diff --git a/src/test/org/apache/commons/math/estimation/GaussNewtonEstimatorTest.java b/src/test/org/apache/commons/math/estimation/GaussNewtonEstimatorTest.java new file mode 100644 index 000000000..70a8e294e --- /dev/null +++ b/src/test/org/apache/commons/math/estimation/GaussNewtonEstimatorTest.java @@ -0,0 +1,677 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.commons.math.estimation; + +import java.util.ArrayList; +import java.util.HashSet; +import java.util.Iterator; + +import org.apache.commons.math.estimation.EstimatedParameter; +import org.apache.commons.math.estimation.EstimationException; +import org.apache.commons.math.estimation.EstimationProblem; +import org.apache.commons.math.estimation.GaussNewtonEstimator; +import org.apache.commons.math.estimation.WeightedMeasurement; + +import junit.framework.*; + +/** + *

Some of the unit tests are re-implementations of the MINPACK file17 and file22 test files. + * The redistribution policy for MINPACK is available here, for + * convenience, it is reproduced below.

+ + * + * + * + *
+ * Minpack Copyright Notice (1999) University of Chicago. + * All rights reserved + *
+ * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + *
    + *
  1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer.
  2. + *
  3. Redistributions in binary form must reproduce the above + * copyright notice, this list of conditions and the following + * disclaimer in the documentation and/or other materials provided + * with the distribution.
  4. + *
  5. The end-user documentation included with the redistribution, if any, + * must include the following acknowledgment: + * This product includes software developed by the University of + * Chicago, as Operator of Argonne National Laboratory. + * Alternately, this acknowledgment may appear in the software itself, + * if and wherever such third-party acknowledgments normally appear.
  6. + *
  7. WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS" + * WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER, THE + * UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND + * THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES + * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE + * OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY + * OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR + * USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF + * THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4) + * DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION + * UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL + * BE CORRECTED.
  8. + *
  9. LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT + * HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF + * ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT, + * INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF + * ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF + * PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER + * SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT + * (INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE, + * EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE + * POSSIBILITY OF SUCH LOSS OR DAMAGES.
  10. + *
    + + * @author Argonne National Laboratory. MINPACK project. March 1980 (original fortran minpack tests) + * @author Burton S. Garbow (original fortran minpack tests) + * @author Kenneth E. Hillstrom (original fortran minpack tests) + * @author Jorge J. More (original fortran minpack tests) + * @author Luc Maisonobe (non-minpack tests and minpack tests Java translation) + */ +public class GaussNewtonEstimatorTest + extends TestCase { + + public GaussNewtonEstimatorTest(String name) { + super(name); + } + + public void testTrivial() throws EstimationException { + LinearProblem problem = + new LinearProblem(new