throws NullArgumentException if original is null
@ -80,7 +78,7 @@ public class GeometricMean extends AbstractStorelessUnivariateStatistic implemen
/**
* Create a GeometricMean instance using the given SumOfLogs instance
* @param sumOfLogs sum of logs instance to use for computation
* @param sumOfLogs sum of logs instance to use for computation.
*/
public GeometricMean(SumOfLogs sumOfLogs) {
this.sumOfLogs = sumOfLogs;
@ -142,11 +140,9 @@ public class GeometricMean extends AbstractStorelessUnivariateStatistic implemen
* index parameters are not valid
*/
@Override
public double evaluate(
final double[] values, final int begin, final int length)
throws MathIllegalArgumentException {
return FastMath.exp(
sumOfLogs.evaluate(values, begin, length) / length);
public double evaluate(final double[] values, final int begin, final int length)
throws MathIllegalArgumentException {
return FastMath.exp(sumOfLogs.evaluate(values, begin, length) / length);
}
/**
@ -169,13 +165,13 @@ public class GeometricMean extends AbstractStorelessUnivariateStatistic implemen
* (i.e if n > 0)
*/
public void setSumLogImpl(StorelessUnivariateStatistic sumLogImpl)
throws MathIllegalStateException {
throws MathIllegalStateException {
checkEmpty();
this.sumOfLogs = sumLogImpl;
}
/**
* Returns the currently configured sum of logs implementation
* Returns the currently configured sum of logs implementation.
*
* @return the StorelessUnivariateStatistic implementing the log sum
*/
@ -195,11 +191,9 @@ public class GeometricMean extends AbstractStorelessUnivariateStatistic implemen
throws NullArgumentException {
MathUtils.checkNotNull(source);
MathUtils.checkNotNull(dest);
dest.setData(source.getDataRef());
dest.sumOfLogs = source.sumOfLogs.copy();
}
/**
* Throws MathIllegalStateException if n > 0.
* @throws MathIllegalStateException if data has been added to this statistic

View File

@ -22,6 +22,7 @@ import org.apache.commons.math4.exception.MathIllegalArgumentException;
import org.apache.commons.math4.exception.NullArgumentException;
import org.apache.commons.math4.stat.descriptive.AbstractStorelessUnivariateStatistic;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.MathArrays;
import org.apache.commons.math4.util.MathUtils;
@ -29,27 +30,26 @@ import org.apache.commons.math4.util.MathUtils;
* Computes the Kurtosis of the available values.
* <p>
* We use the following (unbiased) formula to define kurtosis:</p>
* <p>
* kurtosis = { [n(n+1) / (n -1)(n - 2)(n-3)] sum[(x_i - mean)^4] / std^4 } - [3(n-1)^2 / (n-2)(n-3)]
* </p><p>
* where n is the number of values, mean is the {@link Mean} and std is the
* <p>
* kurtosis = { [n(n+1) / (n -1)(n - 2)(n-3)] sum[(x_i - mean)^4] / std^4 } - [3(n-1)^2 / (n-2)(n-3)]
* </p><p>
* where n is the number of values, mean is the {@link Mean} and std is the
* {@link StandardDeviation}</p>
* <p>
* Note that this statistic is undefined for n < 4. <code>Double.Nan</code>
* is returned when there is not sufficient data to compute the statistic.
* Note that Double.NaN may also be returned if the input includes NaN
* and / or infinite values.</p>
* Note that this statistic is undefined for n < 4. <code>Double.Nan</code>
* is returned when there is not sufficient data to compute the statistic.
* Note that Double.NaN may also be returned if the input includes NaN
* and / or infinite values.</p>
* <p>
* <strong>Note that this implementation is not synchronized.</strong> If
* multiple threads access an instance of this class concurrently, and at least
* one of the threads invokes the <code>increment()</code> or
* <code>clear()</code> method, it must be synchronized externally.</p>
*
*/
public class Kurtosis extends AbstractStorelessUnivariateStatistic implements Serializable {
/** Serializable version identifier */
private static final long serialVersionUID = 2784465764798260919L;
private static final long serialVersionUID = 20150412L;
/**Fourth Moment on which this statistic is based */
protected FourthMoment moment;
@ -59,11 +59,11 @@ public class Kurtosis extends AbstractStorelessUnivariateStatistic implements S
* <p>
* Statistics based on (constructed from) external moments cannot
* be incremented or cleared.</p>
*/
*/
protected boolean incMoment;
/**
* Construct a Kurtosis
* Construct a Kurtosis.
*/
public Kurtosis() {
incMoment = true;
@ -71,7 +71,7 @@ public class Kurtosis extends AbstractStorelessUnivariateStatistic implements S
}
/**
* Construct a Kurtosis from an external moment
* Construct a Kurtosis from an external moment.
*
* @param m4 external Moment
*/
@ -82,7 +82,7 @@ public class Kurtosis extends AbstractStorelessUnivariateStatistic implements S
/**
* Copy constructor, creates a new {@code Kurtosis} identical
* to the {@code original}
* to the {@code original}.
*
* @param original the {@code Kurtosis} instance to copy
* @throws NullArgumentException if original is null
@ -161,13 +161,13 @@ public class Kurtosis extends AbstractStorelessUnivariateStatistic implements S
* index parameters are not valid
*/
@Override
public double evaluate(final double[] values,final int begin, final int length)
throws MathIllegalArgumentException {
public double evaluate(final double[] values, final int begin, final int length)
throws MathIllegalArgumentException {
// Initialize the kurtosis
double kurt = Double.NaN;
if (test(values, begin, length) && length > 3) {
if (MathArrays.verifyValues(values, begin, length) && length > 3) {
// Compute the mean and standard deviation
Variance variance = new Variance();
variance.incrementAll(values, begin, length);
@ -219,7 +219,6 @@ public class Kurtosis extends AbstractStorelessUnivariateStatistic implements S
throws NullArgumentException {
MathUtils.checkNotNull(source);
MathUtils.checkNotNull(dest);
dest.setData(source.getDataRef());
dest.moment = source.moment.copy();
dest.incMoment = source.incMoment;
}

View File

@ -23,11 +23,12 @@ import org.apache.commons.math4.exception.NullArgumentException;
import org.apache.commons.math4.stat.descriptive.AbstractStorelessUnivariateStatistic;
import org.apache.commons.math4.stat.descriptive.WeightedEvaluation;
import org.apache.commons.math4.stat.descriptive.summary.Sum;
import org.apache.commons.math4.util.MathArrays;
import org.apache.commons.math4.util.MathUtils;
/**
* <p>Computes the arithmetic mean of a set of values. Uses the definitional
* formula:</p>
* Computes the arithmetic mean of a set of values. Uses the definitional
* formula:
* <p>
* mean = sum(x_i) / n
* </p>
@ -58,13 +59,12 @@ import org.apache.commons.math4.util.MathUtils;
* multiple threads access an instance of this class concurrently, and at least
* one of the threads invokes the <code>increment()</code> or
* <code>clear()</code> method, it must be synchronized externally.
*
*/
public class Mean extends AbstractStorelessUnivariateStatistic
implements Serializable, WeightedEvaluation {
/** Serializable version identifier */
private static final long serialVersionUID = -1296043746617791564L;
private static final long serialVersionUID = 20150412L;
/** First moment on which this statistic is based. */
protected FirstMoment moment;
@ -95,7 +95,7 @@ public class Mean extends AbstractStorelessUnivariateStatistic
/**
* Copy constructor, creates a new {@code Mean} identical
* to the {@code original}
* to the {@code original}.
*
* @param original the {@code Mean} instance to copy
* @throws NullArgumentException if original is null
@ -160,9 +160,10 @@ public class Mean extends AbstractStorelessUnivariateStatistic
* parameters are not valid
*/
@Override
public double evaluate(final double[] values,final int begin, final int length)
throws MathIllegalArgumentException {
if (test(values, begin, length)) {
public double evaluate(final double[] values, final int begin, final int length)
throws MathIllegalArgumentException {
if (MathArrays.verifyValues(values, begin, length)) {
Sum sum = new Sum();
double sampleSize = length;
@ -211,7 +212,7 @@ public class Mean extends AbstractStorelessUnivariateStatistic
@Override
public double evaluate(final double[] values, final double[] weights,
final int begin, final int length) throws MathIllegalArgumentException {
if (test(values, weights, begin, length)) {
if (MathArrays.verifyValues(values, weights, begin, length)) {
Sum sum = new Sum();
// Compute initial estimate using definitional formula
@ -254,7 +255,7 @@ public class Mean extends AbstractStorelessUnivariateStatistic
*/
@Override
public double evaluate(final double[] values, final double[] weights)
throws MathIllegalArgumentException {
throws MathIllegalArgumentException {
return evaluate(values, weights, 0, values.length);
}
@ -269,7 +270,6 @@ public class Mean extends AbstractStorelessUnivariateStatistic
return result;
}
/**
* Copies source to dest.
* <p>Neither source nor dest can be null.</p>
@ -282,7 +282,6 @@ public class Mean extends AbstractStorelessUnivariateStatistic
throws NullArgumentException {
MathUtils.checkNotNull(source);
MathUtils.checkNotNull(dest);
dest.setData(source.getDataRef());
dest.incMoment = source.incMoment;
dest.moment = source.moment.copy();
}

View File

@ -44,18 +44,17 @@ import org.apache.commons.math4.util.MathUtils;
* multiple threads access an instance of this class concurrently, and at least
* one of the threads invokes the <code>increment()</code> or
* <code>clear()</code> method, it must be synchronized externally.</p>
*
*/
public class SecondMoment extends FirstMoment implements Serializable {
/** Serializable version identifier */
private static final long serialVersionUID = 3942403127395076445L;
private static final long serialVersionUID = 20150412L;
/** second moment of values that have been added */
protected double m2;
/**
* Create a SecondMoment instance
* Create a SecondMoment instance.
*/
public SecondMoment() {
super();
@ -64,13 +63,12 @@ public class SecondMoment extends FirstMoment implements Serializable {
/**
* Copy constructor, creates a new {@code SecondMoment} identical
* to the {@code original}
* to the {@code original}.
*
* @param original the {@code SecondMoment} instance to copy
* @throws NullArgumentException if original is null
*/
public SecondMoment(SecondMoment original)
throws NullArgumentException {
public SecondMoment(SecondMoment original) throws NullArgumentException {
super(original);
this.m2 = original.m2;
}

