diff --git a/src/mantissa/src/org/spaceroots/mantissa/fitting/HarmonicFitter.java b/src/mantissa/src/org/spaceroots/mantissa/fitting/HarmonicFitter.java
index 9c98392ad..75cbe9ff0 100644
--- a/src/mantissa/src/org/spaceroots/mantissa/fitting/HarmonicFitter.java
+++ b/src/mantissa/src/org/spaceroots/mantissa/fitting/HarmonicFitter.java
@@ -73,65 +73,6 @@ public class HarmonicFitter
firstGuessNeeded = false;
}
- /**
- * Simple constructor.
- * @param maxIterations maximum number of iterations allowed
- * @param convergence criterion threshold below which we do not need
- * to improve the criterion anymore
- * @param steadyStateThreshold steady state detection threshold, the
- * problem has reached a steady state (read converged) if
- * Math.abs (Jn - Jn-1) < Jn * convergence
, where
- * Jn
and Jn-1
are the current and
- * preceding criterion value (square sum of the weighted residuals
- * of considered measurements).
- * @param epsilon threshold under which the matrix of the linearized
- * problem is considered singular (see {@link
- * org.spaceroots.mantissa.linalg.SquareMatrix#solve(
- * org.spaceroots.mantissa.linalg.Matrix,double) SquareMatrix.solve}).
- * @deprecated replaced by {@link #HarmonicFitter(Estimator)}
- * as of version 7.0
- */
- public HarmonicFitter(int maxIterations, double convergence,
- double steadyStateThreshold, double epsilon) {
- this(new GaussNewtonEstimator(maxIterations, convergence,
- steadyStateThreshold, epsilon));
- }
-
- /**
- * Simple constructor.
-
- *
This constructor can be used when a first estimate of the - * coefficients is already known.
- - * @param coefficients first estimate of the coefficients. - * A reference to this array is hold by the newly created - * object. Its elements will be adjusted during the fitting process - * and they will be set to the adjusted coefficients at the end. - * @param maxIterations maximum number of iterations allowed - * @param convergence criterion threshold below which we do not need - * to improve the criterion anymore - * @param steadyStateThreshold steady state detection threshold, the - * problem has reached a steady state (read converged) if - *Math.abs (Jn - Jn-1) < Jn * convergence
, where
- * Jn
and Jn-1
are the current and
- * preceding criterion value (square sum of the weighted residuals
- * of considered measurements).
- * @param epsilon threshold under which the matrix of the linearized
- * problem is considered singular (see {@link
- * org.spaceroots.mantissa.linalg.SquareMatrix#solve(
- * org.spaceroots.mantissa.linalg.Matrix,double) SquareMatrix.solve}).
-
- * @deprecated replaced by {@link #HarmonicFitter(EstimatedParameter[],
- * Estimator)} as of version 7.0
- */
- public HarmonicFitter(EstimatedParameter[] coefficients,
- int maxIterations, double convergence,
- double steadyStateThreshold, double epsilon) {
- this(coefficients,
- new GaussNewtonEstimator(maxIterations, convergence,
- steadyStateThreshold, epsilon));
- }
-
public double[] fit()
throws EstimationException {
if (firstGuessNeeded) {
diff --git a/src/mantissa/src/org/spaceroots/mantissa/fitting/PolynomialFitter.java b/src/mantissa/src/org/spaceroots/mantissa/fitting/PolynomialFitter.java
index 4178a6af9..05c156fd6 100644
--- a/src/mantissa/src/org/spaceroots/mantissa/fitting/PolynomialFitter.java
+++ b/src/mantissa/src/org/spaceroots/mantissa/fitting/PolynomialFitter.java
@@ -78,78 +78,6 @@ public class PolynomialFitter
super(coefficients, estimator);
}
- /** Simple constructor.
-
- * The polynomial fitter built this way are complete polynoms,
- * ie. a n-degree polynom has n+1 coefficients. In order to build
- * fitter for sparse polynoms (for example a x^20 - b
- * x^30
, on should first build the coefficients array and
- * provide it to {@link
- * #PolynomialFitter(PolynomialCoefficient[], int, double, double,
- * double)}.
Math.abs (Jn - Jn-1) < Jn * convergence
, where
- * Jn
and Jn-1
are the current and
- * preceding criterion value (square sum of the weighted residuals
- * of considered measurements).
- * @param epsilon threshold under which the matrix of the linearized
- * problem is considered singular (see {@link
- * org.spaceroots.mantissa.linalg.SquareMatrix#solve(
- * org.spaceroots.mantissa.linalg.Matrix,double) SquareMatrix.solve}).
-
- * @deprecated replaced by {@link #PolynomialFitter(int,Estimator)}
- * as of version 7.0
- */
- public PolynomialFitter(int degree,
- int maxIterations, double convergence,
- double steadyStateThreshold, double epsilon) {
- this(degree,
- new GaussNewtonEstimator(maxIterations, steadyStateThreshold,
- convergence, epsilon));
- }
-
- /** Simple constructor.
-
- * This constructor can be used either when a first estimate of
- * the coefficients is already known (which is of little interest
- * because the fit cost is the same whether a first guess is known or
- * not) or when one needs to handle sparse polynoms like a
- * x^20 - b x^30
.
Math.abs (Jn - Jn-1) < Jn * convergence
, where
- * Jn
and Jn-1
are the current and
- * preceding criterion value (square sum of the weighted residuals
- * of considered measurements).
- * @param epsilon threshold under which the matrix of the linearized
- * problem is considered singular (see {@link
- * org.spaceroots.mantissa.linalg.SquareMatrix#solve(
- * org.spaceroots.mantissa.linalg.Matrix,double) SquareMatrix.solve}).
-
- * @deprecated replaced by {@link #PolynomialFitter(PolynomialCoefficient[],
- * Estimator)} as of version 7.0
- */
- public PolynomialFitter(PolynomialCoefficient[] coefficients,
- int maxIterations, double convergence,
- double steadyStateThreshold, double epsilon) {
- this(coefficients,
- new GaussNewtonEstimator(maxIterations, steadyStateThreshold,
- convergence, epsilon));
- }
-
/** Get the value of the function at x according to the current parameters value.
* @param x abscissa at which the theoretical value is requested
* @return theoretical value at x