added a PolynomialsUtils class providing factory methods for
Chebyshev, Hermite, Laguerre and Legendre polynomials the code was extracted from mantissa and modified git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@739840 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
6a965532e6
commit
8ce2128585
|
@ -0,0 +1,280 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
package org.apache.commons.math.analysis.polynomials;
|
||||
|
||||
import java.util.ArrayList;
|
||||
|
||||
import org.apache.commons.math.fraction.Fraction;
|
||||
|
||||
/**
|
||||
* A collection of static methods that operate on or return polynomials.
|
||||
*
|
||||
* @version $Revision$ $Date$
|
||||
* @since 2.0
|
||||
*/
|
||||
public class PolynomialsUtils {
|
||||
|
||||
/** Coefficients for Chebyshev polynomials. */
|
||||
private static final ArrayList<Fraction> CHEBYSHEV_COEFFICIENTS;
|
||||
|
||||
/** Coefficients for Hermite polynomials. */
|
||||
private static final ArrayList<Fraction> HERMITE_COEFFICIENTS;
|
||||
|
||||
/** Coefficients for Laguerre polynomials. */
|
||||
private static final ArrayList<Fraction> LAGUERRE_COEFFICIENTS;
|
||||
|
||||
/** Coefficients for Legendre polynomials. */
|
||||
private static final ArrayList<Fraction> LEGENDRE_COEFFICIENTS;
|
||||
|
||||
static {
|
||||
|
||||
// initialize recurrence for Chebyshev polynomials
|
||||
// T0(X) = 1, T1(X) = 0 + 1 * X
|
||||
CHEBYSHEV_COEFFICIENTS = new ArrayList<Fraction>();
|
||||
CHEBYSHEV_COEFFICIENTS.add(Fraction.ONE);
|
||||
CHEBYSHEV_COEFFICIENTS.add(Fraction.ZERO);
|
||||
CHEBYSHEV_COEFFICIENTS.add(Fraction.ONE);
|
||||
|
||||
// initialize recurrence for Hermite polynomials
|
||||
// H0(X) = 1, H1(X) = 0 + 2 * X
|
||||
HERMITE_COEFFICIENTS = new ArrayList<Fraction>();
|
||||
HERMITE_COEFFICIENTS.add(Fraction.ONE);
|
||||
HERMITE_COEFFICIENTS.add(Fraction.ZERO);
|
||||
HERMITE_COEFFICIENTS.add(Fraction.TWO);
|
||||
|
||||
// initialize recurrence for Laguerre polynomials
|
||||
// L0(X) = 1, L1(X) = 1 - 1 * X
|
||||
LAGUERRE_COEFFICIENTS = new ArrayList<Fraction>();
|
||||
LAGUERRE_COEFFICIENTS.add(Fraction.ONE);
|
||||
LAGUERRE_COEFFICIENTS.add(Fraction.ONE);
|
||||
LAGUERRE_COEFFICIENTS.add(Fraction.MINUS_ONE);
|
||||
|
||||
// initialize recurrence for Legendre polynomials
|
||||
// P0(X) = 1, P1(X) = 0 + 1 * X
|
||||
LEGENDRE_COEFFICIENTS = new ArrayList<Fraction>();
|
||||
LEGENDRE_COEFFICIENTS.add(Fraction.ONE);
|
||||
LEGENDRE_COEFFICIENTS.add(Fraction.ZERO);
|
||||
LEGENDRE_COEFFICIENTS.add(Fraction.ONE);
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Private constructor, to prevent instantiation.
|
||||
*/
|
||||
private PolynomialsUtils() {
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a Chebyshev polynomial of the first kind.
|
||||
* <p><a href="http://mathworld.wolfram.com/ChebyshevPolynomialoftheFirstKind.html">Chebyshev
|
||||
* polynomials of the first kind</a> are orthogonal polynomials.
|
||||
* They can be defined by the following recurrence relations:
|
||||
* <pre>
|
||||
* T<sub>0</sub>(X) = 1
|
||||
* T<sub>1</sub>(X) = X
|
||||
* T<sub>k+1</sub>(X) = 2X T<sub>k</sub>(X) - T<sub>k-1</sub>(X)
|
||||
* </pre></p>
|
||||
* @param degree degree of the polynomial
|
||||
* @return Chebyshev polynomial of specified degree
|
||||
*/
|
||||
public static PolynomialFunction createChebyshevPolynomial(final int degree) {
|
||||
return buildPolynomial(degree, CHEBYSHEV_COEFFICIENTS,
|
||||
new RecurrenceCoefficientsGenerator() {
|
||||
private final Fraction[] coeffs = { Fraction.ZERO, Fraction.TWO, Fraction.ONE};
|
||||
/** {@inheritDoc} */
|
||||
public Fraction[] generate(int k) {
|
||||
return coeffs;
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a Hermite polynomial.
|
||||
* <p><a href="http://mathworld.wolfram.com/HermitePolynomial.html">Hermite
|
||||
* polynomials</a> are orthogonal polynomials.
|
||||
* They can be defined by the following recurrence relations:
|
||||
* <pre>
|
||||
* H<sub>0</sub>(X) = 1
|
||||
* H<sub>1</sub>(X) = 2X
|
||||
* H<sub>k+1</sub>(X) = 2X H<sub>k</sub>(X) - 2k H<sub>k-1</sub>(X)
|
||||
* </pre></p>
|
||||
|
||||
* @param degree degree of the polynomial
|
||||
* @return Hermite polynomial of specified degree
|
||||
*/
|
||||
public static PolynomialFunction createHermitePolynomial(final int degree) {
|
||||
return buildPolynomial(degree, HERMITE_COEFFICIENTS,
|
||||
new RecurrenceCoefficientsGenerator() {
|
||||
/** {@inheritDoc} */
|
||||
public Fraction[] generate(int k) {
|
||||
return new Fraction[] {
|
||||
Fraction.ZERO,
|
||||
Fraction.TWO,
|
||||
new Fraction(2 * k, 1)};
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a Laguerre polynomial.
|
||||
* <p><a href="http://mathworld.wolfram.com/LaguerrePolynomial.html">Laguerre
|
||||
* polynomials</a> are orthogonal polynomials.
|
||||
* They can be defined by the following recurrence relations:
|
||||
* <pre>
|
||||
* L<sub>0</sub>(X) = 1
|
||||
* L<sub>1</sub>(X) = 1 - X
|
||||
* (k+1) L<sub>k+1</sub>(X) = (2k + 1 - X) L<sub>k</sub>(X) - k L<sub>k-1</sub>(X)
|
||||
* </pre></p>
|
||||
* @param degree degree of the polynomial
|
||||
* @return Laguerre polynomial of specified degree
|
||||
*/
|
||||
public static PolynomialFunction createLaguerrePolynomial(final int degree) {
|
||||
return buildPolynomial(degree, LAGUERRE_COEFFICIENTS,
|
||||
new RecurrenceCoefficientsGenerator() {
|
||||
/** {@inheritDoc} */
|
||||
public Fraction[] generate(int k) {
|
||||
final int kP1 = k + 1;
|
||||
return new Fraction[] {
|
||||
new Fraction(2 * k + 1, kP1),
|
||||
new Fraction(-1, kP1),
|
||||
new Fraction(k, kP1)};
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a Legendre polynomial.
|
||||
* <p><a href="http://mathworld.wolfram.com/LegendrePolynomial.html">Legendre
|
||||
* polynomials</a> are orthogonal polynomials.
