refine javadoc
This commit is contained in:
parent
67aea22b08
commit
84f08fce9f
|
@ -57,14 +57,14 @@ public class DividedDifferenceInterpolator
|
|||
throws DimensionMismatchException,
|
||||
NumberIsTooSmallException,
|
||||
NonMonotonicSequenceException {
|
||||
/**
|
||||
/*
|
||||
* a[] and c[] are defined in the general formula of Newton form:
|
||||
* p(x) = a[0] + a[1](x-c[0]) + a[2](x-c[0])(x-c[1]) + ... +
|
||||
* a[n](x-c[0])(x-c[1])...(x-c[n-1])
|
||||
*/
|
||||
PolynomialFunctionLagrangeForm.verifyInterpolationArray(x, y, true);
|
||||
|
||||
/**
|
||||
/*
|
||||
* When used for interpolation, the Newton form formula becomes
|
||||
* p(x) = f[x0] + f[x0,x1](x-x0) + f[x0,x1,x2](x-x0)(x-x1) + ... +
|
||||
* f[x0,x1,...,x[n-1]](x-x0)(x-x1)...(x-x[n-2])
|
||||
|
|
|
@ -1122,7 +1122,7 @@ public class Dfp implements RealFieldElement<Dfp> {
|
|||
result = result.add(a);
|
||||
}
|
||||
|
||||
/** If exactly equal to 1/2 and odd then increment */
|
||||
/* If exactly equal to 1/2 and odd then increment */
|
||||
if (a.equals(half) && result.exp > 0 && (result.mant[mant.length-result.exp]&1) != 0) {
|
||||
a = newInstance(getOne());
|
||||
a.sign = sign;
|
||||
|
|
|
@ -41,7 +41,7 @@ public abstract class AbstractEvaluation implements Evaluation {
|
|||
* Constructor.
|
||||
*
|
||||
* @param observationSize the number of observations.
|
||||
* Needed for {@link #getRMS()} and {@link #getReducedChiSquare()}.
|
||||
* Needed for {@link #getRMS()} and {@link #getReducedChiSquare(int)}.
|
||||
*/
|
||||
AbstractEvaluation(final int observationSize) {
|
||||
this.observationSize = observationSize;
|
||||
|
|
|
@ -1209,7 +1209,7 @@ public abstract class RealVector {
|
|||
* @return an unmodifiable view of {@code v}.
|
||||
*/
|
||||
public static RealVector unmodifiableRealVector(final RealVector v) {
|
||||
/**
|
||||
/*
|
||||
* This anonymous class is an implementation of {@link RealVector}
|
||||
* with read-only access.
|
||||
* It wraps any {@link RealVector}, and exposes all methods which
|
||||
|
|
|
@ -229,7 +229,7 @@ public class NeuronString implements Serializable {
|
|||
/**
|
||||
* Custom serialization.
|
||||
*
|
||||
* @return the {@link Neuron} for which this instance is the proxy.
|
||||
* @return the {@link NeuronString} for which this instance is the proxy.
|
||||
*/
|
||||
private Object readResolve() {
|
||||
return new NeuronString(wrap,
|
||||
|
|
|
@ -22,6 +22,7 @@ import org.apache.commons.math4.analysis.function.Logit;
|
|||
import org.apache.commons.math4.analysis.function.Sigmoid;
|
||||
import org.apache.commons.math4.exception.DimensionMismatchException;
|
||||
import org.apache.commons.math4.exception.NumberIsTooSmallException;
|
||||
import org.apache.commons.math4.optim.OptimizationData;
|
||||
import org.apache.commons.math4.util.FastMath;
|
||||
import org.apache.commons.math4.util.MathUtils;
|
||||
|
||||
|
@ -52,7 +53,7 @@ import org.apache.commons.math4.util.MathUtils;
|
|||
* user is responsible for converting his bounded point to unbounded by calling
|
||||
* {@link #boundedToUnbounded(double[])} before providing them to the optimizer.
