Modifications to the hierarchy of distributions, according to MATH-692. Patch contributed by Christian Winter.
git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1200179 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
70667484eb
commit
87f0f14381
|
@ -60,18 +60,21 @@ public abstract class AbstractContinuousDistribution
|
|||
|
||||
/**
|
||||
* {@inheritDoc}
|
||||
*
|
||||
* For continuous distributions {@code P(X = x)} always evaluates to 0.
|
||||
*
|
||||
* @return 0
|
||||
*/
|
||||
public abstract double density(double x);
|
||||
@Override
|
||||
public final double probability(double x) {
|
||||
return 0.0;
|
||||
}
|
||||
|
||||
/**
|
||||
* For this distribution, {@code X}, this method returns the critical
|
||||
* point {@code x}, such that {@code P(X < x) = p}.
|
||||
*
|
||||
* @param p Desired probability.
|
||||
* @return {@code x}, such that {@code P(X < x) = p}.
|
||||
* @throws OutOfRangeException if {@code p} is not a valid probability.
|
||||
* {@inheritDoc}
|
||||
*/
|
||||
public double inverseCumulativeProbability(final double p) {
|
||||
@Override
|
||||
public double inverseCumulativeProbability(final double p) throws OutOfRangeException {
|
||||
|
||||
if (p < 0.0 || p > 1.0) {
|
||||
throw new OutOfRangeException(p, 0, 1);
|
||||
|
@ -81,6 +84,7 @@ public abstract class AbstractContinuousDistribution
|
|||
// subclasses can override if there is a better method.
|
||||
UnivariateRealFunction rootFindingFunction =
|
||||
new UnivariateRealFunction() {
|
||||
@Override
|
||||
public double value(double x) {
|
||||
return cumulativeProbability(x) - p;
|
||||
}
|
||||
|
@ -124,6 +128,7 @@ public abstract class AbstractContinuousDistribution
|
|||
* @param seed New seed.
|
||||
* @since 2.2
|
||||
*/
|
||||
@Override
|
||||
public void reseedRandomGenerator(long seed) {
|
||||
randomData.reSeed(seed);
|
||||
}
|
||||
|
@ -138,6 +143,7 @@ public abstract class AbstractContinuousDistribution
|
|||
* @return a random value.
|
||||
* @since 2.2
|
||||
*/
|
||||
@Override
|
||||
public double sample() {
|
||||
return randomData.nextInversionDeviate(this);
|
||||
}
|
||||
|
@ -151,6 +157,7 @@ public abstract class AbstractContinuousDistribution
|
|||
* @throws NotStrictlyPositiveException if {@code sampleSize} is not positive.
|
||||
* @since 2.2
|
||||
*/
|
||||
@Override
|
||||
public double[] sample(int sampleSize) {
|
||||
if (sampleSize <= 0) {
|
||||
throw new NotStrictlyPositiveException(LocalizedFormats.NUMBER_OF_SAMPLES,
|
||||
|
|
|
@ -52,21 +52,13 @@ public abstract class AbstractDistribution
|
|||
}
|
||||
|
||||
/**
|
||||
* For a random variable X whose values are distributed according
|
||||
* to this distribution, this method returns P(x0 ≤ X ≤ x1).
|
||||
* <p>
|
||||
* The default implementation uses the identity</p>
|
||||
* <p>
|
||||
* P(x0 ≤ X ≤ x1) = P(X ≤ x1) - P(X ≤ x0) </p>
|
||||
* {@inheritDoc}
|
||||
*
|
||||
* @param x0 the (inclusive) lower bound
|
||||
* @param x1 the (inclusive) upper bound
|
||||
* @return the probability that a random variable with this distribution
|
||||
* will take a value between {@code x0} and {@code x1},
|
||||
* including the endpoints.