LinearMeasurement[] { + new LinearMeasurement(new double[] {2}, + new EstimatedParameter[] { + new EstimatedParameter("p0", 0) + }, 3.0) + }); + GaussNewtonEstimator estimator = new GaussNewtonEstimator(100, 1.0e-6, 1.0e-6); + estimator.estimate(problem); + assertEquals(0, estimator.getRMS(problem), 1.0e-10); + assertEquals(1.5, + problem.getUnboundParameters()[0].getEstimate(), + 1.0e-10); + } + + public void testQRColumnsPermutation() throws EstimationException { + + EstimatedParameter[] x = { + new EstimatedParameter("p0", 0), new EstimatedParameter("p1", 0) + }; + LinearProblem problem = new LinearProblem(new LinearMeasurement[] { + new LinearMeasurement(new double[] { 1.0, -1.0 }, + new EstimatedParameter[] { x[0], x[1] }, + 4.0), + new LinearMeasurement(new double[] { 2.0 }, + new EstimatedParameter[] { x[1] }, + 6.0), + new LinearMeasurement(new double[] { 1.0, -2.0 }, + new EstimatedParameter[] { x[0], x[1] }, + 1.0) + }); + + GaussNewtonEstimator estimator = new GaussNewtonEstimator(100, 1.0e-6, 1.0e-6); + estimator.estimate(problem); + assertEquals(0, estimator.getRMS(problem), 1.0e-10); + assertEquals(7.0, x[0].getEstimate(), 1.0e-10); + assertEquals(3.0, x[1].getEstimate(), 1.0e-10); + + } + + public void testNoDependency() throws EstimationException { + EstimatedParameter[] p = new EstimatedParameter[] { + new EstimatedParameter("p0", 0), + new EstimatedParameter("p1", 0), + new EstimatedParameter("p2", 0), + new EstimatedParameter("p3", 0), + new EstimatedParameter("p4", 0), + new EstimatedParameter("p5", 0) + }; + LinearProblem problem = new LinearProblem(new LinearMeasurement[] { + new LinearMeasurement(new double[] {2}, new EstimatedParameter[] { p[0] }, 0.0), + new LinearMeasurement(new double[] {2}, new EstimatedParameter[] { p[1] }, 1.1), + new LinearMeasurement(new double[] {2}, new EstimatedParameter[] { p[2] }, 2.2), + new LinearMeasurement(new double[] {2}, new EstimatedParameter[] { p[3] }, 3.3), + new LinearMeasurement(new double[] {2}, new EstimatedParameter[] { p[4] }, 4.4), + new LinearMeasurement(new double[] {2}, new EstimatedParameter[] { p[5] }, 5.5) + }); + GaussNewtonEstimator estimator = new GaussNewtonEstimator(100, 1.0e-6, 1.0e-6); + estimator.estimate(problem); + assertEquals(0, estimator.getRMS(problem), 1.0e-10); + for (int i = 0; i < p.length; ++i) { + assertEquals(0.55 * i, p[i].getEstimate(), 1.0e-10); + } +} + + public void testOneSet() throws EstimationException { + + EstimatedParameter[] p = { + new EstimatedParameter("p0", 0), + new EstimatedParameter("p1", 0), + new EstimatedParameter("p2", 0) + }; + LinearProblem problem = new LinearProblem(new LinearMeasurement[] { + new LinearMeasurement(new double[] { 1.0 }, + new EstimatedParameter[] { p[0] }, + 1.0), + new LinearMeasurement(new double[] { -1.0, 1.0 }, + new EstimatedParameter[] { p[0], p[1] }, + 1.0), + new LinearMeasurement(new double[] { -1.0, 1.0 }, + new EstimatedParameter[] { p[1], p[2] }, + 1.0) + }); + + GaussNewtonEstimator estimator = new GaussNewtonEstimator(100, 1.0e-6, 1.0e-6); + estimator.estimate(problem); + assertEquals(0, estimator.getRMS(problem), 1.0e-10); + assertEquals(1.0, p[0].getEstimate(), 1.0e-10); + assertEquals(2.0, p[1].getEstimate(), 1.0e-10); + assertEquals(3.0, p[2].getEstimate(), 1.0e-10); + + } + + public void testTwoSets() throws EstimationException { + EstimatedParameter[] p = { + new EstimatedParameter("p0", 0), + new EstimatedParameter("p1", 1), + new EstimatedParameter("p2", 2), + new EstimatedParameter("p3", 3), + new EstimatedParameter("p4", 4), + new EstimatedParameter("p5", 5) + }; + + double epsilon = 1.0e-7; + LinearProblem problem = new LinearProblem(new LinearMeasurement[] { + + // 4 elements sub-problem + new LinearMeasurement(new double[] { 2.0, 1.0, 4.0 }, + new EstimatedParameter[] { p[0], p[1], p[3] }, + 