|
||||
* For the same reason, the point returned by the {@link
|
||||
* org.apache.commons.math4.optim.BaseMultivariateOptimizer#optimize(OptimizationData[])}
|
||||
* org.apache.commons.math4.optim.BaseMultivariateOptimizer#optimize(OptimizationData...)}
|
||||
* method is unbounded. So to convert this point to bounded, users must call
|
||||
* {@link #unboundedToBounded(double[])} by themselves!</p>
|
||||
* <p>
|
||||
|
|
|
@ -108,7 +108,7 @@ public class NonLinearConjugateGradientOptimizer
|
|||
* find an interval that brackets the optimum in order to perform the
|
||||
* line search.
|
||||
*
|
||||
* @see LineSearch#LineSearch(MultivariateOptimizer,double,double,double)
|
||||
* @see LineSearch#LineSearch(org.apache.commons.math4.optim.nonlinear.scalar.MultivariateOptimizer,double,double,double)
|
||||
* @since 3.3
|
||||
*/
|
||||
public NonLinearConjugateGradientOptimizer(final Formula updateFormula,
|
||||
|
@ -136,7 +136,7 @@ public class NonLinearConjugateGradientOptimizer
|
|||
* find an interval that brackets the optimum in order to perform the
|
||||
* line search.
|
||||
*
|
||||
* @see LineSearch#LineSearch(MultivariateOptimizer,double,double,double)
|
||||
* @see LineSearch#LineSearch(org.apache.commons.math4.optim.nonlinear.scalar.MultivariateOptimizer, double, double, double)
|
||||
* @since 3.3
|
||||
*/
|
||||
public NonLinearConjugateGradientOptimizer(final Formula updateFormula,
|
||||
|
|
|
@ -43,7 +43,7 @@ import org.apache.commons.math4.util.FastMath;
|
|||
* Line search is performed by the {@link LineSearch} class.
|
||||
* <br>
|
||||
* Constraints are not supported: the call to
|
||||
* {@link #optimize(OptimizationData[]) optimize} will throw
|
||||
* {@link #optimize(org.apache.commons.math4.optim.OptimizationData...)} will throw
|
||||
* {@link MathUnsupportedOperationException} if bounds are passed to it.
|
||||
* In order to impose simple constraints, the objective function must be
|
||||
* wrapped in an adapter like
|
||||
|
@ -288,7 +288,7 @@ public class PowellOptimizer
|
|||
|
||||
/**
|
||||
* @throws MathUnsupportedOperationException if bounds were passed to the
|
||||
* {@link #optimize(OptimizationData[]) optimize} method.
|
||||
* {@link #optimize(org.apache.commons.math4.optim.OptimizationData[]) optimize} method.
|
||||
*/
|
||||
private void checkParameters() {
|
||||
if (getLowerBound() != null ||
|
||||
|
|
|
@ -48,9 +48,7 @@ public class Covariance {
|
|||
/** covariance matrix */
|
||||
private final RealMatrix covarianceMatrix;
|
||||
|
||||
/**
|
||||
* Create an empty covariance matrix.
|
||||
*/
|
||||
/* Create an empty covariance matrix. */
|
||||
/** Number of observations (length of covariate vectors) */
|
||||
private final int n;
|
||||
|
||||
|
|
|
@ -61,7 +61,7 @@ public class Median extends Percentile implements Serializable {
|
|||
}
|
||||
|
||||
/**
|
||||
* Constructs a Median with the specific {@link EstimationType}, {@link NaNStrategy} and {@link PivotingStrategy}.
|
||||
* Constructs a Median with the specific {@link EstimationType}, {@link NaNStrategy} and {@link KthSelector}.
|
||||
*
|
||||
* @param estimationType one of the percentile {@link EstimationType estimation types}
|
||||
* @param nanStrategy one of {@link NaNStrategy} to handle with NaNs
|
||||
|
|
|
@ -258,8 +258,8 @@ public class PerfTestUtils {
|
|||
|
||||
/**
|
||||
* Timing and report (to standard output).
