[MATH-1079] Further improvements to SimplexSolver.
git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1552046 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
af858a6ca2
commit
881a4ee8db
|
@ -22,6 +22,7 @@ import java.util.List;
|
|||
import org.apache.commons.math3.exception.TooManyIterationsException;
|
||||
import org.apache.commons.math3.optim.OptimizationData;
|
||||
import org.apache.commons.math3.optim.PointValuePair;
|
||||
import org.apache.commons.math3.util.FastMath;
|
||||
import org.apache.commons.math3.util.Precision;
|
||||
|
||||
/**
|
||||
|
@ -49,7 +50,7 @@ import org.apache.commons.math3.util.Precision;
|
|||
* <ul>
|
||||
* <li>Algorithm convergence: 1e-6</li>
|
||||
* <li>Floating-point comparisons: 10 ulp</li>
|
||||
* <li>Cut-Off value: 1e-12</li>
|
||||
* <li>Cut-Off value: 1e-10</li>
|
||||
* </ul>
|
||||
* <p>
|
||||
* The cut-off value has been introduced to zero out very small numbers in the Simplex tableau,
|
||||
|
@ -66,7 +67,7 @@ public class SimplexSolver extends LinearOptimizer {
|
|||
static final int DEFAULT_ULPS = 10;
|
||||
|
||||
/** Default cut-off value. */
|
||||
static final double DEFAULT_CUT_OFF = 1e-12;
|
||||
static final double DEFAULT_CUT_OFF = 1e-10;
|
||||
|
||||
/** Default amount of error to accept for algorithm convergence. */
|
||||
private static final double DEFAULT_EPSILON = 1.0e-6;
|
||||
|
@ -249,7 +250,11 @@ public class SimplexSolver extends LinearOptimizer {
|
|||
final double rhs = tableau.getEntry(i, tableau.getWidth() - 1);
|
||||
final double entry = tableau.getEntry(i, col);
|
||||
|
||||
if (Precision.compareTo(entry, 0d, maxUlps) > 0) {
|
||||
// zero-out tableau entries that are too close to zero to avoid
|
||||
// numerical instabilities as these entries might be used as divisor
|
||||
if (FastMath.abs(entry) < cutOff) {
|
||||
tableau.setEntry(i, col, 0);
|
||||
} else if (Precision.compareTo(entry, 0d, maxUlps) > 0) {
|
||||
final double ratio = rhs / entry;
|
||||
// check if the entry is strictly equal to the current min ratio
|
||||
// do not use a ulp/epsilon check
|
||||
|
@ -371,8 +376,7 @@ public class SimplexSolver extends LinearOptimizer {
|
|||
getGoalType(),
|
||||
isRestrictedToNonNegative(),
|
||||
epsilon,
|
||||
maxUlps,
|
||||
cutOff);
|
||||
maxUlps);
|
||||
|
||||
solvePhase1(tableau);
|
||||
tableau.dropPhase1Objective();
|
||||
|
|
|
@ -33,7 +33,6 @@ import org.apache.commons.math3.linear.MatrixUtils;
|
|||
import org.apache.commons.math3.linear.RealVector;
|
||||
import org.apache.commons.math3.optim.nonlinear.scalar.GoalType;
|
||||
import org.apache.commons.math3.optim.PointValuePair;
|
||||
import org.apache.commons.math3.util.FastMath;
|
||||
import org.apache.commons.math3.util.Precision;
|
||||
|
||||
/**
|
||||
|
@ -99,9 +98,6 @@ class SimplexTableau implements Serializable {
|
|||
/** Amount of error to accept in floating point comparisons. */
|
||||
private final int maxUlps;
|
||||
|
||||
/** Cut-off value for entries in the tableau. */
|
||||
private final double cutOff;
|
||||
|
||||
/** Maps basic variables to row they are basic in. */
|
||||
private int[] basicVariables;
|
||||
|
||||
|
@ -123,8 +119,7 @@ class SimplexTableau implements Serializable {
|
|||
final GoalType goalType,
|
||||
final boolean restrictToNonNegative,
|
||||
final double epsilon) {
|
||||
this(f, constraints, goalType, restrictToNonNegative, epsilon,
|
||||
SimplexSolver.DEFAULT_ULPS, SimplexSolver.DEFAULT_CUT_OFF);
|
||||
this(f, constraints, goalType, restrictToNonNegative, epsilon, SimplexSolver.DEFAULT_ULPS);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -142,32 +137,11 @@ class SimplexTableau implements Serializable {
|
|||
final boolean restrictToNonNegative,
|
||||
final double epsilon,
|
||||
final int maxUlps) {
|
||||
this(f, constraints, goalType, restrictToNonNegative, epsilon, maxUlps, SimplexSolver.DEFAULT_CUT_OFF);
|
||||
}
|
||||
|
||||
/**
|
||||
* Build a tableau for a linear problem.
