Set up test framework for field-based embedded Runge-Kutta integrators.

This commit is contained in:
Luc Maisonobe 2016-01-06 12:41:26 +01:00
parent 7a5431ecb6
commit 87edfd2751
1 changed files with 445 additions and 0 deletions

View File

@ -0,0 +1,445 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math4.ode.nonstiff;
import org.apache.commons.math4.Field;
import org.apache.commons.math4.RealFieldElement;
import org.apache.commons.math4.exception.DimensionMismatchException;
import org.apache.commons.math4.exception.MaxCountExceededException;
import org.apache.commons.math4.exception.NoBracketingException;
import org.apache.commons.math4.exception.NumberIsTooSmallException;
import org.apache.commons.math4.ode.FieldExpandableODE;
import org.apache.commons.math4.ode.FieldFirstOrderDifferentialEquations;
import org.apache.commons.math4.ode.FieldFirstOrderIntegrator;
import org.apache.commons.math4.ode.FieldODEState;
import org.apache.commons.math4.ode.FieldODEStateAndDerivative;
import org.apache.commons.math4.ode.TestFieldProblem1;
import org.apache.commons.math4.ode.TestFieldProblem3;
import org.apache.commons.math4.ode.TestFieldProblem4;
import org.apache.commons.math4.ode.TestFieldProblem5;
import org.apache.commons.math4.ode.TestFieldProblemHandler;
import org.apache.commons.math4.ode.events.Action;
import org.apache.commons.math4.ode.events.FieldEventHandler;
import org.apache.commons.math4.ode.sampling.FieldStepHandler;
import org.apache.commons.math4.ode.sampling.FieldStepInterpolator;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.MathArrays;
import org.junit.Assert;
import org.junit.Test;
public abstract class AbstractEmbeddedRungeKuttaFieldIntegratorTest {
protected abstract <T extends RealFieldElement<T>> EmbeddedRungeKuttaFieldIntegrator<T>
createIntegrator(Field<T> field, final double minStep, final double maxStep,
final double scalAbsoluteTolerance, final double scalRelativeTolerance) ;
protected abstract <T extends RealFieldElement<T>> EmbeddedRungeKuttaFieldIntegrator<T>
createIntegrator(Field<T> field, final double minStep, final double maxStep,
final double[] vecAbsoluteTolerance, final double[] vecRelativeTolerance);
@Test
public abstract void testNonFieldIntegratorConsistency();
protected <T extends RealFieldElement<T>> void doTestNonFieldIntegratorConsistency(final Field<T> field) {
try {
// get the Butcher arrays from the field integrator
EmbeddedRungeKuttaFieldIntegrator<T> fieldIntegrator = createIntegrator(field, 0.001, 1.0, 1.0, 1.0);
T[][] fieldA = fieldIntegrator.getA();
T[] fieldB = fieldIntegrator.getB();
T[] fieldC = fieldIntegrator.getC();
String fieldName = fieldIntegrator.getClass().getName();
String regularName = fieldName.replaceAll("Field", "");
// get the Butcher arrays from the regular integrator
@SuppressWarnings("unchecked")
Class<RungeKuttaIntegrator> c = (Class<RungeKuttaIntegrator>) Class.forName(regularName);
java.lang.reflect.Field jlrFieldA = c.getDeclaredField("STATIC_A");
jlrFieldA.setAccessible(true);
double[][] regularA = (double[][]) jlrFieldA.get(null);
java.lang.reflect.Field jlrFieldB = c.getDeclaredField("STATIC_B");
jlrFieldB.setAccessible(true);
double[] regularB = (double[]) jlrFieldB.get(null);
java.lang.reflect.Field jlrFieldC = c.getDeclaredField("STATIC_C");
