Removed dependency on DistributionFactory. Added settable t distribution field.
git-svn-id: https://svn.apache.org/repos/asf/jakarta/commons/proper/math/trunk@545161 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
ad8f706395
commit
8d14277eb6
|
@ -19,8 +19,8 @@ package org.apache.commons.math.stat.regression;
|
||||||
import java.io.Serializable;
|
import java.io.Serializable;
|
||||||
|
|
||||||
import org.apache.commons.math.MathException;
|
import org.apache.commons.math.MathException;
|
||||||
import org.apache.commons.math.distribution.DistributionFactory;
|
|
||||||
import org.apache.commons.math.distribution.TDistribution;
|
import org.apache.commons.math.distribution.TDistribution;
|
||||||
|
import org.apache.commons.math.distribution.TDistributionImpl;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Estimates an ordinary least squares regression model
|
* Estimates an ordinary least squares regression model
|
||||||
|
@ -57,6 +57,9 @@ public class SimpleRegression implements Serializable {
|
||||||
/** Serializable version identifier */
|
/** Serializable version identifier */
|
||||||
private static final long serialVersionUID = -3004689053607543335L;
|
private static final long serialVersionUID = -3004689053607543335L;
|
||||||
|
|
||||||
|
/** the distribution used to compute inference statistics. */
|
||||||
|
private TDistribution distribution;
|
||||||
|
|
||||||
/** sum of x values */
|
/** sum of x values */
|
||||||
private double sumX = 0d;
|
private double sumX = 0d;
|
||||||
|
|
||||||
|
@ -87,7 +90,18 @@ public class SimpleRegression implements Serializable {
|
||||||
* Create an empty SimpleRegression instance
|
* Create an empty SimpleRegression instance
|
||||||
*/
|
*/
|
||||||
public SimpleRegression() {
|
public SimpleRegression() {
|
||||||
|
this(new TDistributionImpl(1.0));
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Create an empty SimpleRegression using the given distribution object to
|
||||||
|
* compute inference statistics.
|
||||||
|
* @param t the distribution used to compute inference statistics.
|
||||||
|
* @since 1.2
|
||||||
|
*/
|
||||||
|
public SimpleRegression(TDistribution t) {
|
||||||
super();
|
super();
|
||||||
|
setDistribution(t);
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
|
@ -119,6 +133,10 @@ public class SimpleRegression implements Serializable {
|
||||||
sumX += x;
|
sumX += x;
|
||||||
sumY += y;
|
sumY += y;
|
||||||
n++;
|
n++;
|
||||||
|
|
||||||
|
if (n > 2) {
|
||||||
|
distribution.setDegreesOfFreedom(n - 2);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
|
@ -455,7 +473,7 @@ public class SimpleRegression implements Serializable {
|
||||||
throw new IllegalArgumentException();
|
throw new IllegalArgumentException();
|
||||||
}
|
}
|
||||||
return getSlopeStdErr() *
|
return getSlopeStdErr() *
|
||||||
getTDistribution().inverseCumulativeProbability(1d - alpha / 2d);
|
distribution.inverseCumulativeProbability(1d - alpha / 2d);
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
|
@ -480,7 +498,7 @@ public class SimpleRegression implements Serializable {
|
||||||
* @throws MathException if the significance level can not be computed.
|
* @throws MathException if the significance level can not be computed.
|
||||||
*/
|
*/
|
||||||
public double getSignificance() throws MathException {
|
public double getSignificance() throws MathException {
|
||||||
return 2d* (1.0 - getTDistribution().cumulativeProbability(
|
return 2d * (1.0 - distribution.cumulativeProbability(
|
||||||
Math.abs(getSlope()) / getSlopeStdErr()));
|
Math.abs(getSlope()) / getSlopeStdErr()));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -507,14 +525,18 @@ public class SimpleRegression implements Serializable {
|
||||||
private double getRegressionSumSquares(double slope) {
|
private double getRegressionSumSquares(double slope) {
|
||||||
return slope * slope * sumXX;
|
return slope * slope * sumXX;
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Uses distribution framework to get a t distribution instance
|
* Modify the distribution used to compute inference statistics.
|
||||||
* with df = n - 2
|
* @param value the new distribution
|
||||||
*
|
* @since 1.2
|
||||||
* @return t distribution with df = n - 2
|
|
||||||
*/
|
*/
|
||||||
private TDistribution getTDistribution() {
|
public void setDistribution(TDistribution value) {
|
||||||
return DistributionFactory.newInstance().createTDistribution(n - 2);
|
distribution = value;
|
||||||
|
|
||||||
|
// modify degrees of freedom
|
||||||
|
if (n > 2) {
|
||||||
|
distribution.setDegreesOfFreedom(n - 2);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in New Issue