|
||||
* @throws NumberIsTooLargeException if {@code x0 > x1}
|
||||
* The default implementation uses the identity
|
||||
* <p>{@code P(x0 < X <= x1) = P(X <= x1) - P(X <= x0)}</p>
|
||||
*/
|
||||
public double cumulativeProbability(double x0, double x1) {
|
||||
@Override
|
||||
public double cumulativeProbability(double x0, double x1) throws NumberIsTooLargeException {
|
||||
if (x0 > x1) {
|
||||
throw new NumberIsTooLargeException(LocalizedFormats.LOWER_ENDPOINT_ABOVE_UPPER_ENDPOINT,
|
||||
x0, x1, true);
|
||||
|
@ -89,6 +81,7 @@ public abstract class AbstractDistribution
|
|||
*
|
||||
* @return the mean or Double.NaN if it's not defined
|
||||
*/
|
||||
@Override
|
||||
public double getNumericalMean() {
|
||||
if (!numericalMeanIsCalculated) {
|
||||
numericalMean = calculateNumericalMean();
|
||||
|
@ -115,6 +108,7 @@ public abstract class AbstractDistribution
|
|||
* for certain cases in {@link TDistributionImpl}) or
|
||||
* Double.NaN if it's not defined
|
||||
*/
|
||||
@Override
|
||||
public double getNumericalVariance() {
|
||||
if (!numericalVarianceIsCalculated) {
|
||||
numericalVariance = calculateNumericalVariance();
|
||||
|
@ -130,6 +124,7 @@ public abstract class AbstractDistribution
|
|||
*
|
||||
* @return whether the lower bound of the support is inclusive or not
|
||||
*/
|
||||
@Override
|
||||
public abstract boolean isSupportLowerBoundInclusive();
|
||||
|
||||
/**
|
||||
|
@ -138,6 +133,7 @@ public abstract class AbstractDistribution
|
|||
*
|
||||
* @return whether the upper bound of the support is inclusive or not
|
||||
*/
|
||||
@Override
|
||||
public abstract boolean isSupportUpperBoundInclusive();
|
||||
|
||||
/**
|
||||
|
@ -159,6 +155,7 @@ public abstract class AbstractDistribution
|
|||
*
|
||||
* @return whether the support limits given by subclassed methods are connected or not
|
||||
*/
|
||||
@Override
|
||||
public boolean isSupportConnected() {
|
||||
return true;
|
||||
}
|
||||
|
|
|
@ -166,12 +166,6 @@ public class BetaDistributionImpl
|
|||
}
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
@Override
|
||||
public double cumulativeProbability(double x0, double x1) {
|
||||
return cumulativeProbability(x1) - cumulativeProbability(x0);
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the absolute accuracy setting of the solver used to estimate
|
||||
* inverse cumulative probabilities.
|
||||
|
|
|
@ -87,11 +87,9 @@ public class CauchyDistributionImpl extends AbstractContinuousDistribution
|
|||
}
|
||||
|
||||
/**
|
||||
* For this distribution, {@code X}, this method returns {@code P(X < x)}.
|
||||
*
|
||||
* @param x Value at which the CDF is evaluated.
|
||||
* @return CDF evaluated at {@code x}.
|
||||
* {@inheritDoc}
|
||||
*/
|
||||
@Override
|
||||
public double cumulativeProbability(double x) {
|
||||
return 0.5 + (FastMath.atan((x - median) / scale) / FastMath.PI);
|
||||
}
|
||||
|
@ -99,6 +97,7 @@ public class CauchyDistributionImpl extends AbstractContinuousDistribution
|
|||
/**
|
||||
* {@inheritDoc}
|
||||
*/
|
||||
@Override
|
||||
public double getMedian() {
|
||||
return median;
|
||||
}
|
||||
|
@ -106,6 +105,7 @@ public class CauchyDistributionImpl extends AbstractContinuousDistribution
|
|||
/**
|
||||
* {@inheritDoc}
|
||||
*/
|
||||
@Override
|
||||
public double getScale() {
|
||||
return scale;
|
||||
}
|
||||
|
@ -120,17 +120,13 @@ public class CauchyDistributionImpl extends AbstractContinuousDistribution
|
|||
}
|
||||
|
||||
/**
|
||||
* For this distribution, {@code X}, this method returns the critical
|
||||
* point {@code x}, such that {@code P(X < x) = p}.
|
||||
* It will return {@code Double.NEGATIVE_INFINITY} when p = 0 and
|
||||
* {@code Double.POSITIVE_INFINITY} when p = 1.
|
||||
* {@inheritDoc}
|
||||
*
|
||||
* @param p Desired probability.