jlrFieldC.setAccessible(true);
double[] regularC = (double[]) jlrFieldC.get(null);
Assert.assertEquals(regularA.length, fieldA.length);
for (int i = 0; i < regularA.length; ++i) {
checkArray(regularA[i], fieldA[i]);
}
checkArray(regularB, fieldB);
checkArray(regularC, fieldC);
} catch (ClassNotFoundException cnfe) {
Assert.fail(cnfe.getLocalizedMessage());
} catch (IllegalAccessException iae) {
Assert.fail(iae.getLocalizedMessage());
} catch (IllegalArgumentException iae) {
Assert.fail(iae.getLocalizedMessage());
} catch (SecurityException se) {
Assert.fail(se.getLocalizedMessage());
} catch (NoSuchFieldException nsfe) {
Assert.fail(nsfe.getLocalizedMessage());
}
}
private <T extends RealFieldElement<T>> void checkArray(double[] regularArray, T[] fieldArray) {
Assert.assertEquals(regularArray.length, fieldArray.length);
for (int i = 0; i < regularArray.length; ++i) {
if (regularArray[i] == 0) {
Assert.assertTrue(0.0 == fieldArray[i].getReal());
} else {
Assert.assertEquals(regularArray[i], fieldArray[i].getReal(), FastMath.ulp(regularArray[i]));
}
}
}
@Test
public abstract void testForwardBackwardExceptions();
protected <T extends RealFieldElement<T>> void doTestForwardBackwardExceptions(final Field<T> field) {
FieldFirstOrderDifferentialEquations<T> equations = new FieldFirstOrderDifferentialEquations<T>() {
public int getDimension() {
return 1;
}
public void init(T t0, T[] y0, T t) {
}
public T[] computeDerivatives(T t, T[] y) {
if (t.getReal() < -0.5) {
throw new LocalException();
} else {
throw new RuntimeException("oops");
}
}
};
EmbeddedRungeKuttaFieldIntegrator<T> integrator = createIntegrator(field, 0.0, 1.0, 1.0e-10, 1.0e-10);
try {
integrator.integrate(new FieldExpandableODE<>(equations),
new FieldODEState<T>(field.getOne().negate(),
MathArrays.buildArray(field, 1)),
field.getZero());
Assert.fail("an exception should have been thrown");
} catch(LocalException de) {
// expected behavior
}
try {
integrator.integrate(new FieldExpandableODE<>(equations),
new FieldODEState<T>(field.getZero(),
MathArrays.buildArray(field, 1)),
field.getOne());
Assert.fail("an exception should have been thrown");
} catch(RuntimeException de) {
// expected behavior
}
}
protected static class LocalException extends RuntimeException {
private static final long serialVersionUID = 20151208L;
}
@Test(expected=NumberIsTooSmallException.class)
public abstract void testMinStep();
protected <T extends RealFieldElement<T>> void doTestMinStep(final Field<T> field)
throws NumberIsTooSmallException {
TestFieldProblem1<T> pb = new TestFieldProblem1<T>(field);
double minStep = pb.getFinalTime().subtract(pb.getInitialState().getTime()).multiply(0.1).getReal();
double maxStep = pb.getFinalTime().subtract(pb.getInitialState().getTime()).getReal();
double[] vecAbsoluteTolerance = { 1.0e-15, 1.0e-16 };
double[] vecRelativeTolerance = { 1.0e-15, 1.0e-16 };
FieldFirstOrderIntegrator<T> integ = createIntegrator(field, minStep, maxStep,
vecAbsoluteTolerance, vecRelativeTolerance);
TestFieldProblemHandler<T> handler = new TestFieldProblemHandler<T>(pb, integ);
integ.addStepHandler(handler);
integ.integrate(new FieldExpandableODE<>(pb), pb.getInitialState(), pb.getFinalTime());
Assert.fail("an exception should have been thrown");
}
@Test