|
||||
* They can be defined by the following recurrence relations:
|
||||
* <pre>
|
||||
* P<sub>0</sub>(X) = 1
|
||||
* P<sub>1</sub>(X) = X
|
||||
* (k+1) P<sub>k+1</sub>(X) = (2k+1) X P<sub>k</sub>(X) - k P<sub>k-1</sub>(X)
|
||||
* </pre></p>
|
||||
* @param degree degree of the polynomial
|
||||
* @return Legendre polynomial of specified degree
|
||||
*/
|
||||
public static PolynomialFunction createLegendrePolynomial(final int degree) {
|
||||
return buildPolynomial(degree, LEGENDRE_COEFFICIENTS,
|
||||
new RecurrenceCoefficientsGenerator() {
|
||||
/** {@inheritDoc} */
|
||||
public Fraction[] generate(int k) {
|
||||
final int kP1 = k + 1;
|
||||
return new Fraction[] {
|
||||
Fraction.ZERO,
|
||||
new Fraction(k + kP1, kP1),
|
||||
new Fraction(k, kP1)};
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
/** Get the coefficients array for a given degree.
|
||||
* @param degree degree of the polynomial
|
||||
* @param coefficients list where the computed coefficients are stored
|
||||
* @param generator recurrence coefficients generator
|
||||
* @return coefficients array
|
||||
*/
|
||||
private static PolynomialFunction buildPolynomial(final int degree,
|
||||
final ArrayList<Fraction> coefficients,
|
||||
final RecurrenceCoefficientsGenerator generator) {
|
||||
|
||||
final int maxDegree = (int) Math.floor(Math.sqrt(2 * coefficients.size())) - 1;
|
||||
synchronized (PolynomialsUtils.class) {
|
||||
if (degree > maxDegree) {
|
||||
computeUpToDegree(degree, maxDegree, generator, coefficients);
|
||||
}
|
||||
}
|
||||
|
||||
// coefficient for polynomial 0 is l [0]
|
||||
// coefficients for polynomial 1 are l [1] ... l [2] (degrees 0 ... 1)
|
||||
// coefficients for polynomial 2 are l [3] ... l [5] (degrees 0 ... 2)
|
||||
// coefficients for polynomial 3 are l [6] ... l [9] (degrees 0 ... 3)
|
||||
// coefficients for polynomial 4 are l[10] ... l[14] (degrees 0 ... 4)
|
||||
// coefficients for polynomial 5 are l[15] ... l[20] (degrees 0 ... 5)
|
||||
// coefficients for polynomial 6 are l[21] ... l[27] (degrees 0 ... 6)
|
||||
// ...
|
||||
final int start = degree * (degree + 1) / 2;
|
||||
|
||||
final double[] a = new double[degree + 1];
|
||||
for (int i = 0; i <= degree; ++i) {
|
||||
a[i] = coefficients.get(start + i).doubleValue();
|
||||
}
|
||||
|
||||
// build the polynomial
|
||||
return new PolynomialFunction(a);
|
||||
|
||||
}
|
||||
|
||||
/** Compute polynomial coefficients up to a given degree.
|
||||
* @param degree maximal degree
|
||||
* @param maxDegree current maximal degree
|
||||
* @param generator recurrence coefficients generator
|
||||
* @param coefficients list where the computed coefficients should be appended
|
||||
*/
|
||||
private static void computeUpToDegree(final int degree, final int maxDegree,
|
||||
final RecurrenceCoefficientsGenerator generator,
|
||||
final ArrayList<Fraction> coefficients) {
|
||||
|
||||
int startK = (maxDegree - 1) * maxDegree / 2;
|
||||
for (int k = maxDegree; k < degree; ++k) {
|
||||
|
||||
// start indices of two previous polynomials Pk(X) and Pk-1(X)
|
||||
int startKm1 = startK;
|
||||
startK += k;
|
||||
|
||||
// Pk+1(X) = (a[0] + a[1] X) Pk(X) - a[2] Pk-1(X)
|
||||
Fraction[] ai = generator.generate(k);
|
||||
|
||||
Fraction ck = coefficients.get(startK);
|
||||
Fraction ckm1 = coefficients.get(startKm1);
|
||||
|
||||
// degree 0 coefficient
|
||||
coefficients.add(ck.multiply(ai[0]).subtract(ckm1.multiply(ai[2])));
|
||||
|
||||
// degree 1 to degree k-1 coefficients
|
||||
for (int i = 1; i < k; ++i) {
|
||||
final Fraction ckPrev = ck;
|
||||
ck = coefficients.get(startK + i);
|
||||
ckm1 = coefficients.get(startKm1 + i);
|
||||
coefficients.add(ck.multiply(ai[0]).add(ckPrev.multiply(ai[1])).subtract(ckm1.multiply(ai[2])));
|
||||
}
|
||||
|
||||
// degree k coefficient
|
||||
final Fraction ckPrev = ck;
|
||||
ck = coefficients.get(startK + k);
|
||||
coefficients.add(ck.multiply(ai[0]).add(ckPrev.multiply(ai[1])));
|
||||
|
||||
// degree k+1 coefficient
|
||||
coefficients.add(ck.multiply(ai[1]));
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/** Interface for recurrence coefficients generation. */
|
||||
private static interface RecurrenceCoefficientsGenerator {
|
||||
/**
|
||||
* Generate recurrence coefficients.
|
||||
* @param k highest degree of the polynomials used in the recurrence
|
||||
* @return an array of three coefficients such that
|
||||
* P<sub>k+1</sub>(X) = (a[0] + a[1] X) P<sub>k</sub>(X) - a[2] P<sub>k-1</sub>(X)
|
||||
*/
|
||||
Fraction[] generate(int k);
|
||||
}
|
||||
|
||||
}
|
|
@ -29,14 +29,20 @@ import org.apache.commons.math.util.MathUtils;
|
|||
*/
|
||||
public class Fraction extends Number implements Comparable<Fraction> {
|
||||
|
||||
/** A fraction representing "2 / 1". */
|
||||
public static final Fraction TWO = new Fraction(2, 1);
|
||||
|
||||
/** A fraction representing "1 / 1". */
|
||||
public static final Fraction ONE = new Fraction(1, 1);
|
||||
|
||||
/** A fraction representing "0 / 1". */
|
||||
public static final Fraction ZERO = new Fraction(0, 1);
|
||||
|
||||
/** A fraction representing "-1 / 1". */
|
||||
public static final Fraction MINUS_ONE = new Fraction(-1, 1);
|
||||
|
||||
/** Serializable version identifier */
|
||||
private static final long serialVersionUID = -5731055832688548463L;
|
||||
private static final long serialVersionUID = 3071409609509774764L;
|
||||
|
||||
/** The denominator. */
|
||||
private final int denominator;
|
||||
|
@ -197,7 +203,7 @@ public class Fraction extends Number implements Comparable<Fraction> {
|
|||
* reduced to lowest terms.
|
||||
* @param num the numerator.
|
||||
* @param den the denominator.
|
||||
* @throws ArithmeticException if the denomiator is <code>zero</code>
|
||||
* @throws ArithmeticException if the denominator is <code>zero</code>
|
||||
*/
|
||||
public Fraction(int num, int den) {
|
||||
super();
|
||||
|
|
|
@ -1,70 +0,0 @@
|
|||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
package org.spaceroots.mantissa.algebra;
|
||||
|
||||
/**
|
||||
* This class implements Chebyshev polynomials.