View File

@ -22,6 +22,7 @@ import java.io.Serializable;
import org.apache.commons.math4.exception.MathIllegalArgumentException;
import org.apache.commons.math4.exception.NullArgumentException;
import org.apache.commons.math4.stat.descriptive.AbstractUnivariateStatistic;
import org.apache.commons.math4.util.MathArrays;
import org.apache.commons.math4.util.MathUtils;
/**
@ -66,11 +67,11 @@ public class SemiVariance extends AbstractUnivariateStatistic implements Seriali
public static final Direction DOWNSIDE_VARIANCE = Direction.DOWNSIDE;
/** Serializable version identifier */
private static final long serialVersionUID = -2653430366886024994L;
private static final long serialVersionUID = 20150412L;
/**
* Determines whether or not bias correction is applied when computing the
* value of the statisic. True means that bias is corrected.
* value of the statistic. True means that bias is corrected.
*/
private boolean biasCorrected = true;
@ -98,7 +99,6 @@ public class SemiVariance extends AbstractUnivariateStatistic implements Seriali
this.biasCorrected = biasCorrected;
}
/**
* Constructs a SemiVariance with the specified <code>Direction</code> property
* and default (true) <code>biasCorrected</code> property
@ -110,7 +110,6 @@ public class SemiVariance extends AbstractUnivariateStatistic implements Seriali
this.varianceDirection = direction;
}
/**
* Constructs a SemiVariance with the specified <code>isBiasCorrected</code>
* property and the specified <code>Direction</code> property.
@ -127,10 +126,9 @@ public class SemiVariance extends AbstractUnivariateStatistic implements Seriali
this.varianceDirection = direction;
}
/**
* Copy constructor, creates a new {@code SemiVariance} identical
* to the {@code original}
* to the {@code original}.
*
* @param original the {@code SemiVariance} instance to copy
* @throws NullArgumentException if original is null
@ -139,7 +137,6 @@ public class SemiVariance extends AbstractUnivariateStatistic implements Seriali
copy(original, this);
}
/**
* {@inheritDoc}
*/
@ -151,7 +148,6 @@ public class SemiVariance extends AbstractUnivariateStatistic implements Seriali
return result;
}
/**
* Copies source to dest.
* <p>Neither source nor dest can be null.</p>
@ -164,84 +160,81 @@ public class SemiVariance extends AbstractUnivariateStatistic implements Seriali
throws NullArgumentException {
MathUtils.checkNotNull(source);
MathUtils.checkNotNull(dest);
dest.setData(source.getDataRef());
dest.biasCorrected = source.biasCorrected;
dest.varianceDirection = source.varianceDirection;
}
/**
* <p>Returns the {@link SemiVariance} of the designated values against the mean, using
* instance properties varianceDirection and biasCorrection.</p>
*
* <p>Returns <code>NaN</code> if the array is empty and throws
* <code>IllegalArgumentException</code> if the array is null.</p>
* <p>Returns the {@link SemiVariance} of the designated values against the mean, using
* instance properties varianceDirection and biasCorrection.</p>
*
* <p>Returns <code>NaN</code> if the array is empty and throws
* <code>IllegalArgumentException</code> if the array is null.</p>
*
* @param values the input array
* @param start index of the first array element to include
* @param length the number of elements to include
* @return the SemiVariance
* @throws MathIllegalArgumentException if the parameters are not valid
*
*/
@Override
public double evaluate(final double[] values, final int start, final int length)
throws MathIllegalArgumentException {
double m = (new Mean()).evaluate(values, start, length);
return evaluate(values, m, varianceDirection, biasCorrected, 0, values.length);
}
/**
* This method calculates {@link SemiVariance} for the entire array against the mean, using
* the current value of the biasCorrection instance property.
*
* @param values the input array
* @param start index of the first array element to include
* @param length the number of elements to include
* @param direction the {@link Direction} of the semivariance
* @return the SemiVariance
* @throws MathIllegalArgumentException if the parameters are not valid
* @throws MathIllegalArgumentException if values is null
*
*/
@Override
public double evaluate(final double[] values, final int start, final int length)
throws MathIllegalArgumentException {
double m = (new Mean()).evaluate(values, start, length);
return evaluate(values, m, varianceDirection, biasCorrected, 0, values.length);
}
public double evaluate(final double[] values, Direction direction)
throws MathIllegalArgumentException {
double m = (new Mean()).evaluate(values);
return evaluate(values, m, direction, biasCorrected, 0, values.length);
}
/**
* <p>Returns the {@link SemiVariance} of the designated values against the cutoff, using
* instance properties variancDirection and biasCorrection.</p>
*
* <p>Returns <code>NaN</code> if the array is empty and throws
* <code>MathIllegalArgumentException</code> if the array is null.</p>
*
* @param values the input array
* @param cutoff the reference point
* @return the SemiVariance
* @throws MathIllegalArgumentException if values is null
*/
public double evaluate(final double[] values, final double cutoff)
throws MathIllegalArgumentException {
return evaluate(values, cutoff, varianceDirection, biasCorrected, 0, values.length);
}
/**
* This method calculates {@link SemiVariance} for the entire array against the mean, using
* the current value of the biasCorrection instance property.
*
* @param values the input array
* @param direction the {@link Direction} of the semivariance
* @return the SemiVariance
* @throws MathIllegalArgumentException if values is null
*
*/
public double evaluate(final double[] values, Direction direction)
throws MathIllegalArgumentException {
double m = (new Mean()).evaluate(values);
return evaluate (values, m, direction, biasCorrected, 0, values.length);
}
/**
* <p>Returns the {@link SemiVariance} of the designated values against the cutoff, using
* instance properties variancDirection and biasCorrection.</p>
*
* <p>Returns <code>NaN</code> if the array is empty and throws
* <code>MathIllegalArgumentException</code> if the array is null.</p>
*
* @param values the input array
* @param cutoff the reference point
* @return the SemiVariance
* @throws MathIllegalArgumentException if values is null
*/
public double evaluate(final double[] values, final double cutoff)
throws MathIllegalArgumentException {
return evaluate(values, cutoff, varianceDirection, biasCorrected, 0, values.length);
}
/**
* <p>Returns the {@link SemiVariance} of the designated values against the cutoff in the
* given direction, using the current value of the biasCorrection instance property.</p>
*
* <p>Returns <code>NaN</code> if the array is empty and throws
* <code>MathIllegalArgumentException</code> if the array is null.</p>
*
* @param values the input array
* @param cutoff the reference point
* @param direction the {@link Direction} of the semivariance
* @return the SemiVariance
* @throws MathIllegalArgumentException if values is null
*/
public double evaluate(final double[] values, final double cutoff, final Direction direction)
throws MathIllegalArgumentException {
return evaluate(values, cutoff, direction, biasCorrected, 0, values.length);
}
/**
* <p>Returns the {@link SemiVariance} of the designated values against the cutoff in the
* given direction, using the current value of the biasCorrection instance property.</p>
*
* <p>Returns <code>NaN</code> if the array is empty and throws
* <code>MathIllegalArgumentException</code> if the array is null.</p>
*
* @param values the input array
* @param cutoff the reference point
* @param direction the {@link Direction} of the semivariance
* @return the SemiVariance
* @throws MathIllegalArgumentException if values is null
*/
public double evaluate(final double[] values, final double cutoff, final Direction direction)
throws MathIllegalArgumentException {
return evaluate(values, cutoff, direction, biasCorrected, 0, values.length);
}
/**
* <p>Returns the {@link SemiVariance} of the designated values against the cutoff
@ -260,110 +253,111 @@ public class SemiVariance extends AbstractUnivariateStatistic implements Seriali
* @throws MathIllegalArgumentException if the parameters are not valid
*
*/
public double evaluate (final double[] values, final double cutoff, final Direction direction,
final boolean corrected, final int start, final int length) throws MathIllegalArgumentException {
public double evaluate (final double[] values, final double cutoff, final Direction direction,
final boolean corrected, final int start, final int length)
throws MathIllegalArgumentException {
test(values, start, length);
if (values.length == 0) {
return Double.NaN;
} else {
if (values.length == 1) {
return 0.0;
} else {
final boolean booleanDirection = direction.getDirection();
MathArrays.verifyValues(values, start, length);
if (values.length == 0) {
return Double.NaN;
} else {
if (values.length == 1) {
return 0.0;
} else {
final boolean booleanDirection = direction.getDirection();
double dev = 0.0;
double sumsq = 0.0;
for (int i = start; i < length; i++) {
if ((values[i] > cutoff) == booleanDirection) {
dev = values[i] - cutoff;
sumsq += dev * dev;
}
}
double dev = 0.0;
double sumsq = 0.0;
for (int i = start; i < length; i++) {
if ((values[i] > cutoff) == booleanDirection) {
dev = values[i] - cutoff;
sumsq += dev * dev;
}
}
if (corrected) {
return sumsq / (length - 1.0);
} else {
return sumsq / length;
}
}
}
}
if (corrected) {
return sumsq / (length - 1.0);
} else {
return sumsq / length;
}
}
}
}
/**
* Returns true iff biasCorrected property is set to true.
*
* @return the value of biasCorrected.
*/
public boolean isBiasCorrected() {
return biasCorrected;
}
/**
* Returns true iff biasCorrected property is set to true.
*
* @return the value of biasCorrected.
*/
public boolean isBiasCorrected() {
return biasCorrected;
}
/**
* Sets the biasCorrected property.
*
* @param biasCorrected new biasCorrected property value
*/
public void setBiasCorrected(boolean biasCorrected) {
this.biasCorrected = biasCorrected;
}
/**
* Sets the biasCorrected property.
*
* @param biasCorrected new biasCorrected property value
*/
public void setBiasCorrected(boolean biasCorrected) {
this.biasCorrected = biasCorrected;
}
/**
* Returns the varianceDirection property.
*
* @return the varianceDirection
*/
public Direction getVarianceDirection () {
return varianceDirection;
}
/**
* Returns the varianceDirection property.
*
* @return the varianceDirection
*/
public Direction getVarianceDirection () {
return varianceDirection;
}
/**
* Sets the variance direction
*
* @param varianceDirection the direction of the semivariance
*/
public void setVarianceDirection(Direction varianceDirection) {
this.varianceDirection = varianceDirection;
}
/**
* Sets the variance direction
*
* @param varianceDirection the direction of the semivariance
*/
public void setVarianceDirection(Direction varianceDirection) {
this.varianceDirection = varianceDirection;
}
/**
* The direction of the semivariance - either upside or downside. The direction
* is represented by boolean, with true corresponding to UPSIDE semivariance.
*/
public enum Direction {
/**
* The UPSIDE Direction is used to specify that the observations above the
* cutoff point will be used to calculate SemiVariance
*/
UPSIDE (true),
/**
* The direction of the semivariance - either upside or downside. The direction
* is represented by boolean, with true corresponding to UPSIDE semivariance.
*/
public enum Direction {
/**
* The UPSIDE Direction is used to specify that the observations above the
* cutoff point will be used to calculate SemiVariance
*/
UPSIDE (true),
/**
* The DOWNSIDE Direction is used to specify that the observations below
* the cutoff point will be used to calculate SemiVariance
*/
DOWNSIDE (false);
/**
* The DOWNSIDE Direction is used to specify that the observations below
* the cutoff point will be used to calculate SemiVariance
*/
DOWNSIDE (false);
/**
* boolean value UPSIDE <-> true
*/
private boolean direction;
/**
* boolean value UPSIDE <-> true
*/
private boolean direction;
/**
* Create a Direction with the given value.
*
* @param b boolean value representing the Direction. True corresponds to UPSIDE.
*/
Direction (boolean b) {
direction = b;
}
/**
* Create a Direction with the given value.
*
* @param b boolean value representing the Direction. True corresponds to UPSIDE.
*/
Direction (boolean b) {
direction = b;
}
/**
* Returns the value of this Direction. True corresponds to UPSIDE.
*
* @return true if direction is UPSIDE; false otherwise
*/
boolean getDirection () {
return direction;
}
}
/**
* Returns the value of this Direction. True corresponds to UPSIDE.
*
* @return true if direction is UPSIDE; false otherwise
*/
boolean getDirection () {
return direction;
}
}
}