|
||||
* @return {@code x}, such that {@code P(X < x) = p}.
|
||||
* @throws OutOfRangeException if {@code p} is not a valid probability.
|
||||
* It will return {@code Double.NEGATIVE_INFINITY} when {@code p = 0}
|
||||
* and {@code Double.POSITIVE_INFINITY} when {@code p = 1}.
|
||||
*/
|
||||
@Override
|
||||
public double inverseCumulativeProbability(double p) {
|
||||
public double inverseCumulativeProbability(double p) throws OutOfRangeException {
|
||||
double ret;
|
||||
if (p < 0 || p > 1) {
|
||||
throw new OutOfRangeException(p, 0, 1);
|
||||
|
|
|
@ -67,6 +67,7 @@ public class ChiSquaredDistributionImpl
|
|||
/**
|
||||
* {@inheritDoc}
|
||||
*/
|
||||
@Override
|
||||
public double getDegreesOfFreedom() {
|
||||
return gamma.getAlpha() * 2.0;
|
||||
}
|
||||
|
@ -80,25 +81,18 @@ public class ChiSquaredDistributionImpl
|
|||
}
|
||||
|
||||
/**
|
||||
* For this distribution, {@code X}, this method returns {@code P(X < x)}.
|
||||
*
|
||||
* @param x the value at which the CDF is evaluated.
|
||||
* @return CDF for this distribution.
|
||||
* {@inheritDoc}
|
||||
*/
|
||||
@Override
|
||||
public double cumulativeProbability(double x) {
|
||||
return gamma.cumulativeProbability(x);
|
||||
}
|
||||
|
||||
/**
|
||||
* For this distribution, X, this method returns the critical point
|
||||
* {@code x}, such that {@code P(X < x) = p}.
|
||||
* It will return 0 when p = 0 and {@code Double.POSITIVE_INFINITY}
|
||||
* when p = 1.
|
||||
* {@inheritDoc}
|
||||
*
|
||||
* @param p Desired probability.
|
||||
* @return {@code x}, such that {@code P(X < x) = p}.
|
||||
* @throws org.apache.commons.math.exception.OutOfRangeException if
|
||||
* {@code p} is not a valid probability.
|
||||
* It will return {@code 0} when {@code p = 0} and
|
||||
* {@code Double.POSITIVE_INFINITY} when {@code p = 1}.
|
||||
*/
|
||||
@Override
|
||||
public double inverseCumulativeProbability(final double p) {
|
||||
|
|
|
@ -16,6 +16,8 @@
|
|||
*/
|
||||
package org.apache.commons.math.distribution;
|
||||
|
||||
import org.apache.commons.math.exception.OutOfRangeException;
|
||||
|
||||
/**
|
||||
* Base interface for continuous distributions.
|
||||
*
|
||||
|
@ -23,19 +25,27 @@ package org.apache.commons.math.distribution;
|
|||
*/
|
||||
public interface ContinuousDistribution extends Distribution {
|
||||
/**
|
||||
* For a distribution, {@code X}, compute {@code x} such that
|
||||
* {@code P(X < x) = p}.
|
||||
* Computes the quantile function of this distribution. For a random
|
||||
* variable {@code X} distributed according to this distribution, the
|
||||
* returned value is
|
||||
* <ul>
|
||||
* <li><code>inf{x in R | P(X<=x) >= p}</code> for {@code 0 < p <= 1},</li>
|
||||
* <li><code>inf{x in R | P(X<=x) > 0}</code> for {@code p = 0}.</li>
|
||||
* </ul>
|
||||
*
|
||||
* @param p Cumulative probability.
|
||||
* @return {@code x} such that {@code P(X < x) = p}.
|
||||
* @param p the cumulative probability
|
||||
* @return the smallest {@code p}-quantile of this distribution
|
||||
* (largest 0-quantile for {@code p = 0})
|
||||
* @throws OutOfRangeException if {@code p < 0} or {@code p > 1}
|
||||
*/
|
||||
double inverseCumulativeProbability(double p);
|
||||
double inverseCumulativeProbability(double p) throws OutOfRangeException;
|
||||
|
||||
/**
|
||||
* Probability density for a particular point.