|
||||
|
||||
* <p>Chebyshev polynomials can be defined by the following recurrence
|
||||
* relations:
|
||||
* <pre>
|
||||
* T<sub>0</sub>(X) = 1
|
||||
* T<sub>1</sub>(X) = X
|
||||
* T<sub>k+1</sub>(X) = 2X T<sub>k</sub>(X) - T<sub>k-1</sub>(X)
|
||||
* </pre></p>
|
||||
|
||||
* @version $Id$
|
||||
* @author L. Maisonobe
|
||||
|
||||
*/
|
||||
|
||||
public class Chebyshev
|
||||
extends OrthogonalPolynomial {
|
||||
|
||||
/** Generator for the Chebyshev polynomials. */
|
||||
private static final CoefficientsGenerator generator =
|
||||
new CoefficientsGenerator(new RationalNumber(1l),
|
||||
new RationalNumber(0l),
|
||||
new RationalNumber(1l)) {
|
||||
public void setRecurrenceCoefficients(int k) {
|
||||
// the recurrence relation is
|
||||
// Tk+1(X) = 2X Tk(X) - Tk-1(X)
|
||||
setRecurrenceCoefficients(new RationalNumber(0l),
|
||||
new RationalNumber(2l),
|
||||
new RationalNumber(1l));
|
||||
}
|
||||
};
|
||||
|
||||
/** Simple constructor.
|
||||
* Build a degree 0 Chebyshev polynomial
|
||||
*/
|
||||
public Chebyshev() {
|
||||
super(0, generator);
|
||||
}
|
||||
|
||||
/** Simple constructor.
|
||||
* Build a degree d Chebyshev polynomial
|
||||
* @param degree degree of the polynomial
|
||||
*/
|
||||
public Chebyshev(int degree) {
|
||||
super(degree, generator);
|
||||
}
|
||||
|
||||
private static final long serialVersionUID = -893367988717182601L;
|
||||
|
||||
}
|
|
@ -1,157 +0,0 @@
|
|||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
package org.spaceroots.mantissa.algebra;
|
||||
|
||||
import java.util.ArrayList;
|
||||
|
||||
public abstract class CoefficientsGenerator {
|
||||
|
||||
/** Build a generator with coefficients for two polynomials.
|
||||
* <p>The first polynomial must be a degree 0 polynomial
|
||||
* P<sub>0</sub>(X)=a<sub>0,0</sub> and the second polynomial
|
||||
* must be a degree 1 polynomial P<sub>1</sub>(X)=a<sub>0,1</sub>
|
||||
* +a<sub>1,1</sub>X</p>
|
||||
* @param a00 constant term for the degree 0 polynomial
|
||||
* @param a01 constant term for the degree 1 polynomial
|
||||
* @param a11 X term for the degree 1 polynomial
|
||||
*/
|
||||
protected CoefficientsGenerator(RationalNumber a00,
|
||||
RationalNumber a01, RationalNumber a11) {
|
||||
l = new ArrayList();
|
||||
l.add(a00);
|
||||
l.add(a01);
|
||||
l.add(a11);
|
||||
maxDegree = 1;
|
||||
}
|
||||
|
||||
/** Set the recurrence coefficients.
|
||||
* @param b2k b<sub>2,k</sub> coefficient (b<sub>2,k</sub> = a<sub>2,k</sub> / a<sub>1,k</sub>)
|
||||
* @param b3k b<sub>3,k</sub> coefficient (b<sub>3,k</sub> = a<sub>3,k</sub> / a<sub>1,k</sub>)
|
||||
* @param b4k b<sub>4,k</sub> coefficient (b<sub>4,k</sub> = a<sub>4,k</sub> / a<sub>1,k</sub>)
|
||||
*/
|
||||
protected void setRecurrenceCoefficients(RationalNumber b2k,
|
||||
RationalNumber b3k,
|
||||
RationalNumber b4k) {
|
||||
this.b2k = b2k;
|
||||
this.b3k = b3k;
|
||||
this.b4k = b4k;
|
||||
}
|
||||
|
||||
/** Set the recurrence coefficients.
|
||||
* The recurrence relation is
|
||||
* <pre>a<sub>1,k</sub> O<sub>k+1</sub>(X) =(a<sub>2,k</sub> + a<sub>3,k</sub> X) O<sub>k</sub>(X) - a<sub>4,k</sub> O<sub>k-1</sub>(X)</pre>
|
||||
* the method must call {@link #setRecurrenceCoefficients(RationalNumber,
|
||||
* RationalNumber, RationalNumber)} to provide the coefficients
|
||||
* @param k index of the current step
|
||||
*/
|
||||
protected abstract void setRecurrenceCoefficients(int k);
|
||||
|
||||
/** Compute all the polynomial coefficients up to a given degree.
|
||||
* @param degree maximal degree
|
||||
*/
|
||||
private void computeUpToDegree(int degree) {
|
||||
|
||||
int startK = (maxDegree - 1) * maxDegree / 2;
|
||||
for (int k = maxDegree; k < degree; ++k) {
|
||||
|
||||
// start indices of two previous polynomials Ok(X) and Ok-1(X)
|
||||
int startKm1 = startK;
|
||||
startK += k;
|
||||
|
||||
// a1k Ok+1(X) = (a2k + a3k X) Ok(X) - a4k Ok-1(X)
|
||||
// we use bik = aik/a1k
|
||||
setRecurrenceCoefficients(k);
|
||||
|
||||
RationalNumber ckPrev = null;
|
||||
RationalNumber ck = (RationalNumber) l.get(startK);
|
||||
RationalNumber ckm1 = (RationalNumber) l.get(startKm1);
|
||||
|
||||
// degree 0 coefficient
|
||||
l.add(ck.multiply(b2k).subtract(ckm1.multiply(b4k)));
|
||||
|
||||
// degree 1 to degree k-1 coefficients
|
||||
for (int i = 1; i < k; ++i) {
|
||||
ckPrev = ck;
|
||||
ck = (RationalNumber) l.get(startK + i);
|
||||
ckm1 = (RationalNumber) l.get(startKm1 + i);
|
||||
l.add(ck.multiply(b2k).add(ckPrev.multiply(b3k)).subtract(ckm1.multiply(b4k)));
|
||||
}
|
||||
|
||||
// degree k coefficient
|
||||
ckPrev = ck;
|
||||
ck = (RationalNumber) l.get(startK + k);
|
||||
l.add(ck.multiply(b2k).add(ckPrev.multiply(b3k)));
|
||||
|
||||
// degree k+1 coefficient
|
||||
l.add(ck.multiply(b3k));
|
||||
|
||||
}
|
||||
|
||||
maxDegree = degree;
|
||||
|
||||
}
|
||||
|
||||
/** Get the coefficients array for a given degree.
|
||||
* @param degree degree of the polynomial
|
||||
* @return coefficients array
|
||||
*/
|
||||
public RationalNumber[] getCoefficients(int degree) {
|
||||
|
||||
synchronized (this) {
|
||||
if (degree > maxDegree) {
|
||||
computeUpToDegree(degree);
|
||||
}
|
||||
}
|
||||
|
||||
// coefficient for polynomial 0 is l [0]
|
||||
// coefficients for polynomial 1 are l [1] ... l [2] (degrees 0 ... 1)
|
||||
// coefficients for polynomial 2 are l [3] ... l [5] (degrees 0 ... 2)
|
||||
// coefficients for polynomial 3 are l [6] ... l [9] (degrees 0 ... 3)
|
||||
// coefficients for polynomial 4 are l[10] ... l[14] (degrees 0 ... 4)
|
||||
// coefficients for polynomial 5 are l[15] ... l[20] (degrees 0 ... 5)
|
||||
// coefficients for polynomial 6 are l[21] ... l[27] (degrees 0 ... 6)
|
||||
// ...