|
||||
* @param f linear objective function
|
||||
* @param constraints linear constraints
|
||||
* @param goalType type of optimization goal: either {@link GoalType#MAXIMIZE} or {@link GoalType#MINIMIZE}
|
||||
* @param restrictToNonNegative whether to restrict the variables to non-negative values
|
||||
* @param epsilon amount of error to accept when checking for optimality
|
||||
* @param maxUlps amount of error to accept in floating point comparisons
|
||||
* @param cutOff the cut-off value for tableau entries
|
||||
*/
|
||||
SimplexTableau(final LinearObjectiveFunction f,
|
||||
final Collection<LinearConstraint> constraints,
|
||||
final GoalType goalType,
|
||||
final boolean restrictToNonNegative,
|
||||
final double epsilon,
|
||||
final int maxUlps,
|
||||
final double cutOff) {
|
||||
this.f = f;
|
||||
this.constraints = normalizeConstraints(constraints);
|
||||
this.restrictToNonNegative = restrictToNonNegative;
|
||||
this.epsilon = epsilon;
|
||||
this.maxUlps = maxUlps;
|
||||
this.cutOff = cutOff;
|
||||
this.numDecisionVariables = f.getCoefficients().getDimension() + (restrictToNonNegative ? 0 : 1);
|
||||
this.numSlackVariables = getConstraintTypeCounts(Relationship.LEQ) +
|
||||
getConstraintTypeCounts(Relationship.GEQ);
|
||||
|
@ -516,7 +490,9 @@ class SimplexTableau implements Serializable {
|
|||
for (int i = 0; i < getHeight(); i++) {
|
||||
if (i != pivotRow) {
|
||||
final double multiplier = getEntry(i, pivotCol);
|
||||
subtractRow(i, pivotRow, multiplier);
|
||||
if (multiplier != 0.0) {
|
||||
subtractRow(i, pivotRow, multiplier);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -557,12 +533,7 @@ class SimplexTableau implements Serializable {
|
|||
final double[] minuendRow = getRow(minuendRowIndex);
|
||||
final double[] subtrahendRow = getRow(subtrahendRowIndex);
|
||||
for (int i = 0; i < getWidth(); i++) {
|
||||
double result = minuendRow[i] - subtrahendRow[i] * multiplier;
|
||||
// cut-off values smaller than the cut-off threshold, otherwise may lead to numerical instabilities
|
||||
if (result != 0.0 && FastMath.abs(result) < cutOff) {
|
||||
result = 0.0;
|
||||
}
|
||||
minuendRow[i] = result;
|
||||
minuendRow[i] -= subtrahendRow[i] * multiplier;
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -750,7 +750,7 @@ public class SimplexSolverTest {
|
|||
@Test
|
||||
public void testSolutionCallback() {
|
||||
// re-use the problem from testcase for MATH-930
|
||||
// it normally requires 113 iterations
|
||||
// it normally requires 144 iterations
|
||||
final List<LinearConstraint> constraints = createMath930Constraints();
|
||||
|
||||
double[] objFunctionCoeff = new double[33];
|
||||
|
@ -777,9 +777,10 @@ public class SimplexSolverTest {
|
|||
// 2. iteration limit allows to reach phase 2, but too low to find an optimal solution
|
||||
try {
|
||||
// we need to use a DeterministicLinearConstraintSet to always get the same behavior
|
||||
solver.optimize(new MaxIter(112), f, new LinearConstraintSet(constraints),
|
||||
solver.optimize(new MaxIter(140), f, new LinearConstraintSet(constraints),
|
||||
GoalType.MINIMIZE, new NonNegativeConstraint(true), callback,
|
||||
PivotSelectionRule.BLAND);
|
||||
PivotSelectionRule.DANTZIG);
|
||||
System.out.println(solver.getIterations());
|
||||
Assert.fail("expected TooManyIterationsException");
|
||||
} catch (TooManyIterationsException ex) {
|
||||
// expected
|
||||
|
|
Loading…
Reference in New Issue