public abstract void testIncreasingTolerance();
protected <T extends RealFieldElement<T>> void doTestIncreasingTolerance(final Field<T> field,
double factor,
double epsilon) {
int previousCalls = Integer.MAX_VALUE;
for (int i = -12; i < -2; ++i) {
TestFieldProblem1<T> pb = new TestFieldProblem1<T>(field);
double minStep = 0;
double maxStep = pb.getFinalTime().subtract(pb.getInitialState().getTime()).getReal();
double scalAbsoluteTolerance = FastMath.pow(10.0, i);
double scalRelativeTolerance = 0.01 * scalAbsoluteTolerance;
FieldFirstOrderIntegrator<T> integ = createIntegrator(field, minStep, maxStep,
scalAbsoluteTolerance, scalRelativeTolerance);
TestFieldProblemHandler<T> handler = new TestFieldProblemHandler<T>(pb, integ);
integ.addStepHandler(handler);
integ.integrate(new FieldExpandableODE<T>(pb), pb.getInitialState(), pb.getFinalTime());
Assert.assertTrue(handler.getMaximalValueError().getReal() < (factor * scalAbsoluteTolerance));
Assert.assertEquals(0, handler.getMaximalTimeError().getReal(), epsilon);
int calls = pb.getCalls();
Assert.assertEquals(integ.getEvaluations(), calls);
Assert.assertTrue(calls <= previousCalls);
previousCalls = calls;
}
}
@Test
public abstract void testEvents();
protected <T extends RealFieldElement<T>> void doTestEvents(final Field<T> field,
final double epsilonMaxValue,
final String name) {
TestFieldProblem4<T> pb = new TestFieldProblem4<T>(field);
double minStep = 0;
double maxStep = pb.getFinalTime().subtract(pb.getInitialState().getTime()).getReal();
double scalAbsoluteTolerance = 1.0e-8;
double scalRelativeTolerance = 0.01 * scalAbsoluteTolerance;
FieldFirstOrderIntegrator<T> integ = createIntegrator(field, minStep, maxStep,
scalAbsoluteTolerance, scalRelativeTolerance);
TestFieldProblemHandler<T> handler = new TestFieldProblemHandler<T>(pb, integ);
integ.addStepHandler(handler);
FieldEventHandler<T>[] functions = pb.getEventsHandlers();
double convergence = 1.0e-8 * maxStep;
for (int l = 0; l < functions.length; ++l) {
integ.addEventHandler(functions[l], Double.POSITIVE_INFINITY, convergence, 1000);
}
Assert.assertEquals(functions.length, integ.getEventHandlers().size());
integ.integrate(new FieldExpandableODE<T>(pb), pb.getInitialState(), pb.getFinalTime());
Assert.assertEquals(0, handler.getMaximalValueError().getReal(), epsilonMaxValue);
Assert.assertEquals(0, handler.getMaximalTimeError().getReal(), convergence);
Assert.assertEquals(12.0, handler.getLastTime().getReal(), convergence);
Assert.assertEquals(name, integ.getName());
integ.clearEventHandlers();
Assert.assertEquals(0, integ.getEventHandlers().size());
}
@Test(expected=LocalException.class)
public abstract void testEventsErrors();
protected <T extends RealFieldElement<T>> void doTestEventsErrors(final Field<T> field)
throws LocalException {
final TestFieldProblem1<T> pb = new TestFieldProblem1<T>(field);
double minStep = 0;
double maxStep = pb.getFinalTime().subtract(pb.getInitialState().getTime()).getReal();
double scalAbsoluteTolerance = 1.0e-8;
double scalRelativeTolerance = 0.01 * scalAbsoluteTolerance;
FieldFirstOrderIntegrator<T> integ = createIntegrator(field, minStep, maxStep,
scalAbsoluteTolerance, scalRelativeTolerance);
TestFieldProblemHandler<T> handler = new TestFieldProblemHandler<T>(pb, integ);