2.0), + new LinearMeasurement(new double[] { -4.0, -2.0, 3.0, -7.0 }, + new EstimatedParameter[] { p[0], p[1], p[2], p[3] }, + -9.0), + new LinearMeasurement(new double[] { 4.0, 1.0, -2.0, 8.0 }, + new EstimatedParameter[] { p[0], p[1], p[2], p[3] }, + 2.0), + new LinearMeasurement(new double[] { -3.0, -12.0, -1.0 }, + new EstimatedParameter[] { p[1], p[2], p[3] }, + 2.0), + + // 2 elements sub-problem + new LinearMeasurement(new double[] { epsilon, 1.0 }, + new EstimatedParameter[] { p[4], p[5] }, + 1.0 + epsilon * epsilon), + new LinearMeasurement(new double[] { 1.0, 1.0 }, + new EstimatedParameter[] { p[4], p[5] }, + 2.0) + + }); + + GaussNewtonEstimator estimator = new GaussNewtonEstimator(100, 1.0e-6, 1.0e-6); + estimator.estimate(problem); + assertEquals(0, estimator.getRMS(problem), 1.0e-10); + assertEquals( 3.0, p[0].getEstimate(), 1.0e-10); + assertEquals( 4.0, p[1].getEstimate(), 1.0e-10); + assertEquals(-1.0, p[2].getEstimate(), 1.0e-10); + assertEquals(-2.0, p[3].getEstimate(), 1.0e-10); + assertEquals( 1.0 + epsilon, p[4].getEstimate(), 1.0e-10); + assertEquals( 1.0 - epsilon, p[5].getEstimate(), 1.0e-10); + + } + + public void testNonInversible() throws EstimationException { + + EstimatedParameter[] p = { + new EstimatedParameter("p0", 0), + new EstimatedParameter("p1", 0), + new EstimatedParameter("p2", 0) + }; + LinearMeasurement[] m = new LinearMeasurement[] { + new LinearMeasurement(new double[] { 1.0, 2.0, -3.0 }, + new EstimatedParameter[] { p[0], p[1], p[2] }, + 1.0), + new LinearMeasurement(new double[] { 2.0, 1.0, 3.0 }, + new EstimatedParameter[] { p[0], p[1], p[2] }, + 1.0), + new LinearMeasurement(new double[] { -3.0, -9.0 }, + new EstimatedParameter[] { p[0], p[2] }, + 1.0) + }; + LinearProblem problem = new LinearProblem(m); + + GaussNewtonEstimator estimator = new GaussNewtonEstimator(100, 1.0e-6, 1.0e-6); + try { + estimator.estimate(problem); + fail("an exception should have been caught"); + } catch (EstimationException ee) { + // expected behavior + } catch (Exception e) { + fail("wrong exception type caught"); + } + } + + public void testIllConditioned() throws EstimationException { + EstimatedParameter[] p = { + new EstimatedParameter("p0", 0), + new EstimatedParameter("p1", 1), + new EstimatedParameter("p2", 2), + new EstimatedParameter("p3", 3) + }; + + LinearProblem problem1 = new LinearProblem(new LinearMeasurement[] { + new LinearMeasurement(new double[] { 10.0, 7.0, 8.0, 7.0 }, + new EstimatedParameter[] { p[0], p[1], p[2], p[3] }, + 32.0), + new LinearMeasurement(new double[] { 7.0, 5.0, 6.0, 5.0 }, + new EstimatedParameter[] { p[0], p[1], p[2], p[3] }, + 23.0), + new LinearMeasurement(new double[] { 8.0, 6.0, 10.0, 9.0 }, + new EstimatedParameter[] { p[0], p[1], p[2], p[3] }, + 33.0), + new LinearMeasurement(new double[] { 7.0, 5.0, 9.0, 10.0 }, + new EstimatedParameter[] { p[0], p[1], p[2], p[3] }, + 31.0) + }); + GaussNewtonEstimator estimator1 = new GaussNewtonEstimator(100, 1.0e-6, 1.0e-6); + estimator1.estimate(problem1); + assertEquals(0, estimator1.getRMS(problem1), 1.0e-10); + assertEquals(1.0, p[0].getEstimate(), 1.0e-10); + assertEquals(1.0, p[1].getEstimate(), 1.0e-10); + assertEquals(1.0, p[2].getEstimate(), 1.0e-10); + assertEquals(1.0, p[3].getEstimate(), 1.0e-10); + + LinearProblem problem2 = new LinearProblem(new LinearMeasurement[] { + new LinearMeasurement(new double[] { 10.0, 7.0, 8.1, 7.2 }, + new EstimatedParameter[] { p[0], p[1], p[2], p[3] }, + 32.0), + new LinearMeasurement(new double[] { 7.08, 5.04, 6.0, 5.0 }, + new EstimatedParameter[] { p[0], p[1], p[2], p[3] }, + 23.0), + new LinearMeasurement(new double[] { 8.0, 5.98, 9.89, 9.0 }, + new EstimatedParameter[] { p[0], p[1], p[2], p[3] }, + 33.0), + new LinearMeasurement(new double[] { 6.99, 4.99, 9.0, 9.98 }, + new EstimatedParameter[] { p[0], p[1], p[2], p[3] }, + 