View File

@ -22,6 +22,7 @@ import org.apache.commons.math4.exception.MathIllegalArgumentException;
import org.apache.commons.math4.exception.NullArgumentException;
import org.apache.commons.math4.stat.descriptive.AbstractStorelessUnivariateStatistic;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.MathArrays;
import org.apache.commons.math4.util.MathUtils;
/**
@ -38,12 +39,11 @@ import org.apache.commons.math4.util.MathUtils;
* multiple threads access an instance of this class concurrently, and at least
* one of the threads invokes the <code>increment()</code> or
* <code>clear()</code> method, it must be synchronized externally. </p>
*
*/
public class Skewness extends AbstractStorelessUnivariateStatistic implements Serializable {
/** Serializable version identifier */
private static final long serialVersionUID = 7101857578996691352L;
private static final long serialVersionUID = 20150412L;
/** Third moment on which this statistic is based */
protected ThirdMoment moment = null;
@ -57,7 +57,7 @@ public class Skewness extends AbstractStorelessUnivariateStatistic implements Se
protected boolean incMoment;
/**
* Constructs a Skewness
* Constructs a Skewness.
*/
public Skewness() {
incMoment = true;
@ -65,7 +65,7 @@ public class Skewness extends AbstractStorelessUnivariateStatistic implements Se
}
/**
* Constructs a Skewness with an external moment
* Constructs a Skewness with an external moment.
* @param m3 external moment
*/
public Skewness(final ThirdMoment m3) {
@ -75,7 +75,7 @@ public class Skewness extends AbstractStorelessUnivariateStatistic implements Se
/**
* Copy constructor, creates a new {@code Skewness} identical
* to the {@code original}
* to the {@code original}.
*
* @param original the {@code Skewness} instance to copy
* @throws NullArgumentException if original is null
@ -139,7 +139,7 @@ public class Skewness extends AbstractStorelessUnivariateStatistic implements Se
}
/**
* Returns the Skewness of the entries in the specifed portion of the
* Returns the Skewness of the entries in the specified portion of the
* input array.
* <p>
* See {@link Skewness} for the definition used in the computation.</p>
@ -149,19 +149,18 @@ public class Skewness extends AbstractStorelessUnivariateStatistic implements Se
* @param values the input array
* @param begin the index of the first array element to include
* @param length the number of elements to include
* @return the skewness of the values or Double.NaN if length is less than
* 3
* @return the skewness of the values or Double.NaN if length is less than 3
* @throws MathIllegalArgumentException if the array is null or the array index
* parameters are not valid
*/
@Override
public double evaluate(final double[] values,final int begin,
final int length) throws MathIllegalArgumentException {
public double evaluate(final double[] values,final int begin, final int length)
throws MathIllegalArgumentException {
// Initialize the skewness
double skew = Double.NaN;
if (test(values, begin, length) && length > 2 ){
if (MathArrays.verifyValues(values, begin, length) && length > 2 ) {
Mean mean = new Mean();
// Get the mean and the standard deviation
double m = mean.evaluate(values, begin, length);
@ -217,7 +216,6 @@ public class Skewness extends AbstractStorelessUnivariateStatistic implements Se
throws NullArgumentException {
MathUtils.checkNotNull(source);
MathUtils.checkNotNull(dest);
dest.setData(source.getDataRef());
dest.moment = new ThirdMoment(source.moment.copy());
dest.incMoment = source.incMoment;
}

View File

@ -38,13 +38,12 @@ import org.apache.commons.math4.util.MathUtils;
* multiple threads access an instance of this class concurrently, and at least
* one of the threads invokes the <code>increment()</code> or
* <code>clear()</code> method, it must be synchronized externally.</p>
*
*/
public class StandardDeviation extends AbstractStorelessUnivariateStatistic
implements Serializable {
/** Serializable version identifier */
private static final long serialVersionUID = 5728716329662425188L;
private static final long serialVersionUID = 20150412L;
/** Wrapped Variance instance */
private Variance variance = null;
@ -68,7 +67,7 @@ public class StandardDeviation extends AbstractStorelessUnivariateStatistic
/**
* Copy constructor, creates a new {@code StandardDeviation} identical
* to the {@code original}
* to the {@code original}.
*
* @param original the {@code StandardDeviation} instance to copy
* @throws NullArgumentException if original is null
@ -78,7 +77,7 @@ public class StandardDeviation extends AbstractStorelessUnivariateStatistic
}
/**
* Contructs a StandardDeviation with the specified value for the
* Constructs a StandardDeviation with the specified value for the
* <code>isBiasCorrected</code> property. If this property is set to
* <code>true</code>, the {@link Variance} used in computing results will
* use the bias-corrected, or "sample" formula. See {@link Variance} for
@ -92,7 +91,7 @@ public class StandardDeviation extends AbstractStorelessUnivariateStatistic
}
/**
* Contructs a StandardDeviation with the specified value for the
* Constructs a StandardDeviation with the specified value for the
* <code>isBiasCorrected</code> property and the supplied external moment.
* If <code>isBiasCorrected</code> is set to <code>true</code>, the
* {@link Variance} used in computing results will use the bias-corrected,
@ -177,8 +176,8 @@ public class StandardDeviation extends AbstractStorelessUnivariateStatistic
*/
@Override
public double evaluate(final double[] values, final int begin, final int length)
throws MathIllegalArgumentException {
return FastMath.sqrt(variance.evaluate(values, begin, length));
throws MathIllegalArgumentException {
return FastMath.sqrt(variance.evaluate(values, begin, length));
}
/**
@ -206,7 +205,7 @@ public class StandardDeviation extends AbstractStorelessUnivariateStatistic
* parameters are not valid
*/
public double evaluate(final double[] values, final double mean,
final int begin, final int length) throws MathIllegalArgumentException {
final int begin, final int length) throws MathIllegalArgumentException {
return FastMath.sqrt(variance.evaluate(values, mean, begin, length));
}
@ -232,7 +231,7 @@ public class StandardDeviation extends AbstractStorelessUnivariateStatistic
* @throws MathIllegalArgumentException if the array is null
*/
public double evaluate(final double[] values, final double mean)
throws MathIllegalArgumentException {
throws MathIllegalArgumentException {
return FastMath.sqrt(variance.evaluate(values, mean));
}
@ -261,7 +260,6 @@ public class StandardDeviation extends AbstractStorelessUnivariateStatistic
return result;
}
/**
* Copies source to dest.
* <p>Neither source nor dest can be null.</p>
@ -270,11 +268,9 @@ public class StandardDeviation extends AbstractStorelessUnivariateStatistic
* @param dest StandardDeviation to copy to
* @throws NullArgumentException if either source or dest is null
*/
public static void copy(StandardDeviation source, StandardDeviation dest)
throws NullArgumentException {
public static void copy(StandardDeviation source, StandardDeviation dest) throws NullArgumentException {
MathUtils.checkNotNull(source);
MathUtils.checkNotNull(dest);
dest.setData(source.getDataRef());
dest.variance = source.variance.copy();
}

View File

@ -51,12 +51,12 @@ import org.apache.commons.math4.util.MathUtils;
class ThirdMoment extends SecondMoment implements Serializable {
/** Serializable version identifier */
private static final long serialVersionUID = -7818711964045118679L;
private static final long serialVersionUID = 20150412L;
/** third moment of values that have been added */
protected double m3;
/**
/**
* Square of deviation of most recently added value from previous first
* moment, normalized by previous sample size. Retained to prevent
* repeated computation in higher order moments. nDevSq = nDev * nDev.
@ -64,7 +64,7 @@ class ThirdMoment extends SecondMoment implements Serializable {
protected double nDevSq;
/**
* Create a FourthMoment instance
* Create a FourthMoment instance.
*/
public ThirdMoment() {
super();
@ -74,10 +74,10 @@ class ThirdMoment extends SecondMoment implements Serializable {
/**
* Copy constructor, creates a new {@code ThirdMoment} identical
* to the {@code original}
* to the {@code original}.
*
* @param original the {@code ThirdMoment} instance to copy
* @throws NullArgumentException if orginal is null
* @throws NullArgumentException if original is null
*/
public ThirdMoment(ThirdMoment original) throws NullArgumentException {
copy(original, this);