|
||||
* Returns the probability density function (PDF) of this distribution
|
||||
* evaluated at the specified point.
|
||||
*
|
||||
* @param x Point at which the density should be computed.
|
||||
* @return the pdf at point {@code x}.
|
||||
* @param x the point at which the PDF should be evaluated
|
||||
* @return the PDF at point {@code x}
|
||||
*/
|
||||
double density(double x);
|
||||
|
||||
|
|
|
@ -16,6 +16,8 @@
|
|||
*/
|
||||
package org.apache.commons.math.distribution;
|
||||
|
||||
import org.apache.commons.math.exception.NumberIsTooLargeException;
|
||||
|
||||
/**
|
||||
* Base interface for probability distributions.
|
||||
*
|
||||
|
@ -23,29 +25,40 @@ package org.apache.commons.math.distribution;
|
|||
*/
|
||||
public interface Distribution {
|
||||
/**
|
||||
* For a random variable X whose values are distributed according
|
||||
* to this distribution, this method returns P(X ≤ x). In other words,
|
||||
* this method represents the (cumulative) distribution function, or
|
||||
* CDF, for this distribution.
|
||||
* For a random variable {@code X} whose values are distributed according
|
||||
* to this distribution, this method returns {@code P(X = x)}. In other
|
||||
* words, this method represents the probability mass function (PMF)
|
||||
* for the distribution.
|
||||
*
|
||||
* @param x the value at which the distribution function is evaluated.
|
||||
* @param x the value at which the PMF is evaluated
|
||||
* @return the value of the probability mass function at {@code x}
|
||||
*/
|
||||
double probability(double x);
|
||||
|
||||
/**
|
||||
* For a random variable {@code X} whose values are distributed according
|
||||
* to this distribution, this method returns {@code P(X <= x)}. In other
|
||||
* words, this method represents the (cumulative) distribution function
|
||||
* (CDF) for this distribution.
|
||||
*
|
||||
* @param x the value at which the CDF is evaluated
|
||||
* @return the probability that a random variable with this
|
||||
* distribution takes a value less than or equal to <code>x</code>
|
||||
* distribution takes a value less than or equal to {@code x}
|
||||
*/
|
||||
double cumulativeProbability(double x);
|
||||
|
||||
/**
|
||||
* For a random variable X whose values are distributed according
|
||||
* to this distribution, this method returns P(x0 ≤ X ≤ x1).
|
||||
* For a random variable {@code X} whose values are distributed according
|
||||
* to this distribution, this method returns {@code P(x0 < X <= x1)}.
|
||||
*
|
||||
* @param x0 the (inclusive) lower bound
|
||||
* @param x1 the (inclusive) upper bound
|
||||
* @param x0 the exclusive lower bound
|
||||
* @param x1 the inclusive upper bound
|
||||
* @return the probability that a random variable with this distribution
|
||||
* will take a value between <code>x0</code> and <code>x1</code>,
|
||||
* including the endpoints
|
||||
* @throws IllegalArgumentException if <code>x0 > x1</code>
|
||||
* takes a value between {@code x0} and {@code x1},
|
||||
* excluding the lower and including the upper endpoint
|
||||
* @throws NumberIsTooLargeException if {@code x0 > x1}
|
||||
*/
|
||||
double cumulativeProbability(double x0, double x1);
|
||||
double cumulativeProbability(double x0, double x1) throws NumberIsTooLargeException;
|
||||
|
||||
/**
|
||||
* Use this method to get the numerical value of the mean of this
|
||||
|
|
|
@ -71,6 +71,7 @@ public class ExponentialDistributionImpl extends AbstractContinuousDistribution
|
|||
/**
|
||||
* {@inheritDoc}
|
||||
*/
|
||||
@Override
|
||||
public double getMean() {
|
||||
return mean;
|
||||
}
|
||||
|
@ -87,7 +88,7 @@ public class ExponentialDistributionImpl extends AbstractContinuousDistribution
|
|||
}
|
||||
|
||||
/**
|
||||
* For this distribution, X, this method returns P(X < x).