integ.addStepHandler(handler);
integ.addEventHandler(new FieldEventHandler<T>() {
public void init(FieldODEStateAndDerivative<T> state0, T t) {
}
public Action eventOccurred(FieldODEStateAndDerivative<T> state, boolean increasing) {
return Action.CONTINUE;
}
public T g(FieldODEStateAndDerivative<T> state) {
T middle = pb.getInitialState().getTime().add(pb.getFinalTime()).multiply(0.5);
T offset = state.getTime().subtract(middle);
if (offset.getReal() > 0) {
throw new LocalException();
}
return offset;
}
public FieldODEState<T> resetState(FieldODEStateAndDerivative<T> state) {
return state;
}
}, Double.POSITIVE_INFINITY, 1.0e-8 * maxStep, 1000);
integ.integrate(new FieldExpandableODE<T>(pb), pb.getInitialState(), pb.getFinalTime());
}
@Test
public abstract void testEventsNoConvergence();
protected <T extends RealFieldElement<T>> void doTestEventsNoConvergence(final Field<T> field){
final TestFieldProblem1<T> pb = new TestFieldProblem1<T>(field);
double minStep = 0;
double maxStep = pb.getFinalTime().subtract(pb.getInitialState().getTime()).getReal();
double scalAbsoluteTolerance = 1.0e-8;
double scalRelativeTolerance = 0.01 * scalAbsoluteTolerance;
FieldFirstOrderIntegrator<T> integ = createIntegrator(field, minStep, maxStep,
scalAbsoluteTolerance, scalRelativeTolerance);
TestFieldProblemHandler<T> handler = new TestFieldProblemHandler<T>(pb, integ);
integ.addStepHandler(handler);
integ.addEventHandler(new FieldEventHandler<T>() {
public void init(FieldODEStateAndDerivative<T> state0, T t) {
}
public Action eventOccurred(FieldODEStateAndDerivative<T> state, boolean increasing) {
return Action.CONTINUE;
}
public T g(FieldODEStateAndDerivative<T> state) {
T middle = pb.getInitialState().getTime().add(pb.getFinalTime()).multiply(0.5);
T offset = state.getTime().subtract(middle);
return (offset.getReal() > 0) ? offset.add(0.5) : offset.subtract(0.5);
}
public FieldODEState<T> resetState(FieldODEStateAndDerivative<T> state) {
return state;
}
}, Double.POSITIVE_INFINITY, 1.0e-8 * maxStep, 3);
try {
integ.integrate(new FieldExpandableODE<T>(pb), pb.getInitialState(), pb.getFinalTime());
Assert.fail("an exception should have been thrown");
} catch (MaxCountExceededException mcee) {
// Expected.
}
}
@Test
public abstract void testSanityChecks();
protected <T extends RealFieldElement<T>> void doTestSanityChecks(Field<T> field) {
TestFieldProblem3<T> pb = new TestFieldProblem3<T>(field);
try {
EmbeddedRungeKuttaFieldIntegrator<T> integrator = createIntegrator(field, 0,
pb.getFinalTime().subtract(pb.getInitialState().getTime()).getReal(),
new double[4], new double[4]);
integrator.integrate(new FieldExpandableODE<>(pb),
new FieldODEState<T>(pb.getInitialState().getTime(),
MathArrays.buildArray(field, 6)),
pb.getFinalTime());
Assert.fail("an exception should have been thrown");
} catch(DimensionMismatchException ie) {
}
try {
EmbeddedRungeKuttaFieldIntegrator<T> integrator =
createIntegrator(field, 0,
pb.getFinalTime().subtract(pb.getInitialState().getTime()).getReal(),
new double[2], new double[4]);
integrator.integrate(new FieldExpandableODE<>(pb), pb.getInitialState(), pb.getFinalTime());
Assert.fail("an exception should have been thrown");
} catch(DimensionMismatchException ie) {
}
try {
EmbeddedRungeKuttaFieldIntegrator<T> integrator =