View File

@ -23,6 +23,7 @@ import org.apache.commons.math4.exception.NullArgumentException;
import org.apache.commons.math4.exception.util.LocalizedFormats;
import org.apache.commons.math4.stat.descriptive.AbstractStorelessUnivariateStatistic;
import org.apache.commons.math4.stat.descriptive.WeightedEvaluation;
import org.apache.commons.math4.util.MathArrays;
import org.apache.commons.math4.util.MathUtils;
/**
@ -64,12 +65,11 @@ import org.apache.commons.math4.util.MathUtils;
* multiple threads access an instance of this class concurrently, and at least
* one of the threads invokes the <code>increment()</code> or
* <code>clear()</code> method, it must be synchronized externally.</p>
*
*/
public class Variance extends AbstractStorelessUnivariateStatistic implements Serializable, WeightedEvaluation {
/** Serializable version identifier */
private static final long serialVersionUID = -9111962718267217978L;
private static final long serialVersionUID = 20150412L;
/** SecondMoment is used in incremental calculation of Variance*/
protected SecondMoment moment = null;
@ -100,13 +100,13 @@ public class Variance extends AbstractStorelessUnivariateStatistic implements Se
/**
* Constructs a Variance based on an external second moment.
* <p>
* When this constructor is used, the statistic may only be
* incremented via the moment, i.e., {@link #increment(double)}
* does nothing; whereas {@code m2.increment(value)} increments
* both {@code m2} and the Variance instance constructed from it.
*
* @param m2 the SecondMoment (Third or Fourth moments work
* here as well.)
* @param m2 the SecondMoment (Third or Fourth moments work here as well.)
*/
public Variance(final SecondMoment m2) {
incMoment = false;
@ -115,7 +115,7 @@ public class Variance extends AbstractStorelessUnivariateStatistic implements Se
/**
* Constructs a Variance with the specified <code>isBiasCorrected</code>
* property
* property.
*
* @param isBiasCorrected setting for bias correction - true means
* bias will be corrected and is equivalent to using the argumentless
@ -143,7 +143,7 @@ public class Variance extends AbstractStorelessUnivariateStatistic implements Se
/**
* Copy constructor, creates a new {@code Variance} identical
* to the {@code original}
* to the {@code original}.
*
* @param original the {@code Variance} instance to copy
* @throws NullArgumentException if original is null
@ -177,17 +177,17 @@ public class Variance extends AbstractStorelessUnivariateStatistic implements Se
*/
@Override
public double getResult() {
if (moment.n == 0) {
return Double.NaN;
} else if (moment.n == 1) {
return 0d;
if (moment.n == 0) {
return Double.NaN;
} else if (moment.n == 1) {
return 0d;
} else {
if (isBiasCorrected) {
return moment.m2 / (moment.n - 1d);
} else {
if (isBiasCorrected) {
return moment.m2 / (moment.n - 1d);
} else {
return moment.m2 / (moment.n);
}
return moment.m2 / (moment.n);
}
}
}
/**
@ -255,12 +255,11 @@ public class Variance extends AbstractStorelessUnivariateStatistic implements Se
*/
@Override
public double evaluate(final double[] values, final int begin, final int length)
throws MathIllegalArgumentException {
throws MathIllegalArgumentException {
double var = Double.NaN;
if (test(values, begin, length)) {
clear();
if (MathArrays.verifyValues(values, begin, length)) {
if (length == 1) {
var = 0.0;
} else if (length > 1) {
@ -320,8 +319,7 @@ public class Variance extends AbstractStorelessUnivariateStatistic implements Se
double var = Double.NaN;
if (test(values, weights,begin, length)) {
clear();
if (MathArrays.verifyValues(values, weights,begin, length)) {
if (length == 1) {
var = 0.0;
} else if (length > 1) {
@ -373,7 +371,7 @@ public class Variance extends AbstractStorelessUnivariateStatistic implements Se
*/
@Override
public double evaluate(final double[] values, final double[] weights)
throws MathIllegalArgumentException {
throws MathIllegalArgumentException {
return evaluate(values, weights, 0, values.length);
}
@ -404,11 +402,11 @@ public class Variance extends AbstractStorelessUnivariateStatistic implements Se
* parameters are not valid
*/
public double evaluate(final double[] values, final double mean,
final int begin, final int length) throws MathIllegalArgumentException {
final int begin, final int length) throws MathIllegalArgumentException {
double var = Double.NaN;
if (test(values, begin, length)) {
if (MathArrays.verifyValues(values, begin, length)) {
if (length == 1) {
var = 0.0;
} else if (length > 1) {
@ -506,12 +504,12 @@ public class Variance extends AbstractStorelessUnivariateStatistic implements Se
* @since 2.1
*/
public double evaluate(final double[] values, final double[] weights,
final double mean, final int begin, final int length)
throws MathIllegalArgumentException {
final double mean, final int begin, final int length)
throws MathIllegalArgumentException {
double var = Double.NaN;
if (test(values, weights, begin, length)) {
if (MathArrays.verifyValues(values, weights, begin, length)) {
if (length == 1) {
var = 0.0;
} else if (length > 1) {
@ -581,7 +579,7 @@ public class Variance extends AbstractStorelessUnivariateStatistic implements Se
* @since 2.1
*/
public double evaluate(final double[] values, final double[] weights, final double mean)
throws MathIllegalArgumentException {
throws MathIllegalArgumentException {
return evaluate(values, weights, mean, 0, values.length);
}
@ -622,7 +620,6 @@ public class Variance extends AbstractStorelessUnivariateStatistic implements Se
throws NullArgumentException {
MathUtils.checkNotNull(source);
MathUtils.checkNotNull(dest);
dest.setData(source.getDataRef());
dest.moment = source.moment.copy();
dest.isBiasCorrected = source.isBiasCorrected;
dest.incMoment = source.incMoment;

View File

@ -21,6 +21,7 @@ import java.io.Serializable;
import org.apache.commons.math4.exception.MathIllegalArgumentException;
import org.apache.commons.math4.exception.NullArgumentException;
import org.apache.commons.math4.stat.descriptive.AbstractStorelessUnivariateStatistic;
import org.apache.commons.math4.util.MathArrays;
import org.apache.commons.math4.util.MathUtils;
/**
@ -37,12 +38,11 @@ import org.apache.commons.math4.util.MathUtils;
* multiple threads access an instance of this class concurrently, and at least
* one of the threads invokes the <code>increment()</code> or
* <code>clear()</code> method, it must be synchronized externally.</p>
*
*/
public class Max extends AbstractStorelessUnivariateStatistic implements Serializable {
/** Serializable version identifier */
private static final long serialVersionUID = -5593383832225844641L;
private static final long serialVersionUID = 20150412L;
/** Number of values that have been added */
private long n;
@ -51,7 +51,7 @@ public class Max extends AbstractStorelessUnivariateStatistic implements Seriali
private double value;
/**
* Create a Max instance
* Create a Max instance.
*/
public Max() {
n = 0;
@ -60,7 +60,7 @@ public class Max extends AbstractStorelessUnivariateStatistic implements Seriali
/**
* Copy constructor, creates a new {@code Max} identical
* to the {@code original}
* to the {@code original}.
*
* @param original the {@code Max} instance to copy
* @throws NullArgumentException if original is null
@ -129,9 +129,10 @@ public class Max extends AbstractStorelessUnivariateStatistic implements Seriali
*/
@Override
public double evaluate(final double[] values, final int begin, final int length)
throws MathIllegalArgumentException {
throws MathIllegalArgumentException {
double max = Double.NaN;
if (test(values, begin, length)) {
if (MathArrays.verifyValues(values, begin, length)) {
max = values[begin];
for (int i = begin; i < begin + length; i++) {
if (!Double.isNaN(values[i])) {
@ -165,7 +166,6 @@ public class Max extends AbstractStorelessUnivariateStatistic implements Seriali
throws NullArgumentException {
MathUtils.checkNotNull(source);
MathUtils.checkNotNull(dest);
dest.setData(source.getDataRef());
dest.n = source.n;
dest.value = source.value;
}

View File

@ -32,12 +32,11 @@ import org.apache.commons.math4.util.KthSelector;
* multiple threads access an instance of this class concurrently, and at least
* one of the threads invokes the <code>increment()</code> or
* <code>clear()</code> method, it must be synchronized externally.</p>
*
*/
public class Median extends Percentile implements Serializable {
/** Serializable version identifier */
private static final long serialVersionUID = -3961477041290915687L;
private static final long serialVersionUID = 20150412L;
/** Fixed quantile. */
private static final double FIXED_QUANTILE_50 = 50.0;

View File

@ -21,6 +21,7 @@ import java.io.Serializable;
import org.apache.commons.math4.exception.MathIllegalArgumentException;
import org.apache.commons.math4.exception.NullArgumentException;
import org.apache.commons.math4.stat.descriptive.AbstractStorelessUnivariateStatistic;
import org.apache.commons.math4.util.MathArrays;
import org.apache.commons.math4.util.MathUtils;
/**
@ -37,12 +38,11 @@ import org.apache.commons.math4.util.MathUtils;
* multiple threads access an instance of this class concurrently, and at least
* one of the threads invokes the <code>increment()</code> or
* <code>clear()</code> method, it must be synchronized externally.</p>
*
*/
public class Min extends AbstractStorelessUnivariateStatistic implements Serializable {
/** Serializable version identifier */
private static final long serialVersionUID = -2941995784909003131L;
private static final long serialVersionUID = 20150412L;
/**Number of values that have been added */
private long n;
@ -51,7 +51,7 @@ public class Min extends AbstractStorelessUnivariateStatistic implements Seriali
private double value;
/**
* Create a Min instance
* Create a Min instance.
*/
public Min() {
n = 0;
@ -60,7 +60,7 @@ public class Min extends AbstractStorelessUnivariateStatistic implements Seriali
/**
* Copy constructor, creates a new {@code Min} identical
* to the {@code original}
* to the {@code original}.
*
* @param original the {@code Min} instance to copy
* @throws NullArgumentException if original is null
@ -129,9 +129,10 @@ public class Min extends AbstractStorelessUnivariateStatistic implements Seriali
*/
@Override
public double evaluate(final double[] values,final int begin, final int length)
throws MathIllegalArgumentException {
throws MathIllegalArgumentException {
double min = Double.NaN;
if (test(values, begin, length)) {
if (MathArrays.verifyValues(values, begin, length)) {
min = values[begin];
for (int i = begin; i < begin + length; i++) {
if (!Double.isNaN(values[i])) {
@ -165,7 +166,6 @@ public class Min extends AbstractStorelessUnivariateStatistic implements Seriali
throws NullArgumentException {
MathUtils.checkNotNull(source);
MathUtils.checkNotNull(dest);
dest.setData(source.getDataRef());
dest.n = source.n;
dest.value = source.value;
}