|
||||
* {@inheritDoc}
|
||||
*
|
||||
* The implementation of this method is based on:
|
||||
* <ul>
|
||||
|
@ -95,10 +96,8 @@ public class ExponentialDistributionImpl extends AbstractContinuousDistribution
|
|||
* <a href="http://mathworld.wolfram.com/ExponentialDistribution.html">
|
||||
* Exponential Distribution</a>, equation (1).</li>
|
||||
* </ul>
|
||||
*
|
||||
* @param x Value at which the CDF is evaluated.
|
||||
* @return the CDF for this distribution.
|
||||
*/
|
||||
@Override
|
||||
public double cumulativeProbability(double x) {
|
||||
double ret;
|
||||
if (x <= 0.0) {
|
||||
|
@ -110,17 +109,13 @@ public class ExponentialDistributionImpl extends AbstractContinuousDistribution
|
|||
}
|
||||
|
||||
/**
|
||||
* For this distribution, X, this method returns the critical point x, such
|
||||
* that {@code P(X < x) = p}.
|
||||
* It will return 0 when p = 0 and {@code Double.POSITIVE_INFINITY}
|
||||
* when p = 1.
|
||||
* {@inheritDoc}
|
||||
*
|
||||
* @param p Desired probability.
|
||||
* @return {@code x}, such that {@code P(X < x) = p}.
|
||||
* @throws OutOfRangeException if {@code p < 0} or {@code p > 1}.
|
||||
* It will return {@code 0} when {@code p = 0} and
|
||||
* {@code Double.POSITIVE_INFINITY} when {@code p = 1}.
|
||||
*/
|
||||
@Override
|
||||
public double inverseCumulativeProbability(double p) {
|
||||
public double inverseCumulativeProbability(double p) throws OutOfRangeException {
|
||||
double ret;
|
||||
|
||||
if (p < 0.0 || p > 1.0) {
|
||||
|
|
|
@ -20,6 +20,7 @@ package org.apache.commons.math.distribution;
|
|||
import java.io.Serializable;
|
||||
|
||||
import org.apache.commons.math.exception.NotStrictlyPositiveException;
|
||||
import org.apache.commons.math.exception.OutOfRangeException;
|
||||
import org.apache.commons.math.exception.util.LocalizedFormats;
|
||||
import org.apache.commons.math.special.Beta;
|
||||
import org.apache.commons.math.util.FastMath;
|
||||
|
@ -89,10 +90,8 @@ public class FDistributionImpl
|
|||
}
|
||||
|
||||
/**
|
||||
* Returns the probability density for a particular point.
|
||||
* {@inheritDoc}
|
||||
*
|
||||
* @param x The point at which the density should be computed.
|
||||
* @return The pdf at point x.
|
||||
* @since 2.1
|
||||
*/
|
||||
@Override
|
||||
|
@ -110,7 +109,7 @@ public class FDistributionImpl
|
|||
}
|
||||
|
||||
/**
|
||||
* For this distribution, {@code X}, this method returns {@code P(X < x)}.
|
||||
* {@inheritDoc}
|
||||
*
|
||||
* The implementation of this method is based on
|
||||
* <ul>
|
||||
|
@ -119,10 +118,8 @@ public class FDistributionImpl
|
|||
* F-Distribution</a>, equation (4).
|
||||
* </li>
|
||||
* </ul>
|
||||
*
|
||||
* @param x Value at which the CDF is evaluated.
|
||||
* @return CDF for this distribution.
|
||||
*/
|
||||
@Override
|
||||
public double cumulativeProbability(double x) {
|
||||
double ret;
|
||||
if (x <= 0) {
|
||||
|
@ -139,17 +136,13 @@ public class FDistributionImpl
|
|||
}
|
||||
|
||||
/**
|
||||
* For this distribution, {@code X}, this method returns the critical
|
||||
* point {@code x}, such that {@code P(X < x) = p}.
|
||||
* Returns 0 when p = 0 and {@code Double.POSITIVE_INFINITY} when p = 1.
|
||||
* {@inheritDoc}
|
||||
*
|
||||
* @param p Desired probability.
|
||||
* @return {@code x}, such that {@code P(X < x) = p}.
|
||||
* @throws IllegalArgumentException if {@code p} is not a valid
|
||||
* probability.
|
||||
* It will return {@code 0} when {@code p = 0} and
|
||||
* {@code Double.POSITIVE_INFINITY} when {@code p = 1}.