|
||||
* This method calls {@link #timeAndReport(String,int,int,boolean,RunTest[])
|
||||
* timeAndReport(title, 1000, 10000, false, methods)}.
|
||||
* This method calls {@link #timeAndReport(String,int,int,int,boolean,RunTest[])
|
||||
* timeAndReport(title, 45, 1000, 10000, false, methods)}.
|
||||
*
|
||||
* @param title Title of the test (for the report).
|
||||
* @param methods Codes being timed.
|
||||
|
|
|
@ -287,7 +287,7 @@ public final class TricubicInterpolatingFunctionTest {
|
|||
* @param d2fdxdy Second partial cross-derivative w.r.t x and y of the function to test.
|
||||
* @param d2fdxdz Second partial cross-derivative w.r.t x and z of the function to test.
|
||||
* @param d2fdydz Second partial cross-derivative w.r.t y and z of the function to test.
|
||||
* @param d3fdxdy Third partial cross-derivative w.r.t x, y and z of the function to test.
|
||||
* @param d3fdxdydz Third partial cross-derivative w.r.t x, y and z of the function to test.
|
||||
* @param meanRelativeTolerance Allowed average error (mean error on all interpolated values).
|
||||
* @param maxRelativeTolerance Allowed error on each interpolated value.
|
||||
* @param onDataMaxAbsoluteTolerance Allowed error on a data point.
|
||||
|
|
|
@ -67,9 +67,6 @@ import org.junit.Test;
|
|||
* where possible, and the source of the reference data and/or validation
|
||||
* should be documented in the test cases. A framework for validating
|
||||
* distribution data against R is included in the /src/test/R source tree.
|
||||
* <p>
|
||||
* See {@link NormalDistributionTest} and {@link ChiSquaredDistributionTest}
|
||||
* for examples.
|
||||
*
|
||||
*/
|
||||
public abstract class RealDistributionAbstractTest {
|
||||
|
|
|
@ -27,7 +27,7 @@ import org.junit.Test;
|
|||
import org.junit.runner.RunWith;
|
||||
|
||||
/**
|
||||
* Test cases for the {@link RandomUtils#DataGenerator} class.
|
||||
* Test cases for the {@link RandomUtils.DataGenerator} class.
|
||||
*/
|
||||
@RunWith(RetryRunner.class)
|
||||
public abstract class RandomUtilsDataGeneratorAbstractTest {
|
||||
|
|
|
@ -19,7 +19,7 @@ package org.apache.commons.math4.random;
|
|||
import java.util.Random;
|
||||
|
||||
/**
|
||||
* Test cases for the {@link RandomUtils#DataGenerator} class, using
|
||||
* Test cases for the {@link RandomUtils.DataGenerator} class, using
|
||||
* {@link Random} as the underlying source of randomness.
|
||||
*/
|
||||
public class RandomUtilsDataGeneratorJDKRandomTest
|
||||
|
|
|
@ -24,7 +24,7 @@ import org.junit.Assert;
|
|||
import org.junit.Test;
|
||||
|
||||
/**
|
||||
* Tests for {@link IntegerSequence} and {@link IntegerSequence#Incrementor}.
|
||||
* Tests for {@link IntegerSequence} and {@link IntegerSequence.Incrementor}.
|
||||
*/
|
||||
public class IntegerSequenceTest {
|
||||
@Test
|
||||
|
|
|
@ -501,8 +501,8 @@ public class MathArraysTest {
|
|||
Assert.assertEquals(125, x3[0], FastMath.ulp(1d));
|
||||
}
|
||||
|
||||
@Test
|
||||
/** Example in javadoc */
|
||||
@Test
|
||||
public void testSortInPlaceExample() {
|
||||
final double[] x = {3, 1, 2};
|
||||
final double[] y = {1, 2, 3};
|
||||
|
|
Loading…
Reference in New Issue