View File

@ -70,20 +70,18 @@ public class PSquarePercentile extends AbstractStorelessUnivariateStatistic
/**
* Serial ID
*/
private static final long serialVersionUID = 2283912083175715479L;
private static final long serialVersionUID = 20150412L;
/**
* A decimal formatter for print convenience
*/
private static final DecimalFormat DECIMAL_FORMAT = new DecimalFormat(
"00.00");
private static final DecimalFormat DECIMAL_FORMAT = new DecimalFormat("00.00");
/**
* Initial list of 5 numbers corresponding to 5 markers. <b>NOTE:</b>watch
* out for the add methods that are overloaded
*/
private final List<Double> initialFive = new FixedCapacityList<Double>(
PSQUARE_CONSTANT);
private final List<Double> initialFive = new FixedCapacityList<Double>(PSQUARE_CONSTANT);
/**
* The quantile needed should be in range of 0-1. The constructor
@ -122,15 +120,14 @@ public class PSquarePercentile extends AbstractStorelessUnivariateStatistic
*/
public PSquarePercentile(final double p) {
if (p > 100 || p < 0) {
throw new OutOfRangeException(LocalizedFormats.OUT_OF_RANGE,
p, 0, 100);
throw new OutOfRangeException(LocalizedFormats.OUT_OF_RANGE, p, 0, 100);
}
this.quantile = p / 100d;// always set it within (0,1]
}
/**
* Default constructor that assumes a {@link #DEFAULT_QUANTILE_DESIRED
* default quantile} needed
* default quantile} needed.
*/
PSquarePercentile() {
this(DEFAULT_QUANTILE_DESIRED);
@ -540,13 +537,10 @@ public class PSquarePercentile extends AbstractStorelessUnivariateStatistic
anInputStream.defaultReadObject();
// Build links
for (int i = 1; i < PSQUARE_CONSTANT; i++) {
markerArray[i].previous(markerArray[i - 1])
.next(markerArray[i + 1]).index(i);
markerArray[i].previous(markerArray[i - 1]).next(markerArray[i + 1]).index(i);
}
markerArray[0].previous(markerArray[0]).next(markerArray[1])
.index(0);
markerArray[5].previous(markerArray[4]).next(markerArray[5])
.index(5);
markerArray[0].previous(markerArray[0]).next(markerArray[1]).index(0);
markerArray[5].previous(markerArray[4]).next(markerArray[5]).index(5);
}
/**
@ -558,8 +552,7 @@ public class PSquarePercentile extends AbstractStorelessUnivariateStatistic
@Override
public double height(final int markerIndex) {
if (markerIndex >= markerArray.length || markerIndex <= 0) {
throw new OutOfRangeException(markerIndex, 1,
markerArray.length);
throw new OutOfRangeException(markerIndex, 1, markerArray.length);
}
return markerArray[markerIndex].markerHeight;
}
@ -649,14 +642,12 @@ public class PSquarePercentile extends AbstractStorelessUnivariateStatistic
/**
* Nonlinear interpolator
*/
private final UnivariateInterpolator nonLinear =
new NevilleInterpolator();
private final UnivariateInterpolator nonLinear = new NevilleInterpolator();
/**
* Linear interpolator which is not serializable
*/
private transient UnivariateInterpolator linear =
new LinearInterpolator();
private transient UnivariateInterpolator linear = new LinearInterpolator();
/**
* Default constructor
@ -861,8 +852,7 @@ public class PSquarePercentile extends AbstractStorelessUnivariateStatistic
*/
@Override
public Object clone() {
return new Marker(markerHeight, desiredMarkerPosition,
desiredMarkerIncrement, intMarkerPosition);
return new Marker(markerHeight, desiredMarkerPosition, desiredMarkerIncrement, intMarkerPosition);
}
/**
@ -887,8 +877,8 @@ public class PSquarePercentile extends AbstractStorelessUnivariateStatistic
*
* @param <E>
*/
private static class FixedCapacityList<E> extends ArrayList<E> implements
Serializable {
private static class FixedCapacityList<E> extends ArrayList<E> implements Serializable {
/**
* Serialization Version Id
*/
@ -945,8 +935,7 @@ public class PSquarePercentile extends AbstractStorelessUnivariateStatistic
* @param p the quantile desired
* @return an instance of PSquareMarkers
*/
public static PSquareMarkers newMarkers(final List<Double> initialFive,
final double p) {
public static PSquareMarkers newMarkers(final List<Double> initialFive, final double p) {
return new Markers(initialFive, p);
}

View File

@ -90,12 +90,11 @@ import org.apache.commons.math4.util.Precision;
* multiple threads access an instance of this class concurrently, and at least
* one of the threads invokes the <code>increment()</code> or
* <code>clear()</code> method, it must be synchronized externally.</p>
*
*/
public class Percentile extends AbstractUnivariateStatistic implements Serializable {
/** Serializable version identifier */
private static final long serialVersionUID = -8091216485095130416L;
private static final long serialVersionUID = 20150412L;
/** Maximum number of partitioning pivots cached (each level double the number of pivots). */
private static final int MAX_CACHED_LEVELS = 10;
@ -112,8 +111,10 @@ public class Percentile extends AbstractUnivariateStatistic implements Serializa
/** NaN Handling of the input as defined by {@link NaNStrategy} */
private final NaNStrategy nanStrategy;
/** Determines what percentile is computed when evaluate() is activated
* with no quantile argument */
/**
* Determines what percentile is computed when evaluate() is activated
* with no quantile argument.
*/
private double quantile;
/** Cached pivots. */
@ -263,12 +264,12 @@ public class Percentile extends AbstractUnivariateStatistic implements Serializa
* @param values input array of values
* @param p the percentile value to compute
* @return the percentile value or Double.NaN if the array is empty
* @throws MathIllegalArgumentException if <code>values</code> is null
* or p is invalid
* @throws MathIllegalArgumentException if <code>values</code> is null or p is invalid
*/
public double evaluate(final double[] values, final double p)
throws MathIllegalArgumentException {
test(values, 0, 0);
throws MathIllegalArgumentException {
MathArrays.verifyValues(values, 0, 0);
return evaluate(values, 0, values.length, p);
}
@ -297,7 +298,7 @@ public class Percentile extends AbstractUnivariateStatistic implements Serializa
*/
@Override
public double evaluate(final double[] values, final int start, final int length)
throws MathIllegalArgumentException {
throws MathIllegalArgumentException {
return evaluate(values, start, length, quantile);
}
@ -335,10 +336,9 @@ public class Percentile extends AbstractUnivariateStatistic implements Serializa
final int length, final double p)
throws MathIllegalArgumentException {
test(values, begin, length);
MathArrays.verifyValues(values, begin, length);
if (p > 100 || p <= 0) {
throw new OutOfRangeException(
LocalizedFormats.OUT_OF_BOUNDS_QUANTILE_VALUE, p, 0, 100);
throw new OutOfRangeException(LocalizedFormats.OUT_OF_BOUNDS_QUANTILE_VALUE, p, 0, 100);
}
if (length == 0) {
return Double.NaN;
@ -401,11 +401,11 @@ public class Percentile extends AbstractUnivariateStatistic implements Serializa
* @throws MathIllegalArgumentException if values or indices are invalid
*/
protected double[] getWorkArray(final double[] values, final int begin, final int length) {
final double[] work;
if (values == getDataRef()) {
work = getDataRef();
} else {
switch (nanStrategy) {
final double[] work;
if (values == getDataRef()) {
work = getDataRef();
} else {
switch (nanStrategy) {
case MAXIMAL:// Replace NaNs with +INFs
work = replaceAndSlice(values, begin, length, Double.NaN, Double.POSITIVE_INFINITY);
break;
@ -422,9 +422,9 @@ public class Percentile extends AbstractUnivariateStatistic implements Serializa
default: //FIXED
work = copyOf(values,begin,length);
break;
}
}
return work;
}
return work;
}
/**
@ -486,7 +486,7 @@ public class Percentile extends AbstractUnivariateStatistic implements Serializa
//Check if empty then create a new copy
if (bits.isEmpty()) {
temp = copyOf(values, begin, length); // Nothing removed, just copy
} else if(bits.cardinality() == length){
} else if(bits.cardinality() == length) {
temp = new double[0]; // All removed, just empty
}else { // Some removable, so new
temp = new double[length - bits.cardinality()];
@ -630,8 +630,7 @@ public class Percentile extends AbstractUnivariateStatistic implements Serializa
* @throws NullArgumentException when newKthSelector is null
*/
public Percentile withKthSelector(final KthSelector newKthSelector) {
return new Percentile(quantile, estimationType, nanStrategy,
newKthSelector);
return new Percentile(quantile, estimationType, nanStrategy, newKthSelector);
}
/**
@ -669,7 +668,6 @@ public class Percentile extends AbstractUnivariateStatistic implements Serializa
* <a href="http://stat.ethz.ch/R-manual/R-devel/library/stats/html/quantile.html">
* R-Manual </a></li>
* </ol>
*
*/
public static enum EstimationType {
/**
@ -808,7 +806,7 @@ public class Percentile extends AbstractUnivariateStatistic implements Serializa
* &amp;maxLimit = (N-0.5)/N
* \end{align}\)
*/
R_5("R-5"){
R_5("R-5") {
@Override
protected double index(final double p, final int length) {
@ -836,7 +834,7 @@ public class Percentile extends AbstractUnivariateStatistic implements Serializa
* first element (p&lt;1(N+1)) and last elements (p&gt;N/(N+1))are done.
* While in default case; these are done with p=0 and p=1 respectively.
*/
R_6("R-6"){
R_6("R-6") {
@Override
protected double index(final double p, final int length) {