createIntegrator(field, 0,
pb.getFinalTime().subtract(pb.getInitialState().getTime()).getReal(),
new double[4], new double[4]);
integrator.integrate(new FieldExpandableODE<>(pb), pb.getInitialState(), pb.getInitialState().getTime());
Assert.fail("an exception should have been thrown");
} catch(NumberIsTooSmallException ie) {
}
}
@Test
public abstract void testBackward();
protected <T extends RealFieldElement<T>> void doTestBackward(Field<T> field,
final double espilonLast,
final double epsilonMaxValue,
final double epsilonMaxTime,
final String name)
throws DimensionMismatchException, NumberIsTooSmallException,
MaxCountExceededException, NoBracketingException {
TestFieldProblem5<T> pb = new TestFieldProblem5<T>(field);
double minStep = 0;
double maxStep = pb.getFinalTime().subtract(pb.getInitialState().getTime()).abs().getReal();
double scalAbsoluteTolerance = 1.0e-8;
double scalRelativeTolerance = 0.01 * scalAbsoluteTolerance;
EmbeddedRungeKuttaFieldIntegrator<T> integ = createIntegrator(field, minStep, maxStep,
scalAbsoluteTolerance,
scalRelativeTolerance);
TestFieldProblemHandler<T> handler = new TestFieldProblemHandler<T>(pb, integ);
integ.addStepHandler(handler);
integ.integrate(new FieldExpandableODE<>(pb), pb.getInitialState(), pb.getFinalTime());
Assert.assertEquals(0, handler.getLastError().getReal(), espilonLast);
Assert.assertEquals(0, handler.getMaximalValueError().getReal(), epsilonMaxValue);
Assert.assertEquals(0, handler.getMaximalTimeError().getReal(), epsilonMaxTime);
Assert.assertEquals(name, integ.getName());
}
@Test
public abstract void testKepler();
protected <T extends RealFieldElement<T>> void doTestKepler(Field<T> field, double epsilon) {
final TestFieldProblem3<T> pb = new TestFieldProblem3<T>(field, field.getZero().add(0.9));
double minStep = 0;
double maxStep = pb.getFinalTime().subtract(pb.getInitialState().getTime()).getReal();
double[] vecAbsoluteTolerance = { 1.0e-8, 1.0e-8, 1.0e-10, 1.0e-10 };
double[] vecRelativeTolerance = { 1.0e-10, 1.0e-10, 1.0e-8, 1.0e-8 };
FieldFirstOrderIntegrator<T> integ = createIntegrator(field, minStep, maxStep,
vecAbsoluteTolerance, vecRelativeTolerance);
integ.addStepHandler(new KeplerHandler<T>(pb, epsilon));
integ.integrate(new FieldExpandableODE<>(pb), pb.getInitialState(), pb.getFinalTime());
}
private static class KeplerHandler<T extends RealFieldElement<T>> implements FieldStepHandler<T> {
private T maxError;
private final TestFieldProblem3<T> pb;
private final double epsilon;
public KeplerHandler(TestFieldProblem3<T> pb, double epsilon) {
this.pb = pb;
this.epsilon = epsilon;
maxError = pb.getField().getZero();
}
public void init(FieldODEStateAndDerivative<T> state0, T t) {
maxError = pb.getField().getZero();
}
public void handleStep(FieldStepInterpolator<T> interpolator, boolean isLast)
throws MaxCountExceededException {
FieldODEStateAndDerivative<T> current = interpolator.getCurrentState();
T[] theoreticalY = pb.computeTheoreticalState(current.getTime());
T dx = current.getState()[0].subtract(theoreticalY[0]);
T dy = current.getState()[1].subtract(theoreticalY[1]);
T error = dx.multiply(dx).add(dy.multiply(dy));
if (error.subtract(maxError).getReal() > 0) {
maxError = error;
}
if (isLast) {
Assert.assertEquals(0.0, maxError.getReal(), epsilon);
}
}
}
}