|
||||
int start = degree * (degree + 1) / 2;
|
||||
|
||||
RationalNumber[] a = new RationalNumber[degree + 1];
|
||||
for (int i = 0; i <= degree; ++i) {
|
||||
a[i] = (RationalNumber) l.get(start + i);
|
||||
}
|
||||
|
||||
return a;
|
||||
|
||||
}
|
||||
|
||||
/** List holding the coefficients of the polynomials computed so far. */
|
||||
private ArrayList l;
|
||||
|
||||
/** Maximal degree of the polynomials computed so far. */
|
||||
private int maxDegree;
|
||||
|
||||
/** b<sub>2,k</sub> coefficient to initialize
|
||||
* (b<sub>2,k</sub> = a<sub>2,k</sub> / a<sub>1,k</sub>). */
|
||||
private RationalNumber b2k;
|
||||
|
||||
/** b<sub>3,k</sub> coefficient to initialize
|
||||
* (b<sub>3,k</sub> = a<sub>3,k</sub> / a<sub>1,k</sub>). */
|
||||
private RationalNumber b3k;
|
||||
|
||||
/** b<sub>4,k</sub> coefficient to initialize
|
||||
* (b<sub>4,k</sub> = a<sub>4,k</sub> / a<sub>1,k</sub>). */
|
||||
private RationalNumber b4k;
|
||||
|
||||
}
|
|
@ -1,69 +0,0 @@
|
|||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
package org.spaceroots.mantissa.algebra;
|
||||
|
||||
/**
|
||||
* This class implements Hermite polynomials.
|
||||
|
||||
* <p>Hermite polynomials can be defined by the following recurrence
|
||||
* relations:
|
||||
* <pre>
|
||||
* H<sub>0</sub>(X) = 1
|
||||
* H<sub>1</sub>(X) = 2X
|
||||
* H<sub>k+1</sub>(X) = 2X H<sub>k</sub>(X) - 2k H<sub>k-1</sub>(X)
|
||||
* </pre></p>
|
||||
|
||||
* @version $Id$
|
||||
* @author L. Maisonobe
|
||||
|
||||
*/
|
||||
public class Hermite
|
||||
extends OrthogonalPolynomial {
|
||||
|
||||
/** Generator for the Hermite polynomials. */
|
||||
private static final CoefficientsGenerator generator =
|
||||
new CoefficientsGenerator(new RationalNumber(1l),
|
||||
new RationalNumber(0l),
|
||||
new RationalNumber(2l)) {
|
||||
public void setRecurrenceCoefficients(int k) {
|
||||
// the recurrence relation is
|
||||
// Hk+1(X) = 2X Hk(X) - 2k Hk-1(X)
|
||||
setRecurrenceCoefficients(new RationalNumber(0l),
|
||||
new RationalNumber(2l),
|
||||
new RationalNumber(k * 2l));
|
||||
}
|
||||
};
|
||||
|
||||
/** Simple constructor.
|
||||
* Build a degree 0 Hermite polynomial
|
||||
*/
|
||||
public Hermite() {
|
||||
super(0, generator);
|
||||
}
|
||||
|
||||
/** Simple constructor.
|
||||
* Build a degree d Hermite polynomial
|
||||
* @param degree degree of the polynomial
|
||||
*/
|
||||
public Hermite(int degree) {
|
||||
super(degree, generator);
|
||||
}
|
||||
|
||||
private static final long serialVersionUID = 7910082423686662133L;
|
||||
|
||||
}
|
|
@ -1,70 +0,0 @@
|
|||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
package org.spaceroots.mantissa.algebra;
|
||||
|
||||
/**
|
||||
* This class implements Laguerre polynomials.
|
||||
|
||||
* <p>Laguerre polynomials can be defined by the following recurrence
|
||||
* relations:
|
||||
* <pre>
|
||||
* L<sub>0</sub>(X) = 1
|
||||
* L<sub>1</sub>(X) = 1 - X
|
||||
* (k+1) L<sub>k+1</sub>(X) = (2k + 1 - X) L<sub>k</sub>(X) - k L<sub>k-1</sub>(X)
|
||||
* </pre></p>
|
||||
|
||||
* @version $Id$
|
||||
* @author L. Maisonobe
|
||||
|
||||
*/
|
||||
public class Laguerre
|
||||
extends OrthogonalPolynomial {
|
||||
|
||||
/** Generator for the Laguerre polynomials. */
|
||||
private static final CoefficientsGenerator generator =
|
||||
new CoefficientsGenerator(new RationalNumber(1l),
|
||||
new RationalNumber(1l),
|
||||
new RationalNumber(-1l)) {
|
||||
public void setRecurrenceCoefficients(int k) {
|
||||
// the recurrence relation is
|
||||
// (k+1) Lk+1(X) = (2k + 1 - X) Lk(X) - k Lk-1(X)
|
||||
long kP1 = k + 1;
|
||||
setRecurrenceCoefficients(new RationalNumber(2 * k + 1, kP1),
|
||||
new RationalNumber(-1l, kP1),
|
||||
new RationalNumber(k, kP1));
|
||||
}
|
||||
};
|
||||
|
||||
/** Simple constructor.
|
||||
* Build a degree 0 Laguerre polynomial
|
||||
*/
|
||||
public Laguerre() {
|
||||
super(0, generator);
|
||||
}
|
||||
|
||||
/** Simple constructor.
|
||||
* Build a degree d Laguerre polynomial
|
||||
* @param degree degree of the polynomial
|
||||
*/
|
||||
public Laguerre(int degree) {
|
||||
super(degree, generator);
|
||||
}
|
||||
|
||||
private static final long serialVersionUID = 3213856667479179710L;
|
||||
|
||||
}
|
|
@ -1,71 +0,0 @@
|
|||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
package org.spaceroots.mantissa.algebra;
|
||||
|
||||
/**
|
||||
* This class implements Legendre polynomials.
|
||||
|
||||
* <p>Legendre polynomials can be defined by the following recurrence
|
||||
* relations:
|
||||
* <pre>
|
||||
* P<sub>0</sub>(X) = 1
|
||||
* P<sub>1</sub>(X) = X
|
||||
* (k+1) P<sub>k+1</sub>(X) = (2k+1) X P<sub>k</sub>(X) - k P<sub>k-1</sub>(X)
|
||||
* </pre></p>
|
||||
|
||||
* @version $Id$
|
||||
* @author L. Maisonobe
|
||||
|
||||
*/
|
||||
|
||||
public class Legendre
|
||||
extends OrthogonalPolynomial {
|
||||
|
||||
/** Generator for the Legendre polynomials. */
|
||||
private static final CoefficientsGenerator generator =
|
||||
new CoefficientsGenerator(new RationalNumber(1l),
|
||||
new RationalNumber(0l),
|
||||
new RationalNumber(1l)) {
|
||||
public void setRecurrenceCoefficients(int k) {
|
||||
// the recurrence relation is
|
||||
// (k+1) Pk+1(X) = (2k+1) X Pk(X) - k Pk-1(X)
|
||||
long kP1 = k + 1;
|
||||
setRecurrenceCoefficients(new RationalNumber(0l),
|
||||
new RationalNumber(2 * k + 1, kP1),
|
||||
new RationalNumber(k, kP1));
|
||||
}
|
||||
};
|
||||
|
||||
/** Simple constructor.
|
||||
* Build a degree 0 Legendre polynomial
|
||||
*/
|
||||
public Legendre() {
|
||||
super(0, generator);
|
||||
}
|
||||
|
||||
/** Simple constructor.
|
||||
* Build a degree d Legendre polynomial
|
||||
* @param degree degree of the polynomial
|
||||
*/
|
||||
public Legendre(int degree) {
|
||||
super(degree, generator);
|
||||
}
|
||||
|
||||
private static final long serialVersionUID = 4014485393845978429L;
|
||||
|
||||
}
|
|
@ -1,49 +0,0 @@
|
|||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
package org.spaceroots.mantissa.algebra;
|
||||
|
||||
/**
|
||||
* This class is the base class for orthogonal polynomials.