View File

@ -23,6 +23,7 @@ import org.apache.commons.math4.exception.NullArgumentException;
import org.apache.commons.math4.stat.descriptive.AbstractStorelessUnivariateStatistic;
import org.apache.commons.math4.stat.descriptive.WeightedEvaluation;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.MathArrays;
import org.apache.commons.math4.util.MathUtils;
/**
@ -36,12 +37,11 @@ import org.apache.commons.math4.util.MathUtils;
* multiple threads access an instance of this class concurrently, and at least
* one of the threads invokes the <code>increment()</code> or
* <code>clear()</code> method, it must be synchronized externally.</p>
*
*/
public class Product extends AbstractStorelessUnivariateStatistic implements Serializable, WeightedEvaluation {
/** Serializable version identifier */
private static final long serialVersionUID = 2824226005990582538L;
private static final long serialVersionUID = 20150412L;
/**The number of values that have been added */
private long n;
@ -52,7 +52,7 @@ public class Product extends AbstractStorelessUnivariateStatistic implements Ser
private double value;
/**
* Create a Product instance
* Create a Product instance.
*/
public Product() {
n = 0;
@ -61,7 +61,7 @@ public class Product extends AbstractStorelessUnivariateStatistic implements Ser
/**
* Copy constructor, creates a new {@code Product} identical
* to the {@code original}
* to the {@code original}.
*
* @param original the {@code Product} instance to copy
* @throws NullArgumentException if original is null
@ -120,9 +120,9 @@ public class Product extends AbstractStorelessUnivariateStatistic implements Ser
*/
@Override
public double evaluate(final double[] values, final int begin, final int length)
throws MathIllegalArgumentException {
throws MathIllegalArgumentException {
double product = Double.NaN;
if (test(values, begin, length, true)) {
if (MathArrays.verifyValues(values, begin, length, true)) {
product = 1.0;
for (int i = begin; i < begin + length; i++) {
product *= values[i];
@ -161,9 +161,9 @@ public class Product extends AbstractStorelessUnivariateStatistic implements Ser
*/
@Override
public double evaluate(final double[] values, final double[] weights,
final int begin, final int length) throws MathIllegalArgumentException {
final int begin, final int length) throws MathIllegalArgumentException {
double product = Double.NaN;
if (test(values, weights, begin, length, true)) {
if (MathArrays.verifyValues(values, weights, begin, length, true)) {
product = 1.0;
for (int i = begin; i < begin + length; i++) {
product *= FastMath.pow(values[i], weights[i]);
@ -184,7 +184,8 @@ public class Product extends AbstractStorelessUnivariateStatistic implements Ser
* <li>the weights array contains negative values</li>
* </ul></p>
*
* <p>Uses the formula, <pre>
* <p>Uses the formula,
* <pre>
* weighted product = &prod;values[i]<sup>weights[i]</sup>
* </pre>
* that is, the weights are applied as exponents when computing the weighted product.</p>
@ -196,12 +197,10 @@ public class Product extends AbstractStorelessUnivariateStatistic implements Ser
* @since 2.1
*/
@Override
public double evaluate(final double[] values, final double[] weights)
throws MathIllegalArgumentException {
public double evaluate(final double[] values, final double[] weights) throws MathIllegalArgumentException {
return evaluate(values, weights, 0, values.length);
}
/**
* {@inheritDoc}
*/
@ -225,7 +224,6 @@ public class Product extends AbstractStorelessUnivariateStatistic implements Ser
throws NullArgumentException {
MathUtils.checkNotNull(source);
MathUtils.checkNotNull(dest);
dest.setData(source.getDataRef());
dest.n = source.n;
dest.value = source.value;
}

View File

@ -21,6 +21,7 @@ import java.io.Serializable;
import org.apache.commons.math4.exception.MathIllegalArgumentException;
import org.apache.commons.math4.exception.NullArgumentException;
import org.apache.commons.math4.stat.descriptive.AbstractStorelessUnivariateStatistic;
import org.apache.commons.math4.util.MathArrays;
import org.apache.commons.math4.util.MathUtils;
@ -35,12 +36,11 @@ import org.apache.commons.math4.util.MathUtils;
* multiple threads access an instance of this class concurrently, and at least
* one of the threads invokes the <code>increment()</code> or
* <code>clear()</code> method, it must be synchronized externally.</p>
*
*/
public class Sum extends AbstractStorelessUnivariateStatistic implements Serializable {
/** Serializable version identifier */
private static final long serialVersionUID = -8231831954703408316L;
private static final long serialVersionUID = 20150412L;
/** */
private long n;
@ -51,7 +51,7 @@ public class Sum extends AbstractStorelessUnivariateStatistic implements Seriali
private double value;
/**
* Create a Sum instance
* Create a Sum instance.
*/
public Sum() {
n = 0;
@ -60,7 +60,7 @@ public class Sum extends AbstractStorelessUnivariateStatistic implements Seriali
/**
* Copy constructor, creates a new {@code Sum} identical
* to the {@code original}
* to the {@code original}.
*
* @param original the {@code Sum} instance to copy
* @throws NullArgumentException if original is null
@ -104,9 +104,8 @@ public class Sum extends AbstractStorelessUnivariateStatistic implements Seriali
}
/**
* The sum of the entries in the specified portion of
* the input array, or 0 if the designated subarray
* is empty.
* The sum of the entries in the specified portion of the input array,
* or 0 if the designated subarray is empty.
* <p>
* Throws <code>MathIllegalArgumentException</code> if the array is null.</p>
*
@ -119,9 +118,10 @@ public class Sum extends AbstractStorelessUnivariateStatistic implements Seriali
*/
@Override
public double evaluate(final double[] values, final int begin, final int length)
throws MathIllegalArgumentException {
throws MathIllegalArgumentException {
double sum = Double.NaN;
if (test(values, begin, length, true)) {
if (MathArrays.verifyValues(values, begin, length, true)) {
sum = 0.0;
for (int i = begin; i < begin + length; i++) {
sum += values[i];
@ -158,9 +158,9 @@ public class Sum extends AbstractStorelessUnivariateStatistic implements Seriali
* @since 2.1
*/
public double evaluate(final double[] values, final double[] weights,
final int begin, final int length) throws MathIllegalArgumentException {
final int begin, final int length) throws MathIllegalArgumentException {
double sum = Double.NaN;
if (test(values, weights, begin, length, true)) {
if (MathArrays.verifyValues(values, weights, begin, length, true)) {
sum = 0.0;
for (int i = begin; i < begin + length; i++) {
sum += values[i] * weights[i];
@ -191,8 +191,7 @@ public class Sum extends AbstractStorelessUnivariateStatistic implements Seriali
* @throws MathIllegalArgumentException if the parameters are not valid
* @since 2.1
*/
public double evaluate(final double[] values, final double[] weights)
throws MathIllegalArgumentException {
public double evaluate(final double[] values, final double[] weights) throws MathIllegalArgumentException {
return evaluate(values, weights, 0, values.length);
}
@ -219,7 +218,6 @@ public class Sum extends AbstractStorelessUnivariateStatistic implements Seriali
throws NullArgumentException {
MathUtils.checkNotNull(source);
MathUtils.checkNotNull(dest);
dest.setData(source.getDataRef());
dest.n = source.n;
dest.value = source.value;
}

View File

@ -22,6 +22,7 @@ import org.apache.commons.math4.exception.MathIllegalArgumentException;
import org.apache.commons.math4.exception.NullArgumentException;
import org.apache.commons.math4.stat.descriptive.AbstractStorelessUnivariateStatistic;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.MathArrays;
import org.apache.commons.math4.util.MathUtils;
/**
@ -43,14 +44,13 @@ import org.apache.commons.math4.util.MathUtils;
* multiple threads access an instance of this class concurrently, and at least
* one of the threads invokes the <code>increment()</code> or
* <code>clear()</code> method, it must be synchronized externally.</p>
*
*/
public class SumOfLogs extends AbstractStorelessUnivariateStatistic implements Serializable {
/** Serializable version identifier */
private static final long serialVersionUID = -370076995648386763L;
private static final long serialVersionUID = 20150412L;
/**Number of values that have been added */
/** Number of values that have been added */
private int n;
/**
@ -59,7 +59,7 @@ public class SumOfLogs extends AbstractStorelessUnivariateStatistic implements S
private double value;
/**
* Create a SumOfLogs instance
* Create a SumOfLogs instance.
*/
public SumOfLogs() {
value = 0d;
@ -68,7 +68,7 @@ public class SumOfLogs extends AbstractStorelessUnivariateStatistic implements S
/**
* Copy constructor, creates a new {@code SumOfLogs} identical
* to the {@code original}
* to the {@code original}.
*
* @param original the {@code SumOfLogs} instance to copy
* @throws NullArgumentException if original is null
@ -130,9 +130,10 @@ public class SumOfLogs extends AbstractStorelessUnivariateStatistic implements S
*/
@Override
public double evaluate(final double[] values, final int begin, final int length)
throws MathIllegalArgumentException {
throws MathIllegalArgumentException {
double sumLog = Double.NaN;
if (test(values, begin, length, true)) {
if (MathArrays.verifyValues(values, begin, length, true)) {
sumLog = 0.0;
for (int i = begin; i < begin + length; i++) {
sumLog += FastMath.log(values[i]);
@ -164,7 +165,6 @@ public class SumOfLogs extends AbstractStorelessUnivariateStatistic implements S
throws NullArgumentException {
MathUtils.checkNotNull(source);
MathUtils.checkNotNull(dest);
dest.setData(source.getDataRef());
dest.n = source.n;
dest.value = source.value;
}