|
||||
*/
|
||||
@Override
|
||||
public double inverseCumulativeProbability(final double p) {
|
||||
public double inverseCumulativeProbability(final double p) throws OutOfRangeException {
|
||||
if (p == 0) {
|
||||
return 0;
|
||||
}
|
||||
|
@ -207,6 +200,7 @@ public class FDistributionImpl
|
|||
/**
|
||||
* {@inheritDoc}
|
||||
*/
|
||||
@Override
|
||||
public double getNumeratorDegreesOfFreedom() {
|
||||
return numeratorDegreesOfFreedom;
|
||||
}
|
||||
|
@ -214,6 +208,7 @@ public class FDistributionImpl
|
|||
/**
|
||||
* {@inheritDoc}
|
||||
*/
|
||||
@Override
|
||||
public double getDenominatorDegreesOfFreedom() {
|
||||
return denominatorDegreesOfFreedom;
|
||||
}
|
||||
|
|
|
@ -79,7 +79,7 @@ public class GammaDistributionImpl extends AbstractContinuousDistribution
|
|||
}
|
||||
|
||||
/**
|
||||
* For this distribution, {@code X}, this method returns {@code P(X < x)}.
|
||||
* {@inheritDoc}
|
||||
*
|
||||
* The implementation of this method is based on:
|
||||
* <ul>
|
||||
|
@ -91,10 +91,8 @@ public class GammaDistributionImpl extends AbstractContinuousDistribution
|
|||
* Belmont, CA: Duxbury Press.
|
||||
* </li>
|
||||
* </ul>
|
||||
*
|
||||
* @param x Value at which the CDF is evaluated.
|
||||
* @return CDF for this distribution.
|
||||
*/
|
||||
@Override
|
||||
public double cumulativeProbability(double x) {
|
||||
double ret;
|
||||
|
||||
|
@ -108,15 +106,10 @@ public class GammaDistributionImpl extends AbstractContinuousDistribution
|
|||
}
|
||||
|
||||
/**
|
||||
* For this distribution, {@code X}, this method returns the critical
|
||||
* point {@code x}, such that {@code P(X < x) = p}.
|
||||
* It will return 0 when p = 0 and {@code Double.POSITIVE_INFINITY}
|
||||
* when p = 1.
|
||||
* {@inheritDoc}
|
||||
*
|
||||
* @param p Desired probability.
|
||||
* @return {@code x}, such that {@code P(X < x) = p}.
|
||||
* @throws org.apache.commons.math.exception.OutOfRangeException if
|
||||
* {@code p} is not a valid probability.
|
||||
* It will return {@code 0} when {@cod p = 0} and
|
||||
* {@code Double.POSITIVE_INFINITY} when {@code p = 1}.
|
||||
*/
|
||||
@Override
|
||||
public double inverseCumulativeProbability(final double p) {
|
||||
|
@ -132,6 +125,7 @@ public class GammaDistributionImpl extends AbstractContinuousDistribution
|
|||
/**
|
||||
* {@inheritDoc}
|
||||
*/
|
||||
@Override
|
||||
public double getAlpha() {
|
||||
return alpha;
|
||||
}
|
||||
|
@ -139,6 +133,7 @@ public class GammaDistributionImpl extends AbstractContinuousDistribution
|
|||
/**
|
||||
* {@inheritDoc}
|
||||
*/
|
||||
@Override
|
||||
public double getBeta() {
|
||||
return beta;
|
||||
}
|
||||
|
|
|
@ -92,6 +92,7 @@ public class NormalDistributionImpl extends AbstractContinuousDistribution
|
|||
/**
|
||||
* {@inheritDoc}
|
||||
*/
|
||||
@Override
|
||||
public double getMean() {
|
||||
return mean;
|
||||
}
|
||||
|
@ -99,6 +100,7 @@ public class NormalDistributionImpl extends AbstractContinuousDistribution
|
|||
/**
|
||||
* {@inheritDoc}
|
||||
*/
|
||||
@Override
|
||||
public double getStandardDeviation() {
|
||||
return standardDeviation;
|
||||
}
|
||||
|
@ -114,13 +116,12 @@ public class NormalDistributionImpl extends AbstractContinuousDistribution
|
|||
}
|
||||
|
||||
/**
|
||||
* For this distribution, {@code X}, this method returns {@code P(X < x)}.