|
||||
|
||||
* <p>Orthogonal polynomials can be defined by recurrence relations like:
|
||||
* <pre>
|
||||
* O<sub>0</sub>(X) = some 0 degree polynomial
|
||||
* O<sub>1</sub>(X) = some first degree polynomial
|
||||
* a<sub>1,k</sub> O<sub>k+1</sub>(X) = (a<sub>2,k</sub> + a<sub>3,k</sub> X) O<sub>k</sub>(X) - a<sub>4,k</sub> O<sub>k-1</sub>(X)
|
||||
* </pre>
|
||||
* where a<sub>1,k</sub>, a<sub>2,k</sub>, a<sub>3,k</sub> and
|
||||
* a<sub>4,k</sub> are simple expressions which either are
|
||||
* constants or depend on k.</p>
|
||||
|
||||
* @version $Id$
|
||||
* @author L. Maisonobe
|
||||
|
||||
*/
|
||||
public abstract class OrthogonalPolynomial
|
||||
extends Polynomial.Rational {
|
||||
|
||||
/** Simple constructor.
|
||||
* Build a degree d orthogonal polynomial
|
||||
* @param degree degree of the polynomial
|
||||
* @param generator coefficients generator for the current type of polynomials
|
||||
*/
|
||||
protected OrthogonalPolynomial(int degree, CoefficientsGenerator generator) {
|
||||
a = generator.getCoefficients(degree);
|
||||
}
|
||||
|
||||
}
|
|
@ -28,10 +28,6 @@ public class AllTests {
|
|||
suite.addTest(RationalNumberTest.suite());
|
||||
suite.addTest(PolynomialRationalTest.suite());
|
||||
suite.addTest(PolynomialDoubleTest.suite());
|
||||
suite.addTest(ChebyshevTest.suite());
|
||||
suite.addTest(HermiteTest.suite());
|
||||
suite.addTest(LegendreTest.suite());
|
||||
suite.addTest(LaguerreTest.suite());
|
||||
suite.addTest(PolynomialFractionTest.suite());
|
||||
|
||||
return suite;
|
||||
|
|
|
@ -1,85 +0,0 @@
|
|||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
package org.spaceroots.mantissa.algebra;
|
||||
|
||||
import junit.framework.*;
|
||||
|
||||
public class ChebyshevTest
|
||||
extends TestCase {
|
||||
|
||||
public ChebyshevTest(String name) {
|
||||
super(name);
|
||||
}
|
||||
|
||||
public void testOne() {
|
||||
assertTrue(new Chebyshev().isOne());
|
||||
}
|
||||
|
||||
public void testFirstPolynomials() {
|
||||
|
||||
checkPolynomial(new Chebyshev(3), "-3 x + 4 x^3");
|
||||
checkPolynomial(new Chebyshev(2), "-1 + 2 x^2");
|
||||
checkPolynomial(new Chebyshev(1), "x");
|
||||
checkPolynomial(new Chebyshev(0), "1");
|
||||
|
||||
checkPolynomial(new Chebyshev(7), "-7 x + 56 x^3 - 112 x^5 + 64 x^7");
|
||||
checkPolynomial(new Chebyshev(6), "-1 + 18 x^2 - 48 x^4 + 32 x^6");
|
||||
checkPolynomial(new Chebyshev(5), "5 x - 20 x^3 + 16 x^5");
|
||||
checkPolynomial(new Chebyshev(4), "1 - 8 x^2 + 8 x^4");
|
||||
|
||||
}
|
||||
|
||||
public void testBounds() {
|
||||
for (int k = 0; k < 12; ++k) {
|
||||
OrthogonalPolynomial Tk = new Chebyshev(k);
|
||||
for (double x = -1.0; x <= 1.0; x += 0.02) {
|
||||
assertTrue(Math.abs(Tk.valueAt(x)) < (1.0 + 1.0e-12));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public void testDifferentials() {
|
||||
for (int k = 0; k < 12; ++k) {
|
||||
|
||||
Polynomial.Rational Tk0 = new Chebyshev(k);
|
||||
Polynomial.Rational Tk1 = (Polynomial.Rational) Tk0.getDerivative();
|
||||
Polynomial.Rational Tk2 = (Polynomial.Rational) Tk1.getDerivative();
|
||||
|
||||
Polynomial.Rational g0 = new Polynomial.Rational(k * k);
|
||||
Polynomial.Rational g1 = new Polynomial.Rational(-1l, 0l);
|
||||
Polynomial.Rational g2 = new Polynomial.Rational(-1l, 0l, 1l);
|
||||
|
||||
Polynomial.Rational Tk0g0 = Tk0.multiply(g0);
|
||||
Polynomial.Rational Tk1g1 = Tk1.multiply(g1);
|
||||
Polynomial.Rational Tk2g2 = Tk2.multiply(g2);
|
||||
|
||||
Polynomial.Rational d = Tk0g0.add(Tk1g1.add(Tk2g2));
|
||||
assertTrue(d.isZero());
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
public void checkPolynomial(Polynomial.Rational p, String reference) {
|
||||
assertTrue(p.toString().equals(reference));
|
||||
}
|
||||
|
||||
public static Test suite() {
|
||||
return new TestSuite(ChebyshevTest.class);
|
||||
}
|
||||
|
||||
}
|
|
@ -1,76 +0,0 @@
|
|||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
package org.spaceroots.mantissa.algebra;
|
||||
|
||||
import junit.framework.*;
|
||||
|
||||
public class HermiteTest
|
||||
extends TestCase {
|
||||
|
||||
public HermiteTest(String name) {
|
||||
super(name);
|
||||
}
|
||||
|
||||
public void testOne() {
|
||||
assertTrue(new Hermite().isOne());
|
||||
}
|
||||
|
||||
public void testFirstPolynomials() {
|
||||
|
||||
checkPolynomial(new Hermite(3), "-12 x + 8 x^3");
|
||||
checkPolynomial(new Hermite(2), "-2 + 4 x^2");
|
||||
checkPolynomial(new Hermite(1), "2 x");
|
||||
checkPolynomial(new Hermite(0), "1");
|
||||
|
||||
checkPolynomial(new Hermite(7), "-1680 x + 3360 x^3 - 1344 x^5 + 128 x^7");
|
||||
checkPolynomial(new Hermite(6), "-120 + 720 x^2 - 480 x^4 + 64 x^6");
|
||||
checkPolynomial(new Hermite(5), "120 x - 160 x^3 + 32 x^5");
|
||||
checkPolynomial(new Hermite(4), "12 - 48 x^2 + 16 x^4");
|
||||
|
||||
}
|
||||
|
||||
public void testDifferentials() {
|
||||
for (int k = 0; k < 12; ++k) {
|
||||
|
||||
Polynomial.Rational Hk0 = new Hermite(k);
|
||||
Polynomial.Rational Hk1 = (Polynomial.Rational) Hk0.getDerivative();
|
||||
Polynomial.Rational Hk2 = (Polynomial.Rational) Hk1.getDerivative();
|
||||
|
||||
Polynomial.Rational g0 = new Polynomial.Rational(2l * k);
|
||||
Polynomial.Rational g1 = new Polynomial.Rational(-2l, 0l);
|
||||
Polynomial.Rational g2 = new Polynomial.Rational(1l);
|
||||
|
||||
Polynomial.Rational Hk0g0 = Hk0.multiply(g0);
|
||||
Polynomial.Rational Hk1g1 = Hk1.multiply(g1);
|
||||
Polynomial.Rational Hk2g2 = Hk2.multiply(g2);
|
||||
|
||||
Polynomial.Rational d = Hk0g0.add(Hk1g1.add(Hk2g2));
|
||||
assertTrue(d.isZero());
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