View File

@ -21,6 +21,7 @@ import java.io.Serializable;
import org.apache.commons.math4.exception.MathIllegalArgumentException;
import org.apache.commons.math4.exception.NullArgumentException;
import org.apache.commons.math4.stat.descriptive.AbstractStorelessUnivariateStatistic;
import org.apache.commons.math4.util.MathArrays;
import org.apache.commons.math4.util.MathUtils;
/**
@ -34,14 +35,13 @@ import org.apache.commons.math4.util.MathUtils;
* multiple threads access an instance of this class concurrently, and at least
* one of the threads invokes the <code>increment()</code> or
* <code>clear()</code> method, it must be synchronized externally.</p>
*
*/
public class SumOfSquares extends AbstractStorelessUnivariateStatistic implements Serializable {
/** Serializable version identifier */
private static final long serialVersionUID = 1460986908574398008L;
private static final long serialVersionUID = 20150412L;
/** */
/** Number of values that have been added */
private long n;
/**
@ -50,7 +50,7 @@ public class SumOfSquares extends AbstractStorelessUnivariateStatistic implement
private double value;
/**
* Create a SumOfSquares instance
* Create a SumOfSquares instance.
*/
public SumOfSquares() {
n = 0;
@ -59,7 +59,7 @@ public class SumOfSquares extends AbstractStorelessUnivariateStatistic implement
/**
* Copy constructor, creates a new {@code SumOfSquares} identical
* to the {@code original}
* to the {@code original}.
*
* @param original the {@code SumOfSquares} instance to copy
* @throws NullArgumentException if original is null
@ -118,9 +118,10 @@ public class SumOfSquares extends AbstractStorelessUnivariateStatistic implement
*/
@Override
public double evaluate(final double[] values,final int begin, final int length)
throws MathIllegalArgumentException {
throws MathIllegalArgumentException {
double sumSq = Double.NaN;
if (test(values, begin, length, true)) {
if (MathArrays.verifyValues(values, begin, length, true)) {
sumSq = 0.0;
for (int i = begin; i < begin + length; i++) {
sumSq += values[i] * values[i];
@ -152,7 +153,6 @@ public class SumOfSquares extends AbstractStorelessUnivariateStatistic implement
throws NullArgumentException {
MathUtils.checkNotNull(source);
MathUtils.checkNotNull(dest);
dest.setData(source.getDataRef());
dest.n = source.n;
dest.value = source.value;
}

View File

@ -1,103 +0,0 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math4.stat.descriptive;
import org.apache.commons.math4.exception.MathIllegalArgumentException;
import org.apache.commons.math4.exception.NullArgumentException;
import org.apache.commons.math4.stat.descriptive.moment.Mean;
import org.junit.Assert;
import org.junit.Test;
/**
* Tests for AbstractUnivariateStatistic
*
*/
public class AbstractUnivariateStatisticTest {
protected double[] testArray = {0, 1, 2, 3, 4, 5};
protected double[] testWeightsArray = {0.3, 0.2, 1.3, 1.1, 1.0, 1.8};
protected double[] testNegativeWeightsArray = {-0.3, 0.2, -1.3, 1.1, 1.0, 1.8};
protected double[] nullArray = null;
protected double[] singletonArray = {0};
protected Mean testStatistic = new Mean();
@Test
public void testTestPositive() {
for (int j = 0; j < 6; j++) {
for (int i = 1; i < (7 - j); i++) {
Assert.assertTrue(testStatistic.test(testArray, 0, i));
}
}
Assert.assertTrue(testStatistic.test(singletonArray, 0, 1));
Assert.assertTrue(testStatistic.test(singletonArray, 0, 0, true));
}
@Test
public void testTestNegative() {
Assert.assertFalse(testStatistic.test(singletonArray, 0, 0));
Assert.assertFalse(testStatistic.test(testArray, 0, 0));
try {
testStatistic.test(singletonArray, 2, 1); // start past end
Assert.fail("Expecting MathIllegalArgumentException");
} catch (MathIllegalArgumentException ex) {
// expected
}
try {
testStatistic.test(testArray, 0, 7); // end past end
Assert.fail("Expecting MathIllegalArgumentException");
} catch (MathIllegalArgumentException ex) {
// expected
}
try {
testStatistic.test(testArray, -1, 1); // start negative
Assert.fail("Expecting MathIllegalArgumentException");
} catch (MathIllegalArgumentException ex) {
// expected
}
try {
testStatistic.test(testArray, 0, -1); // length negative
Assert.fail("Expecting MathIllegalArgumentException");
} catch (MathIllegalArgumentException ex) {
// expected
}
try {
testStatistic.test(nullArray, 0, 1); // null array
Assert.fail("Expecting NullArgumentException");
} catch (NullArgumentException ex) {
// expected
}
try {
testStatistic.test(testArray, nullArray, 0, 1); // null weights array
Assert.fail("Expecting NullArgumentException");
} catch (NullArgumentException ex) {
// expected
}
try {
testStatistic.test(singletonArray, testWeightsArray, 0, 1); // weights.length != value.length
Assert.fail("Expecting MathIllegalArgumentException");
} catch (MathIllegalArgumentException ex) {
// expected
}
try {
testStatistic.test(testArray, testNegativeWeightsArray, 0, 6); // can't have negative weights
Assert.fail("Expecting MathIllegalArgumentException");
} catch (MathIllegalArgumentException ex) {
// expected
}
}
}

View File

@ -226,7 +226,7 @@ public class DescriptiveStatisticsTest {
checkremoval(dstat, DescriptiveStatistics.INFINITE_WINDOW, 3.5, 2.5, 3.0);
}
@Test
public void testSummaryConsistency() {
final DescriptiveStatistics dstats = new DescriptiveStatistics();
@ -316,13 +316,16 @@ public class DescriptiveStatisticsTest {
*/
static class deepMean implements UnivariateStatistic {
@Override
public double evaluate(double[] values, int begin, int length) {
return 42;
}
@Override
public double evaluate(double[] values) {
return 42;
}
@Override
public UnivariateStatistic copy() {
return new deepMean();
}
@ -332,16 +335,19 @@ public class DescriptiveStatisticsTest {
* Test percentile implementation - wraps a Percentile
*/
static class goodPercentile implements UnivariateStatistic {
private Percentile percentile = new Percentile();
private final Percentile percentile = new Percentile();
public void setQuantile(double quantile) {
percentile.setQuantile(quantile);
}
@Override
public double evaluate(double[] values, int begin, int length) {
return percentile.evaluate(values, begin, length);
}
@Override
public double evaluate(double[] values) {
return percentile.evaluate(values);
}
@Override
public UnivariateStatistic copy() {
goodPercentile result = new goodPercentile();
result.setQuantile(percentile.getQuantile());
@ -374,13 +380,16 @@ public class DescriptiveStatisticsTest {
* "Bad" test percentile implementation - no setQuantile
*/
static class badPercentile implements UnivariateStatistic {
private Percentile percentile = new Percentile();
private final Percentile percentile = new Percentile();
@Override
public double evaluate(double[] values, int begin, int length) {
return percentile.evaluate(values, begin, length);
}
@Override
public double evaluate(double[] values) {
return percentile.evaluate(values);
}
@Override
public UnivariateStatistic copy() {
return new badPercentile();
}

View File

@ -29,23 +29,21 @@ import org.junit.Test;
/**
* Test cases for the {@link ListUnivariateImpl} class.
*
*/
public final class MixedListUnivariateImplTest {
private double one = 1;
private float two = 2;
private int three = 3;
private final double one = 1;
private final float two = 2;
private final int three = 3;
private double mean = 2;
private double sumSq = 18;
private double sum = 8;
private double var = 0.666666666666666666667;
private double std = FastMath.sqrt(var);
private double n = 4;
private double min = 1;
private double max = 3;
private double tolerance = 10E-15;
private final double mean = 2;
private final double sumSq = 18;
private final double sum = 8;
private final double var = 0.666666666666666666667;
private final double std = FastMath.sqrt(var);
private final double n = 4;
private final double min = 1;
private final double max = 3;
private final double tolerance = 10E-15;
private TransformerMap transformers = new TransformerMap();
@ -184,6 +182,7 @@ public final class MixedListUnivariateImplTest {
public static final class FooTransformer implements NumberTransformer, Serializable {
private static final long serialVersionUID = -4252248129291326127L;
@Override
public double transform(Object o) {
return Double.parseDouble(((Foo) o).heresFoo());
}
@ -197,6 +196,7 @@ public final class MixedListUnivariateImplTest {
public static final class BarTransformer implements NumberTransformer, Serializable {
private static final long serialVersionUID = -1768345377764262043L;
@Override
public double transform(Object o) {
return Double.parseDouble(((Bar) o).heresBar());
}

View File

@ -142,30 +142,39 @@ public class MultivariateSummaryStatisticsTest {
static class sumMean implements StorelessUnivariateStatistic {
private double sum = 0;
private long n = 0;
@Override
public double evaluate(double[] values, int begin, int length) {
return 0;
}
@Override
public double evaluate(double[] values) {
return 0;
}
@Override
public void clear() {
sum = 0;
n = 0;
}
@Override
public long getN() {
return n;
}
@Override
public double getResult() {
return sum;
}
@Override
public void increment(double d) {
sum += d;
n++;
}
@Override
public void incrementAll(double[] values, int start, int length) {
}
@Override
public void incrementAll(double[] values) {
}
@Override
public StorelessUnivariateStatistic copy() {
return new sumMean();
}

View File

@ -76,7 +76,7 @@ public abstract class StorelessUnivariateStatisticAbstractTest
protected void checkClearValue(StorelessUnivariateStatistic statistic){
Assert.assertTrue(Double.isNaN(statistic.getResult()));
}
@Test
public void testSerialization() {
@ -182,7 +182,6 @@ public abstract class StorelessUnivariateStatisticAbstractTest
/**
* Verifies that copied statistics remain equal to originals when
* incremented the same way.
*
*/
@Test
public void testCopyConsistency() {
@ -218,4 +217,24 @@ public abstract class StorelessUnivariateStatisticAbstractTest
(StorelessUnivariateStatistic) getUnivariateStatistic();
Assert.assertEquals(s, TestUtils.serializeAndRecover(s));
}
/**
* Make sure that evaluate(double[]) does not alter the internal state.
*/
@Test
public void testEvaluateInternalState() {
StorelessUnivariateStatistic stat = (StorelessUnivariateStatistic) getUnivariateStatistic();
stat.evaluate(testArray);
Assert.assertEquals(0, stat.getN());
stat.incrementAll(testArray);
StorelessUnivariateStatistic savedStatistic = stat.copy();
Assert.assertNotEquals(stat.getResult(), stat.evaluate(testArray, 0, 5), getTolerance());
Assert.assertEquals(savedStatistic.getResult(), stat.getResult(), 0.0);
Assert.assertEquals(savedStatistic.getN(), stat.getN());
}
}

