[MATH-1079] Further improvements to SimplexSolver.

git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1552046 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Thomas Neidhart 2013-12-18 17:41:26 +00:00
parent af858a6ca2
commit 881a4ee8db
3 changed files with 18 additions and 42 deletions

View File

@ -22,6 +22,7 @@ import java.util.List;
import org.apache.commons.math3.exception.TooManyIterationsException;
import org.apache.commons.math3.optim.OptimizationData;
import org.apache.commons.math3.optim.PointValuePair;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.Precision;
/**
@ -49,7 +50,7 @@ import org.apache.commons.math3.util.Precision;
* <ul>
* <li>Algorithm convergence: 1e-6</li>
* <li>Floating-point comparisons: 10 ulp</li>
* <li>Cut-Off value: 1e-12</li>
* <li>Cut-Off value: 1e-10</li>
* </ul>
* <p>
* The cut-off value has been introduced to zero out very small numbers in the Simplex tableau,
@ -66,7 +67,7 @@ public class SimplexSolver extends LinearOptimizer {
static final int DEFAULT_ULPS = 10;
/** Default cut-off value. */
static final double DEFAULT_CUT_OFF = 1e-12;
static final double DEFAULT_CUT_OFF = 1e-10;
/** Default amount of error to accept for algorithm convergence. */
private static final double DEFAULT_EPSILON = 1.0e-6;
@ -249,7 +250,11 @@ public class SimplexSolver extends LinearOptimizer {
final double rhs = tableau.getEntry(i, tableau.getWidth() - 1);
final double entry = tableau.getEntry(i, col);
if (Precision.compareTo(entry, 0d, maxUlps) > 0) {
// zero-out tableau entries that are too close to zero to avoid
// numerical instabilities as these entries might be used as divisor
if (FastMath.abs(entry) < cutOff) {
tableau.setEntry(i, col, 0);
} else if (Precision.compareTo(entry, 0d, maxUlps) > 0) {
final double ratio = rhs / entry;
// check if the entry is strictly equal to the current min ratio
// do not use a ulp/epsilon check
@ -371,8 +376,7 @@ public class SimplexSolver extends LinearOptimizer {
getGoalType(),
isRestrictedToNonNegative(),
epsilon,
maxUlps,
cutOff);
maxUlps);
solvePhase1(tableau);
tableau.dropPhase1Objective();

View File

@ -33,7 +33,6 @@ import org.apache.commons.math3.linear.MatrixUtils;
import org.apache.commons.math3.linear.RealVector;
import org.apache.commons.math3.optim.nonlinear.scalar.GoalType;
import org.apache.commons.math3.optim.PointValuePair;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.Precision;
/**
@ -99,9 +98,6 @@ class SimplexTableau implements Serializable {
/** Amount of error to accept in floating point comparisons. */
private final int maxUlps;
/** Cut-off value for entries in the tableau. */
private final double cutOff;
/** Maps basic variables to row they are basic in. */
private int[] basicVariables;
@ -123,8 +119,7 @@ class SimplexTableau implements Serializable {
final GoalType goalType,
final boolean restrictToNonNegative,
final double epsilon) {
this(f, constraints, goalType, restrictToNonNegative, epsilon,
SimplexSolver.DEFAULT_ULPS, SimplexSolver.DEFAULT_CUT_OFF);
this(f, constraints, goalType, restrictToNonNegative, epsilon, SimplexSolver.DEFAULT_ULPS);
}
/**
@ -142,32 +137,11 @@ class SimplexTableau implements Serializable {
final boolean restrictToNonNegative,
final double epsilon,
final int maxUlps) {
this(f, constraints, goalType, restrictToNonNegative, epsilon, maxUlps, SimplexSolver.DEFAULT_CUT_OFF);
}
/**
* Build a tableau for a linear problem.
* @param f linear objective function
* @param constraints linear constraints
* @param goalType type of optimization goal: either {@link GoalType#MAXIMIZE} or {@link GoalType#MINIMIZE}
* @param restrictToNonNegative whether to restrict the variables to non-negative values
* @param epsilon amount of error to accept when checking for optimality
* @param maxUlps amount of error to accept in floating point comparisons
* @param cutOff the cut-off value for tableau entries
*/
SimplexTableau(final LinearObjectiveFunction f,
final Collection<LinearConstraint> constraints,
final GoalType goalType,
final boolean restrictToNonNegative,
final double epsilon,
final int maxUlps,
final double cutOff) {
this.f = f;
this.constraints = normalizeConstraints(constraints);
this.restrictToNonNegative = restrictToNonNegative;
this.epsilon = epsilon;
this.maxUlps = maxUlps;
this.cutOff = cutOff;
this.numDecisionVariables = f.getCoefficients().getDimension() + (restrictToNonNegative ? 0 : 1);
this.numSlackVariables = getConstraintTypeCounts(Relationship.LEQ) +
getConstraintTypeCounts(Relationship.GEQ);
@ -516,7 +490,9 @@ class SimplexTableau implements Serializable {
for (int i = 0; i < getHeight(); i++) {
if (i != pivotRow) {
final double multiplier = getEntry(i, pivotCol);
subtractRow(i, pivotRow, multiplier);
if (multiplier != 0.0) {
subtractRow(i, pivotRow, multiplier);
}
}
}
@ -557,12 +533,7 @@ class SimplexTableau implements Serializable {
final double[] minuendRow = getRow(minuendRowIndex);
final double[] subtrahendRow = getRow(subtrahendRowIndex);
for (int i = 0; i < getWidth(); i++) {
double result = minuendRow[i] - subtrahendRow[i] * multiplier;
// cut-off values smaller than the cut-off threshold, otherwise may lead to numerical instabilities
if (result != 0.0 && FastMath.abs(result) < cutOff) {
result = 0.0;
}
minuendRow[i] = result;
minuendRow[i] -= subtrahendRow[i] * multiplier;
}
}

View File

@ -750,7 +750,7 @@ public class SimplexSolverTest {
@Test
public void testSolutionCallback() {
// re-use the problem from testcase for MATH-930
// it normally requires 113 iterations
// it normally requires 144 iterations
final List<LinearConstraint> constraints = createMath930Constraints();
double[] objFunctionCoeff = new double[33];
@ -777,9 +777,10 @@ public class SimplexSolverTest {
// 2. iteration limit allows to reach phase 2, but too low to find an optimal solution
try {
// we need to use a DeterministicLinearConstraintSet to always get the same behavior
solver.optimize(new MaxIter(112), f, new LinearConstraintSet(constraints),
solver.optimize(new MaxIter(140), f, new LinearConstraintSet(constraints),
GoalType.MINIMIZE, new NonNegativeConstraint(true), callback,
PivotSelectionRule.BLAND);
PivotSelectionRule.DANTZIG);
System.out.println(solver.getIterations());
Assert.fail("expected TooManyIterationsException");
} catch (TooManyIterationsException ex) {
// expected