public void checkPolynomial(Polynomial.Rational p, String reference) {
|
||||
assertTrue(p.toString().equals(reference));
|
||||
}
|
||||
|
||||
public static Test suite() {
|
||||
return new TestSuite(HermiteTest.class);
|
||||
}
|
||||
|
||||
}
|
|
@ -1,82 +0,0 @@
|
|||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
package org.spaceroots.mantissa.algebra;
|
||||
|
||||
import junit.framework.*;
|
||||
|
||||
public class LaguerreTest
|
||||
extends TestCase {
|
||||
|
||||
public LaguerreTest(String name) {
|
||||
super(name);
|
||||
}
|
||||
|
||||
public void testOne() {
|
||||
assertTrue(new Laguerre().isOne());
|
||||
}
|
||||
|
||||
public void testFirstPolynomials() {
|
||||
|
||||
checkLaguerre(new Laguerre(3), 6l, "6 - 18 x + 9 x^2 - x^3");
|
||||
checkLaguerre(new Laguerre(2), 2l, "2 - 4 x + x^2");
|
||||
checkLaguerre(new Laguerre(1), 1l, "1 - x");
|
||||
checkLaguerre(new Laguerre(0), 1l, "1");
|
||||
|
||||
checkLaguerre(new Laguerre(7), 5040l,
|
||||
"5040 - 35280 x + 52920 x^2 - 29400 x^3"
|
||||
+ " + 7350 x^4 - 882 x^5 + 49 x^6 - x^7");
|
||||
checkLaguerre(new Laguerre(6), 720l,
|
||||
"720 - 4320 x + 5400 x^2 - 2400 x^3 + 450 x^4"
|
||||
+ " - 36 x^5 + x^6");
|
||||
checkLaguerre(new Laguerre(5), 120l,
|
||||
"120 - 600 x + 600 x^2 - 200 x^3 + 25 x^4 - x^5");
|
||||
checkLaguerre(new Laguerre(4), 24l,
|
||||
"24 - 96 x + 72 x^2 - 16 x^3 + x^4");
|
||||
|
||||
}
|
||||
|
||||
public void testDifferentials() {
|
||||
for (int k = 0; k < 12; ++k) {
|
||||
|
||||
Polynomial.Rational Lk0 = new Laguerre(k);
|
||||
Polynomial.Rational Lk1 = (Polynomial.Rational) Lk0.getDerivative();
|
||||
Polynomial.Rational Lk2 = (Polynomial.Rational) Lk1.getDerivative();
|
||||
|
||||
Polynomial.Rational g0 = new Polynomial.Rational(k);
|
||||
Polynomial.Rational g1 = new Polynomial.Rational(-1l, 1l);
|
||||
Polynomial.Rational g2 = new Polynomial.Rational(1l, 0l);
|
||||
|
||||
Polynomial.Rational Lk0g0 = Lk0.multiply(g0);
|
||||
Polynomial.Rational Lk1g1 = Lk1.multiply(g1);
|
||||
Polynomial.Rational Lk2g2 = Lk2.multiply(g2);
|
||||
|
||||
Polynomial.Rational d = Lk0g0.add(Lk1g1.add(Lk2g2));
|
||||
assertTrue(d.isZero());
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
public void checkLaguerre(Laguerre p, long denominator, String reference) {
|
||||
assertTrue(p.multiply(denominator).toString().equals(reference));
|
||||
}
|
||||
|
||||
public static Test suite() {
|
||||
return new TestSuite(LaguerreTest.class);
|
||||
}
|
||||
|
||||
}
|
|
@ -1,101 +0,0 @@
|
|||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
package org.spaceroots.mantissa.algebra;
|
||||
|
||||
import junit.framework.*;
|
||||
|
||||
public class LegendreTest
|
||||
extends TestCase {
|
||||
|
||||
public LegendreTest(String name) {
|
||||
super(name);
|
||||
}
|
||||
|
||||
public void testOne() {
|
||||
assertTrue(new Legendre().isOne());
|
||||
}
|
||||
|
||||
public void testFirstPolynomials() {
|
||||
|
||||
checkLegendre(new Legendre(3), 2l, "-3 x + 5 x^3");
|
||||
checkLegendre(new Legendre(2), 2l, "-1 + 3 x^2");
|
||||
checkLegendre(new Legendre(1), 1l, "x");
|
||||
checkLegendre(new Legendre(0), 1l, "1");
|
||||
|
||||
checkLegendre(new Legendre(7), 16l, "-35 x + 315 x^3 - 693 x^5 + 429 x^7");
|
||||
checkLegendre(new Legendre(6), 16l, "-5 + 105 x^2 - 315 x^4 + 231 x^6");
|
||||
checkLegendre(new Legendre(5), 8l, "15 x - 70 x^3 + 63 x^5");
|
||||
checkLegendre(new Legendre(4), 8l, "3 - 30 x^2 + 35 x^4");
|
||||
|
||||
}
|
||||
|
||||
public void testDifferentials() {
|
||||
for (int k = 0; k < 12; ++k) {
|
||||
|
||||
Polynomial.Rational Pk0 = new Legendre(k);
|
||||
Polynomial.Rational Pk1 = (Polynomial.Rational) Pk0.getDerivative();
|
||||
Polynomial.Rational Pk2 = (Polynomial.Rational) Pk1.getDerivative();
|
||||
|
||||
Polynomial.Rational g0 = new Polynomial.Rational(k * (k + 1));
|
||||
Polynomial.Rational g1 = new Polynomial.Rational(-2l, 0l);
|
||||
Polynomial.Rational g2 = new Polynomial.Rational(-1l, 0l, 1l);
|
||||
|
||||
Polynomial.Rational Pk0g0 = Pk0.multiply(g0);
|
||||
Polynomial.Rational Pk1g1 = Pk1.multiply(g1);
|
||||
Polynomial.Rational Pk2g2 = Pk2.multiply(g2);
|
||||
|
||||
Polynomial.Rational d = Pk0g0.add(Pk1g1.add(Pk2g2));
|
||||
assertTrue(d.isZero());
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
public void testHighDegree() {
|
||||
checkLegendre(new Legendre(40), 274877906944l,
|
||||
"34461632205"
|
||||
+ " - 28258538408100 x^2"
|
||||
+ " + 3847870979902950 x^4"
|
||||
+ " - 207785032914759300 x^6"
|
||||
+ " + 5929294332103310025 x^8"
|
||||
+ " - 103301483474866556880 x^10"
|
||||
+ " + 1197358103913226000200 x^12"
|
||||
+ " - 9763073770369381232400 x^14"
|
||||
+ " + 58171647881784229843050 x^16"
|
||||
+ " - 260061484647976556945400 x^18"
|
||||
+ " + 888315281771246239250340 x^20"
|
||||
+ " - 2345767627188139419665400 x^22"
|
||||
+ " + 4819022625419112503443050 x^24"
|
||||
+ " - 7710436200670580005508880 x^26"
|
||||
+ " + 9566652323054238154983240 x^28"
|
||||
+ " - 9104813935044723209570256 x^30"
|
||||
+ " + 6516550296251767619752905 x^32"
|
||||
+ " - 3391858621221953912598660 x^34"
|
||||
+ " + 1211378079007840683070950 x^36"
|
||||
+ " - 265365894974690562152100 x^38"
|
||||
+ " + 26876802183334044115405 x^40");
|
||||
}
|
||||
|
||||
public void checkLegendre(Legendre p, long denominator, String reference) {
|
||||
assertTrue(p.multiply(denominator).toString().equals(reference));
|
||||
}
|
||||
|
||||
public static Test suite() {
|
||||
return new TestSuite(LegendreTest.class);
|
||||
}
|
||||
|
||||
}
|
|
@ -39,6 +39,9 @@ The <action> type attribute can be add,update,fix,remove.