View File

@ -96,12 +96,9 @@ public abstract class UnivariateStatisticAbstractTest {
@Test
public void testEvaluation() {
Assert.assertEquals(
expectedValue(),
getUnivariateStatistic().evaluate(testArray),
getTolerance());
Assert.assertEquals(expectedValue(), getUnivariateStatistic().evaluate(testArray), getTolerance());
}
@Test
public void testEvaluateArraySegment() {
final UnivariateStatistic stat = getUnivariateStatistic();
@ -115,7 +112,7 @@ public abstract class UnivariateStatisticAbstractTest {
System.arraycopy(testArray, testArray.length - 5, arrayEnd, 0, 5);
Assert.assertEquals(stat.evaluate(arrayEnd), stat.evaluate(testArray, testArray.length - 5, 5), 0);
}
@Test
public void testEvaluateArraySegmentWeighted() {
// See if this statistic computes weighted statistics
@ -149,10 +146,7 @@ public abstract class UnivariateStatisticAbstractTest {
public void testCopy() {
UnivariateStatistic original = getUnivariateStatistic();
UnivariateStatistic copy = original.copy();
Assert.assertEquals(
expectedValue(),
copy.evaluate(testArray),
getTolerance());
Assert.assertEquals(expectedValue(), copy.evaluate(testArray), getTolerance());
}
/**

View File

@ -47,7 +47,6 @@ public class KurtosisTest extends StorelessUnivariateStatisticAbstractTest{
/**
* Make sure Double.NaN is returned iff n < 4
*
*/
@Test
public void testNaN() {

View File

@ -48,7 +48,6 @@ public class SkewnessTest extends StorelessUnivariateStatisticAbstractTest{
/**
* Make sure Double.NaN is returned iff n < 3
*
*/
@Test
public void testNaN() {

View File

@ -69,7 +69,7 @@ public class StandardDeviationTest extends StorelessUnivariateStatisticAbstractT
double[] values = {-1.0d, 3.1d, 4.0d, -2.1d, 22d, 11.7d, 3d, 14d};
double sigma = populationStandardDeviation(values);
SecondMoment m = new SecondMoment();
m.evaluate(values); // side effect is to add values
m.incrementAll(values); // side effect is to add values
StandardDeviation s1 = new StandardDeviation();
s1.setBiasCorrected(false);
Assert.assertEquals(sigma, s1.evaluate(values), 1E-14);

View File

@ -74,7 +74,7 @@ public class VarianceTest extends StorelessUnivariateStatisticAbstractTest{
public void testPopulation() {
double[] values = {-1.0d, 3.1d, 4.0d, -2.1d, 22d, 11.7d, 3d, 14d};
SecondMoment m = new SecondMoment();
m.evaluate(values); // side effect is to add values
m.incrementAll(values); // side effect is to add values
Variance v1 = new Variance();
v1.setBiasCorrected(false);
Assert.assertEquals(populationVariance(values), v1.evaluate(values), 1E-14);

View File

@ -47,8 +47,7 @@ public class MaxTest extends StorelessUnivariateStatisticAbstractTest {
@Test
public void testSpecialValues() {
double[] testArray = {0d, Double.NaN, Double.NEGATIVE_INFINITY,
Double.POSITIVE_INFINITY};
double[] testArray = {0d, Double.NaN, Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY};
Max max = new Max();
Assert.assertTrue(Double.isNaN(max.getResult()));
max.increment(testArray[0]);

View File

@ -82,26 +82,21 @@ public class MedianTest extends UnivariateStatisticAbstractTest{
for (EstimationType e : EstimationType.values()) {
UnivariateStatistic percentile = getTestMedian(e);
Assert.assertEquals(1d, percentile.evaluate(singletonArray), 0);
Assert.assertEquals(1d, percentile.evaluate(singletonArray, 0, 1),
0);
Assert.assertEquals(1d,
new Median().evaluate(singletonArray, 0, 1, 5), 0);
Assert.assertEquals(1d,
new Median().evaluate(singletonArray, 0, 1, 100), 0);
Assert.assertTrue(Double.isNaN(percentile.evaluate(singletonArray,
0, 0)));
Assert.assertEquals(1d, percentile.evaluate(singletonArray, 0, 1), 0);
Assert.assertEquals(1d, new Median().evaluate(singletonArray, 0, 1, 5), 0);
Assert.assertEquals(1d, new Median().evaluate(singletonArray, 0, 1, 100), 0);
Assert.assertTrue(Double.isNaN(percentile.evaluate(singletonArray, 0, 0)));
}
}
@Test
public void testAllTechniquesMedian() {
double[] d = new double[] { 1, 3, 2, 4 };
testAssertMappedValues(d, new Object[][] { { LEGACY, 2.5d },
{ R_1, 2d }, { R_2, 2.5d }, { R_3, 2d }, { R_4, 2d }, { R_5, 2.5 },
{ R_6, 2.5 },{ R_7, 2.5 },{ R_8, 2.5 }, { R_9 , 2.5 } }, 1.0e-05);
}
/**
* Simple test assertion utility method
*
@ -109,8 +104,7 @@ public class MedianTest extends UnivariateStatisticAbstractTest{
* @param map of expected result against a {@link EstimationType}
* @param tolerance the tolerance of difference allowed
*/
protected void testAssertMappedValues(double[] d, Object[][] map,
Double tolerance) {
protected void testAssertMappedValues(double[] d, Object[][] map, Double tolerance) {
for (Object[] o : map) {
EstimationType e = (EstimationType) o[0];
double expected = (Double) o[1];

View File

@ -47,8 +47,7 @@ public class MinTest extends StorelessUnivariateStatisticAbstractTest{
@Test
public void testSpecialValues() {
double[] testArray = {0d, Double.NaN, Double.POSITIVE_INFINITY,
Double.NEGATIVE_INFINITY};
double[] testArray = {0d, Double.NaN, Double.POSITIVE_INFINITY, Double.NEGATIVE_INFINITY};
Min min = new Min();
Assert.assertTrue(Double.isNaN(min.getResult()));
min.increment(testArray[0]);

View File

@ -44,7 +44,7 @@ import org.junit.Test;
/**
* Test cases for the {@link PSquarePercentile} class which naturally extends
* {@link StorelessUnivariateStatisticAbstractTest}.
* {@link StorelessUnivariateStatisticAbstractTest}.
*/
public class PSquarePercentileTest extends
StorelessUnivariateStatisticAbstractTest {
@ -52,7 +52,7 @@ public class PSquarePercentileTest extends
protected double percentile5 = 8.2299d;
protected double percentile95 = 16.72195;// 20.82d; this is approximation
protected double tolerance = 10E-12;
private final RandomGenerator randomGenerator = new Well19937c(1000);
@Override
@ -330,7 +330,7 @@ public class PSquarePercentileTest extends
Assert.assertTrue(Double.isNaN(new PSquarePercentile(100).getResult()));
double[] d = new double[] { 1, 3, 2, 4, 9, 10, 11 };
ptile.evaluate(d);
ptile.incrementAll(d);
Assert.assertEquals(ptile, ptile);
Assert.assertEquals(1d, ptile.getResult(), 1e-02);// this calls min
}
@ -343,8 +343,7 @@ public class PSquarePercentileTest extends
ptile.increment(2);
ptile.increment(3);
Assert.assertNotNull(ptile.toString());
Assert.assertEquals(expectedValue(), ptile.evaluate(testArray),
getTolerance());
Assert.assertEquals(expectedValue(), ptile.evaluate(testArray), getTolerance());
Assert.assertNotNull(ptile.toString());
}

View File

@ -54,7 +54,7 @@ public class ProductTest extends StorelessUnivariateStatisticAbstractTest{
return this.product;
}
/**Expected value for the testArray defined in UnivariateStatisticAbstractTest */
/** Expected value for the testArray defined in UnivariateStatisticAbstractTest */
public double expectedWeightedValue() {
return this.weightedProduct;
}
@ -78,14 +78,15 @@ public class ProductTest extends StorelessUnivariateStatisticAbstractTest{
@Test
public void testWeightedProduct() {
Product product = new Product();
Assert.assertEquals(expectedWeightedValue(), product.evaluate(testArray, testWeightsArray, 0, testArray.length),getTolerance());
Assert.assertEquals(expectedValue(), product.evaluate(testArray, unitWeightsArray, 0, testArray.length), getTolerance());
Assert.assertEquals(expectedWeightedValue(),
product.evaluate(testArray, testWeightsArray, 0, testArray.length),getTolerance());
Assert.assertEquals(expectedValue(),
product.evaluate(testArray, unitWeightsArray, 0, testArray.length), getTolerance());
}
@Override
protected void checkClearValue(StorelessUnivariateStatistic statistic){
Assert.assertEquals(1, statistic.getResult(), 0);
}
}

View File

@ -76,11 +76,10 @@ public class SumLogTest extends StorelessUnivariateStatisticAbstractTest{
sum.increment(-2d);
Assert.assertTrue(Double.isNaN(sum.getResult()));
}
@Override
protected void checkClearValue(StorelessUnivariateStatistic statistic){
protected void checkClearValue(StorelessUnivariateStatistic statistic) {
Assert.assertEquals(0, statistic.getResult(), 0);
}
}

View File

@ -25,7 +25,6 @@ import org.junit.Test;
/**
* Test cases for the {@link SumOfSquares} class.
*
*/
public class SumSqTest extends StorelessUnivariateStatisticAbstractTest{
@ -62,11 +61,10 @@ public class SumSqTest extends StorelessUnivariateStatisticAbstractTest{
sumSq.increment(1);
Assert.assertTrue(Double.isNaN(sumSq.getResult()));
}
@Override
protected void checkClearValue(StorelessUnivariateStatistic statistic){
protected void checkClearValue(StorelessUnivariateStatistic statistic) {
Assert.assertEquals(0, statistic.getResult(), 0);
}
}

View File

@ -68,14 +68,15 @@ public class SumTest extends StorelessUnivariateStatisticAbstractTest{
@Test
public void testWeightedSum() {
Sum sum = new Sum();
Assert.assertEquals(expectedWeightedValue(), sum.evaluate(testArray, testWeightsArray, 0, testArray.length), getTolerance());
Assert.assertEquals(expectedValue(), sum.evaluate(testArray, unitWeightsArray, 0, testArray.length), getTolerance());
Assert.assertEquals(expectedWeightedValue(),
sum.evaluate(testArray, testWeightsArray, 0, testArray.length), getTolerance());
Assert.assertEquals(expectedValue(),
sum.evaluate(testArray, unitWeightsArray, 0, testArray.length), getTolerance());
}
@Override
protected void checkClearValue(StorelessUnivariateStatistic statistic){
protected void checkClearValue(StorelessUnivariateStatistic statistic) {
Assert.assertEquals(0, statistic.getResult(), 0);
}
}