|
||||
* If {@code x}is more than 40 standard deviations from the mean, 0 or 1 is returned,
|
||||
* as in these cases the actual value is within {@code Double.MIN_VALUE} of 0 or 1.
|
||||
* {@inheritDoc}
|
||||
*
|
||||
* @param x Value at which the CDF is evaluated.
|
||||
* @return CDF evaluated at {@code x}.
|
||||
* If {@code x} is more than 40 standard deviations from the mean, 0 or 1 is returned,
|
||||
* as in these cases the actual value is within {@code Double.MIN_VALUE} of 0 or 1.
|
||||
*/
|
||||
@Override
|
||||
public double cumulativeProbability(double x) {
|
||||
final double dev = x - mean;
|
||||
if (FastMath.abs(dev) > 40 * standardDeviation) {
|
||||
|
@ -133,7 +134,7 @@ public class NormalDistributionImpl extends AbstractContinuousDistribution
|
|||
* {@inheritDoc}
|
||||
*/
|
||||
@Override
|
||||
public double cumulativeProbability(double x0, double x1) {
|
||||
public double cumulativeProbability(double x0, double x1) throws NumberIsTooLargeException {
|
||||
if (x0 > x1) {
|
||||
throw new NumberIsTooLargeException(LocalizedFormats.LOWER_ENDPOINT_ABOVE_UPPER_ENDPOINT,
|
||||
x0, x1, true);
|
||||
|
@ -157,19 +158,13 @@ public class NormalDistributionImpl extends AbstractContinuousDistribution
|
|||
}
|
||||
|
||||
/**
|
||||
* For this distribution, X, this method returns the critical point
|
||||
* {@code x}, such that {@code P(X < x) = p}.
|
||||
* It will return {@code Double.NEGATIVE_INFINITY} when p = 0 and
|
||||
* {@code Double.POSITIVE_INFINITY} for p = 1.
|
||||
* {@inheritDoc}
|
||||
*
|
||||
* @param p Desired probability.
|
||||
* @return {@code x}, such that {@code P(X < x) = p}.
|
||||
* @throws org.apache.commons.math.exception.OutOfRangeException if
|
||||
* {@code p} is not a valid probability.
|
||||
* It will return {@code Double.NEGATIVE_INFINITY} when {@code p = 0}
|
||||
* and {@code Double.POSITIVE_INFINITY} for {@code p = 1}.
|
||||
*/
|
||||
@Override
|
||||
public double inverseCumulativeProbability(final double p)
|
||||
{
|
||||
public double inverseCumulativeProbability(final double p) {
|
||||
if (p == 0) {
|
||||
return Double.NEGATIVE_INFINITY;
|
||||
}
|
||||
|
|
|
@ -79,6 +79,7 @@ public class TDistributionImpl
|
|||
*
|
||||
* @return the degrees of freedom.
|
||||
*/
|
||||
@Override
|
||||
public double getDegreesOfFreedom() {
|
||||
return degreesOfFreedom;
|
||||
}
|
||||
|
@ -96,11 +97,9 @@ public class TDistributionImpl
|
|||
}
|
||||
|
||||
/**
|
||||
* For this distribution, X, this method returns {@code P(X < x}).
|
||||
*
|
||||
* @param x Value at which the CDF is evaluated.
|
||||
* @return CDF evaluated at {@code x}.
|
||||
* {@inheritDoc}
|
||||
*/
|
||||
@Override
|
||||
public double cumulativeProbability(double x) {
|
||||
double ret;
|
||||
if (x == 0) {
|
||||
|
@ -122,15 +121,10 @@ public class TDistributionImpl
|
|||
}
|
||||
|
||||
/**
|
||||
* For this distribution, {@code X}, this method returns the critical
|
||||
* point {@code x}, such that {@code P(X < x) = p}.
|
||||
* Returns {@code Double.NEGATIVE_INFINITY} when p = 0 and
|
||||
* {@code Double.POSITIVE_INFINITY} when p = 1.