|
|||
</properties>
|
||||
<body>
|
||||
<release version="2.0" date="TBD" description="TBD">
|
||||
<action dev="luc" type="add" >
|
||||
Added factory methods to create Chebyshev, Hermite, Laguerre and Legendre polynomials.
|
||||
</action>
|
||||
<action dev="luc" type="add" >
|
||||
Added add, subtract, negate, multiply and toString methods to PolynomialFunction.
|
||||
</action>
|
||||
|
|
|
@ -319,10 +319,20 @@ System.out println("f(" + interpolationX + ") = " + interpolatedY);</source>
|
|||
</subsection>
|
||||
<subsection name="4.6 Polynomials" href="polynomials">
|
||||
<p>
|
||||
The <a href="../apidocs/org/apache/commons/math/analysis/polynomials/package.html">
|
||||
The <a href="../apidocs/org/apache/commons/math/analysis/polynomials/package-summary.html">
|
||||
org.apache.commons.math.analysis.polynomials</a> package provides real coefficients
|
||||
polynomials.
|
||||
</p>
|
||||
<p>
|
||||
The <a href="../apidocs/org/apache/commons/math/analysis/polynomials/PolynomialFunction.html">
|
||||
org.apache.commons.math.analysis.polynomials.PolynomialFunction</a> class is the most general
|
||||
one, using traditional coefficients arrays. The <a
|
||||
href="../apidocs/org/apache/commons/math/analysis/polynomials/PolynomialsUtils.html">
|
||||
org.apache.commons.math.analysis.polynomials.PolynomialsUtils</a> utility class provides static
|
||||
factory methods to build Chebyshev, Hermite, Lagrange and Legendre polynomials. Beware that due
|
||||
to overflows in the coefficients computations, these factory methods can only build low degrees
|
||||
polynomials yet.
|
||||
</p>
|
||||
</subsection>
|
||||
</section>
|
||||
</body>
|
||||
|
|
|
@ -0,0 +1,225 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
package org.apache.commons.math.analysis.polynomials;
|
||||
|
||||
import junit.framework.TestCase;
|
||||
|
||||
/**
|
||||
* Tests the PolynomialsUtils class.
|
||||
*
|
||||
* @version $Revision$ $Date$
|
||||
*/
|
||||
public class PolynomialsUtilsTest extends TestCase {
|
||||
|
||||
public void testFirstChebyshevPolynomials() {
|
||||
|
||||
checkPolynomial(PolynomialsUtils.createChebyshevPolynomial(3), "-3.0 x + 4.0 x^3");
|
||||
checkPolynomial(PolynomialsUtils.createChebyshevPolynomial(2), "-1.0 + 2.0 x^2");
|
||||
checkPolynomial(PolynomialsUtils.createChebyshevPolynomial(1), "x");
|
||||
checkPolynomial(PolynomialsUtils.createChebyshevPolynomial(0), "1.0");
|
||||
|
||||
checkPolynomial(PolynomialsUtils.createChebyshevPolynomial(7), "-7.0 x + 56.0 x^3 - 112.0 x^5 + 64.0 x^7");
|
||||
checkPolynomial(PolynomialsUtils.createChebyshevPolynomial(6), "-1.0 + 18.0 x^2 - 48.0 x^4 + 32.0 x^6");
|
||||
checkPolynomial(PolynomialsUtils.createChebyshevPolynomial(5), "5.0 x - 20.0 x^3 + 16.0 x^5");
|
||||
checkPolynomial(PolynomialsUtils.createChebyshevPolynomial(4), "1.0 - 8.0 x^2 + 8.0 x^4");
|
||||
|
||||
}
|
||||
|
||||
public void testChebyshevBounds() {
|
||||
for (int k = 0; k < 12; ++k) {
|
||||
PolynomialFunction Tk = PolynomialsUtils.createChebyshevPolynomial(k);
|
||||
for (double x = -1.0; x <= 1.0; x += 0.02) {
|
||||
assertTrue(k + " " + Tk.value(x), Math.abs(Tk.value(x)) < (1.0 + 1.0e-12));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public void testChebyshevDifferentials() {
|
||||
for (int k = 0; k < 12; ++k) {
|
||||
|
||||
PolynomialFunction Tk0 = PolynomialsUtils.createChebyshevPolynomial(k);
|
||||
PolynomialFunction Tk1 = Tk0.polynomialDerivative();
|
||||
PolynomialFunction Tk2 = Tk1.polynomialDerivative();
|
||||
|
||||
PolynomialFunction g0 = new PolynomialFunction(new double[] { k * k });
|
||||
PolynomialFunction g1 = new PolynomialFunction(new double[] { 0, -1});
|
||||
PolynomialFunction g2 = new PolynomialFunction(new double[] { 1, 0, -1 });
|
||||
|
||||
PolynomialFunction Tk0g0 = Tk0.multiply(g0);
|
||||
PolynomialFunction Tk1g1 = Tk1.multiply(g1);
|
||||
PolynomialFunction Tk2g2 = Tk2.multiply(g2);
|
||||
|
||||
checkNullPolynomial(Tk0g0.add(Tk1g1.add(Tk2g2)));
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
public void testFirstHermitePolynomials() {
|
||||
|
||||
checkPolynomial(PolynomialsUtils.createHermitePolynomial(3), "-12.0 x + 8.0 x^3");
|
||||
checkPolynomial(PolynomialsUtils.createHermitePolynomial(2), "-2.0 + 4.0 x^2");
|
||||
checkPolynomial(PolynomialsUtils.createHermitePolynomial(1), "2.0 x");
|
||||
checkPolynomial(PolynomialsUtils.createHermitePolynomial(0), "1.0");
|
||||
|
||||
checkPolynomial(PolynomialsUtils.createHermitePolynomial(7), "-1680.0 x + 3360.0 x^3 - 1344.0 x^5 + 128.0 x^7");
|
||||
checkPolynomial(PolynomialsUtils.createHermitePolynomial(6), "-120.0 + 720.0 x^2 - 480.0 x^4 + 64.0 x^6");
|
||||
checkPolynomial(PolynomialsUtils.createHermitePolynomial(5), "120.0 x - 160.0 x^3 + 32.0 x^5");
|
||||
checkPolynomial(PolynomialsUtils.createHermitePolynomial(4), "12.0 - 48.0 x^2 + 16.0 x^4");
|
||||
|
||||
}
|
||||
|
||||
public void testHermiteDifferentials() {
|
||||
for (int k = 0; k < 12; ++k) {
|
||||
|
||||
PolynomialFunction Hk0 = PolynomialsUtils.createHermitePolynomial(k);
|
||||
PolynomialFunction Hk1 = Hk0.polynomialDerivative();
|
||||
PolynomialFunction Hk2 = Hk1.polynomialDerivative();
|
||||
|
||||
PolynomialFunction g0 = new PolynomialFunction(new double[] { 2 * k });
|
||||
PolynomialFunction g1 = new PolynomialFunction(new double[] { 0, -2 });
|
||||
PolynomialFunction g2 = new PolynomialFunction(new double[] { 1 });
|
||||
|
||||
PolynomialFunction Hk0g0 = Hk0.multiply(g0);
|
||||
PolynomialFunction Hk1g1 = Hk1.multiply(g1);
|
||||
PolynomialFunction Hk2g2 = Hk2.multiply(g2);
|
||||
|
||||
