diff --git a/src/java/org/apache/commons/math/ode/MultistepIntegrator.java b/src/java/org/apache/commons/math/ode/MultistepIntegrator.java index 5629e16b4..8212e119f 100644 --- a/src/java/org/apache/commons/math/ode/MultistepIntegrator.java +++ b/src/java/org/apache/commons/math/ode/MultistepIntegrator.java @@ -28,6 +28,28 @@ import org.apache.commons.math.ode.sampling.StepInterpolator; /** * This class is the base class for multistep integrators for Ordinary * Differential Equations. + *
We define scaled derivatives si(n) at step n as: + *
+ * s1(n) = h y'n for first derivative + * s2(n) = h2/2 y''n for second derivative + * s3(n) = h3/6 y'''n for third derivative + * ... + * sk(n) = hk/k! y(k)n for kth derivative + *+ *
Rather than storing several previous steps separately, this implementation uses + * the Nordsieck vector with higher degrees scaled derivatives all taken at the same + * step (yn, s1(n) and rn) where rn is defined as: + *
+ * rn = [ s2(n), s3(n) ... sk(n) ]T + *+ * (we omit the k index in the notation for clarity) + *
+ * Multistep integrators with Nordsieck representation are highly sensitive to + * large step changes because when the step is multiplied by a factor a, the + * kth component of the Nordsieck vector is multiplied by ak + * and the last components are the least accurate ones. The default max growth + * factor is therefore set to a quite low value: 21/order. + *
* * @see org.apache.commons.math.ode.nonstiff.AdamsBashforthIntegrator * @see org.apache.commons.math.ode.nonstiff.AdamsMoultonIntegrator @@ -67,6 +89,9 @@ public abstract class MultistepIntegrator extends AdaptiveStepsizeIntegrator { *The default starter integrator is set to the {@link * DormandPrince853Integrator Dormand-Prince 8(5,3)} integrator with * some defaults settings.
+ *+ * The default max growth factor is set to a quite low value: 21/order. + *
* @param name name of the method * @param nSteps number of steps of the multistep method * (excluding the one being computed) @@ -102,7 +127,7 @@ public abstract class MultistepIntegrator extends AdaptiveStepsizeIntegrator { // set the default values of the algorithm control parameters setSafety(0.9); setMinReduction(0.2); - setMaxGrowth(10.0); + setMaxGrowth(Math.pow(2.0, -exp)); } @@ -111,6 +136,9 @@ public abstract class MultistepIntegrator extends AdaptiveStepsizeIntegrator { *The default starter integrator is set to the {@link * DormandPrince853Integrator Dormand-Prince 8(5,3)} integrator with * some defaults settings.
+ *+ * The default max growth factor is set to a quite low value: 21/order. + *
* @param name name of the method * @param nSteps number of steps of the multistep method * (excluding the one being computed) @@ -138,7 +166,7 @@ public abstract class MultistepIntegrator extends AdaptiveStepsizeIntegrator { // set the default values of the algorithm control parameters setSafety(0.9); setMinReduction(0.2); - setMaxGrowth(10.0); + setMaxGrowth(Math.pow(2.0, -exp)); } diff --git a/src/test/org/apache/commons/math/ode/nonstiff/AdamsBashforthIntegratorTest.java b/src/test/org/apache/commons/math/ode/nonstiff/AdamsBashforthIntegratorTest.java index 6842b3a5d..8c4edac6b 100644 --- a/src/test/org/apache/commons/math/ode/nonstiff/AdamsBashforthIntegratorTest.java +++ b/src/test/org/apache/commons/math/ode/nonstiff/AdamsBashforthIntegratorTest.java @@ -66,7 +66,7 @@ public class AdamsBashforthIntegratorTest { throws DerivativeException, IntegratorException { int previousCalls = Integer.MAX_VALUE; - for (int i = -12; i < -2; ++i) { + for (int i = -12; i < -5; ++i) { TestProblem1 pb = new TestProblem1(); double minStep = 0; double maxStep = pb.getFinalTime() - pb.getInitialTime(); @@ -82,11 +82,11 @@ public class AdamsBashforthIntegratorTest { pb.getInitialTime(), pb.getInitialState(), pb.getFinalTime(), new double[pb.getDimension()]); - // the 33 and 45 factors are only valid for this test + // the 31 and 36 factors are only valid for this test // and has been obtained from trial and error // there is no general relation between local and global errors - assertTrue(handler.getMaximalValueError() > (33.0 * scalAbsoluteTolerance)); - assertTrue(handler.getMaximalValueError() < (45.0 * scalAbsoluteTolerance)); + assertTrue(handler.getMaximalValueError() > (31.0 * scalAbsoluteTolerance)); + assertTrue(handler.getMaximalValueError() < (36.0 * scalAbsoluteTolerance)); assertEquals(0, handler.getMaximalTimeError(), 1.0e-16); int calls = pb.getCalls(); @@ -147,7 +147,7 @@ public class AdamsBashforthIntegratorTest { if (nSteps < 4) { assertTrue(integ.getEvaluations() > 160); } else { - assertTrue(integ.getEvaluations() < 70); + assertTrue(integ.getEvaluations() < 80); } } diff --git a/src/test/org/apache/commons/math/ode/nonstiff/AdamsMoultonIntegratorTest.java b/src/test/org/apache/commons/math/ode/nonstiff/AdamsMoultonIntegratorTest.java index d0f6d27df..0355800ac 100644 --- a/src/test/org/apache/commons/math/ode/nonstiff/AdamsMoultonIntegratorTest.java +++ b/src/test/org/apache/commons/math/ode/nonstiff/AdamsMoultonIntegratorTest.java @@ -82,10 +82,10 @@ public class AdamsMoultonIntegratorTest { pb.getInitialTime(), pb.getInitialState(), pb.getFinalTime(), new double[pb.getDimension()]); - // the 0.4 and 3.0 factors are only valid for this test + // the 0.15 and 3.0 factors are only valid for this test // and has been obtained from trial and error // there is no general relation between local and global errors - assertTrue(handler.getMaximalValueError() > (0.4 * scalAbsoluteTolerance)); + assertTrue(handler.getMaximalValueError() > (0.15 * scalAbsoluteTolerance)); assertTrue(handler.getMaximalValueError() < (3.0 * scalAbsoluteTolerance)); assertEquals(0, handler.getMaximalTimeError(), 1.0e-16); @@ -147,7 +147,7 @@ public class AdamsMoultonIntegratorTest { if (nSteps < 4) { assertTrue(integ.getEvaluations() > 150); } else { - assertTrue(integ.getEvaluations() < 90); + assertTrue(integ.getEvaluations() < 100); } }