|
||||
* {@inheritDoc}
|
||||
*
|
||||
* @param p Desired probability.
|
||||
* @return {@code x}, such that {@code P(X < x) = p}.
|
||||
* @throws org.apache.commons.math.exception.OutOfRangeException if
|
||||
* {@code p} is not a valid probability.
|
||||
* It will return {@code Double.NEGATIVE_INFINITY} when {@cod p = 0}
|
||||
* and {@code Double.POSITIVE_INFINITY} when {@code p = 1}.
|
||||
*/
|
||||
@Override
|
||||
public double inverseCumulativeProbability(final double p) {
|
||||
|
|
|
@ -88,11 +88,9 @@ public class WeibullDistributionImpl extends AbstractContinuousDistribution
|
|||
}
|
||||
|
||||
/**
|
||||
* For this distribution, {@code X}, this method returns {@code P(X < x)}.
|
||||
*
|
||||
* @param x Value at which the CDF is evaluated.
|
||||
* @return the CDF evaluated at {@code x}.
|
||||
* {@inheritDoc}
|
||||
*/
|
||||
@Override
|
||||
public double cumulativeProbability(double x) {
|
||||
double ret;
|
||||
if (x <= 0.0) {
|
||||
|
@ -106,6 +104,7 @@ public class WeibullDistributionImpl extends AbstractContinuousDistribution
|
|||
/**
|
||||
* {@inheritDoc}
|
||||
*/
|
||||
@Override
|
||||
public double getShape() {
|
||||
return shape;
|
||||
}
|
||||
|
@ -113,6 +112,7 @@ public class WeibullDistributionImpl extends AbstractContinuousDistribution
|
|||
/**
|
||||
* {@inheritDoc}
|
||||
*/
|
||||
@Override
|
||||
public double getScale() {
|
||||
return scale;
|
||||
}
|
||||
|
@ -140,14 +140,10 @@ public class WeibullDistributionImpl extends AbstractContinuousDistribution
|
|||
}
|
||||
|
||||
/**
|
||||
* For this distribution, {@code X}, this method returns the critical
|
||||
* point {@code x}, such that {@code P(X < x) = p}.
|
||||
* It will return {@code Double.NEGATIVE_INFINITY} when p = 0 and
|
||||
* {@code Double.POSITIVE_INFINITY} when p = 1.
|
||||
* {@inheritDoc}
|
||||
*
|
||||
* @param p Desired probability.
|
||||
* @return {@code x}, such that {@code P(X < x) = p}.
|
||||
* @throws OutOfRangeException if {@code p} is not a valid probability.
|
||||
* It will return {@code 0} when {@code p = 0} and
|
||||
* {@code Double.POSITIVE_INFINITY} when {@code p = 1}.
|
||||
*/
|
||||
@Override
|
||||
public double inverseCumulativeProbability(double p) {
|
||||
|
|
|
@ -238,7 +238,7 @@ public abstract class ContinuousDistributionAbstractTest {
|
|||
distribution.cumulativeProbability
|
||||
(cumulativeTestPoints[i], cumulativeTestPoints[i]), tolerance);
|
||||
|
||||
// check that P(a < X < b) = P(X < b) - P(X < a)
|
||||
// check that P(a < X <= b) = P(X <= b) - P(X <= a)
|
||||
double upper = FastMath.max(cumulativeTestPoints[i], cumulativeTestPoints[i -1]);
|
||||
double lower = FastMath.min(cumulativeTestPoints[i], cumulativeTestPoints[i -1]);
|
||||
double diff = distribution.cumulativeProbability(upper) -
|
||||
|
|
|
@ -72,7 +72,7 @@ public class TDistributionTest extends ContinuousDistributionAbstractTest {
|
|||
* Bug report that prompted this unit test.</a>
|
||||
*/
|
||||
@Test
|
||||
public void testCumulativeProbabilityAgaintStackOverflow() throws Exception {
|
||||
public void testCumulativeProbabilityAgainstStackOverflow() throws Exception {
|
||||
TDistributionImpl td = new TDistributionImpl(5.);
|
||||
td.cumulativeProbability(.1);
|
||||
td.cumulativeProbability(.01);
|
||||
|
|
Loading…
Reference in New Issue