checkNullPolynomial(Hk0g0.add(Hk1g1.add(Hk2g2)));
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
public void testFirstLaguerrePolynomials() {
|
||||
|
||||
checkPolynomial(PolynomialsUtils.createLaguerrePolynomial(3), 6l, "6.0 - 18.0 x + 9.0 x^2 - x^3");
|
||||
checkPolynomial(PolynomialsUtils.createLaguerrePolynomial(2), 2l, "2.0 - 4.0 x + x^2");
|
||||
checkPolynomial(PolynomialsUtils.createLaguerrePolynomial(1), 1l, "1.0 - x");
|
||||
checkPolynomial(PolynomialsUtils.createLaguerrePolynomial(0), 1l, "1.0");
|
||||
|
||||
checkPolynomial(PolynomialsUtils.createLaguerrePolynomial(7), 5040l,
|
||||
"5040.0 - 35280.0 x + 52920.0 x^2 - 29400.0 x^3"
|
||||
+ " + 7350.0 x^4 - 882.0 x^5 + 49.0 x^6 - x^7");
|
||||
checkPolynomial(PolynomialsUtils.createLaguerrePolynomial(6), 720l,
|
||||
"720.0 - 4320.0 x + 5400.0 x^2 - 2400.0 x^3 + 450.0 x^4"
|
||||
+ " - 36.0 x^5 + x^6");
|
||||
checkPolynomial(PolynomialsUtils.createLaguerrePolynomial(5), 120l,
|
||||
"120.0 - 600.0 x + 600.0 x^2 - 200.0 x^3 + 25.0 x^4 - x^5");
|
||||
checkPolynomial(PolynomialsUtils.createLaguerrePolynomial(4), 24l,
|
||||
"24.0 - 96.0 x + 72.0 x^2 - 16.0 x^3 + x^4");
|
||||
|
||||
}
|
||||
|
||||
public void testLaguerreDifferentials() {
|
||||
for (int k = 0; k < 12; ++k) {
|
||||
|
||||
PolynomialFunction Lk0 = PolynomialsUtils.createLaguerrePolynomial(k);
|
||||
PolynomialFunction Lk1 = Lk0.polynomialDerivative();
|
||||
PolynomialFunction Lk2 = Lk1.polynomialDerivative();
|
||||
|
||||
PolynomialFunction g0 = new PolynomialFunction(new double[] { k });
|
||||
PolynomialFunction g1 = new PolynomialFunction(new double[] { 1, -1 });
|
||||
PolynomialFunction g2 = new PolynomialFunction(new double[] { 0, 1 });
|
||||
|
||||
PolynomialFunction Lk0g0 = Lk0.multiply(g0);
|
||||
PolynomialFunction Lk1g1 = Lk1.multiply(g1);
|
||||
PolynomialFunction Lk2g2 = Lk2.multiply(g2);
|
||||
|
||||
checkNullPolynomial(Lk0g0.add(Lk1g1.add(Lk2g2)));
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
public void testFirstLegendrePolynomials() {
|
||||
|
||||
checkPolynomial(PolynomialsUtils.createLegendrePolynomial(3), 2l, "-3.0 x + 5.0 x^3");
|
||||
checkPolynomial(PolynomialsUtils.createLegendrePolynomial(2), 2l, "-1.0 + 3.0 x^2");
|
||||
checkPolynomial(PolynomialsUtils.createLegendrePolynomial(1), 1l, "x");
|
||||
checkPolynomial(PolynomialsUtils.createLegendrePolynomial(0), 1l, "1.0");
|
||||
|
||||
checkPolynomial(PolynomialsUtils.createLegendrePolynomial(7), 16l, "-35.0 x + 315.0 x^3 - 693.0 x^5 + 429.0 x^7");
|
||||
checkPolynomial(PolynomialsUtils.createLegendrePolynomial(6), 16l, "-5.0 + 105.0 x^2 - 315.0 x^4 + 231.0 x^6");
|
||||
checkPolynomial(PolynomialsUtils.createLegendrePolynomial(5), 8l, "15.0 x - 70.0 x^3 + 63.0 x^5");
|
||||
checkPolynomial(PolynomialsUtils.createLegendrePolynomial(4), 8l, "3.0 - 30.0 x^2 + 35.0 x^4");
|
||||
|
||||
}
|
||||
|
||||
public void testLegendreDifferentials() {
|
||||
for (int k = 0; k < 12; ++k) {
|
||||
|
||||
PolynomialFunction Pk0 = PolynomialsUtils.createLegendrePolynomial(k);
|
||||
PolynomialFunction Pk1 = Pk0.polynomialDerivative();
|
||||
PolynomialFunction Pk2 = Pk1.polynomialDerivative();
|
||||
|
||||
PolynomialFunction g0 = new PolynomialFunction(new double[] { k * (k + 1) });
|
||||
PolynomialFunction g1 = new PolynomialFunction(new double[] { 0, -2 });
|
||||
PolynomialFunction g2 = new PolynomialFunction(new double[] { 1, 0, -1 });
|
||||
|
||||
PolynomialFunction Pk0g0 = Pk0.multiply(g0);
|
||||
PolynomialFunction Pk1g1 = Pk1.multiply(g1);
|
||||
PolynomialFunction Pk2g2 = Pk2.multiply(g2);
|
||||
|
||||
checkNullPolynomial(Pk0g0.add(Pk1g1.add(Pk2g2)));
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
public void testHighDegreeLegendre() {
|
||||
try {
|
||||
PolynomialsUtils.createLegendrePolynomial(40);
|
||||
fail("an exception should have been thrown");
|
||||
} catch (ArithmeticException ae) {
|
||||
// expected
|
||||
}
|
||||
// checkPolynomial(PolynomialsUtils.createLegendrePolynomial(40), 274877906944l,
|
||||
// "34461632205.0"
|
||||
// + " - 28258538408100.0 x^2"
|
||||
// + " + 3847870979902950.0 x^4"
|
||||
// + " - 207785032914759300.0 x^6"
|
||||
// + " + 5929294332103310025.0 x^8"
|
||||
// + " - 103301483474866556880.0 x^10"
|
||||
// + " + 1197358103913226000200.0 x^12"
|
||||
// + " - 9763073770369381232400.0 x^14"
|
||||
// + " + 58171647881784229843050.0 x^16"
|
||||
// + " - 260061484647976556945400.0 x^18"
|
||||
// + " + 888315281771246239250340.0 x^20"
|
||||
// + " - 2345767627188139419665400.0 x^22"
|
||||
// + " + 4819022625419112503443050.0 x^24"
|
||||
// + " - 7710436200670580005508880.0 x^26"
|
||||
// + " + 9566652323054238154983240.0 x^28"
|
||||
// + " - 9104813935044723209570256.0 x^30"
|
||||
// + " + 6516550296251767619752905.0 x^32"
|
||||
// + " - 3391858621221953912598660.0 x^34"
|
||||
// + " + 1211378079007840683070950.0 x^36"
|
||||
// + " - 265365894974690562152100.0 x^38"
|
||||
// + " + 26876802183334044115405.0 x^40");
|
||||
}
|
||||
|
||||
private void checkPolynomial(PolynomialFunction p, long denominator, String reference) {
|
||||
PolynomialFunction q = new PolynomialFunction(new double[] { denominator});
|
||||
assertEquals(reference, p.multiply(q).toString());
|
||||
}
|
||||
|
||||
private void checkPolynomial(PolynomialFunction p, String reference) {
|
||||
assertEquals(reference, p.toString());
|
||||
}
|
||||
|
||||
private void checkNullPolynomial(PolynomialFunction p) {
|
||||
for (double coefficient : p.getCoefficients()) {
|
||||
assertEquals(0.0, coefficient, 1.0e-13);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
Loading…
Reference in New Issue