31.0) + }); + GaussNewtonEstimator estimator2 = new GaussNewtonEstimator(100, 1.0e-6, 1.0e-6); + estimator2.estimate(problem2); + assertEquals(0, estimator2.getRMS(problem2), 1.0e-10); + assertEquals(-81.0, p[0].getEstimate(), 1.0e-8); + assertEquals(137.0, p[1].getEstimate(), 1.0e-8); + assertEquals(-34.0, p[2].getEstimate(), 1.0e-8); + assertEquals( 22.0, p[3].getEstimate(), 1.0e-8); + + } + + public void testMoreEstimatedParametersSimple() throws EstimationException { + + EstimatedParameter[] p = { + new EstimatedParameter("p0", 7), + new EstimatedParameter("p1", 6), + new EstimatedParameter("p2", 5), + new EstimatedParameter("p3", 4) + }; + LinearProblem problem = new LinearProblem(new LinearMeasurement[] { + new LinearMeasurement(new double[] { 3.0, 2.0 }, + new EstimatedParameter[] { p[0], p[1] }, + 7.0), + new LinearMeasurement(new double[] { 1.0, -1.0, 1.0 }, + new EstimatedParameter[] { p[1], p[2], p[3] }, + 3.0), + new LinearMeasurement(new double[] { 2.0, 1.0 }, + new EstimatedParameter[] { p[0], p[2] }, + 5.0) + }); + + GaussNewtonEstimator estimator = new GaussNewtonEstimator(100, 1.0e-6, 1.0e-6); + try { + estimator.estimate(problem); + fail("an exception should have been caught"); + } catch (EstimationException ee) { + // expected behavior + } catch (Exception e) { + fail("wrong exception type caught"); + } + + } + + public void testMoreEstimatedParametersUnsorted() throws EstimationException { + EstimatedParameter[] p = { + new EstimatedParameter("p0", 2), + new EstimatedParameter("p1", 2), + new EstimatedParameter("p2", 2), + new EstimatedParameter("p3", 2), + new EstimatedParameter("p4", 2), + new EstimatedParameter("p5", 2) + }; + LinearProblem problem = new LinearProblem(new LinearMeasurement[] { + new LinearMeasurement(new double[] { 1.0, 1.0 }, + new EstimatedParameter[] { p[0], p[1] }, + 3.0), + new LinearMeasurement(new double[] { 1.0, 1.0, 1.0 }, + new EstimatedParameter[] { p[2], p[3], p[4] }, + 12.0), + new LinearMeasurement(new double[] { 1.0, -1.0 }, + new EstimatedParameter[] { p[4], p[5] }, + -1.0), + new LinearMeasurement(new double[] { 1.0, -1.0, 1.0 }, + new EstimatedParameter[] { p[3], p[2], p[5] }, + 7.0), + new LinearMeasurement(new double[] { 1.0, -1.0 }, + new EstimatedParameter[] { p[4], p[3] }, + 1.0) + }); + + GaussNewtonEstimator estimator = new GaussNewtonEstimator(100, 1.0e-6, 1.0e-6); + try { + estimator.estimate(problem); + fail("an exception should have been caught"); + } catch (EstimationException ee) { + // expected behavior + } catch (Exception e) { + fail("wrong exception type caught"); + } + + } + + public void testRedundantEquations() throws EstimationException { + EstimatedParameter[] p = { + new EstimatedParameter("p0", 1), + new EstimatedParameter("p1", 1) + }; + LinearProblem problem = new LinearProblem(new LinearMeasurement[] { + new LinearMeasurement(new double[] { 1.0, 1.0 }, + new EstimatedParameter[] { p[0], p[1] }, + 3.0), + new LinearMeasurement(new double[] { 1.0, -1.0 }, + new EstimatedParameter[] { p[0], p[1] }, + 1.0), + new LinearMeasurement(new double[] { 1.0, 3.0 }, + new EstimatedParameter[] { p[0], p[1] }, + 5.0) + }); + + GaussNewtonEstimator estimator = new GaussNewtonEstimator(100, 1.0e-6, 1.0e-6); + estimator.estimate(problem); + assertEquals(0, estimator.getRMS(problem), 1.0e-10); + assertEquals(2.0, p[0].getEstimate(), 1.0e-10); + assertEquals(1.0, p[1].getEstimate(), 1.0e-10); + + } + + public void testInconsistentEquations() throws EstimationException { + EstimatedParameter[] p = { + new EstimatedParameter("p0", 1), + new EstimatedParameter("p1", 1) + }; + LinearProblem problem = new LinearProblem(new LinearMeasurement[] { + new LinearMeasurement(new double[] { 1.0, 1.0 }, + new EstimatedParameter[] { p[0], p[1] }, + 3.0), + new LinearMeasurement(new double[] { 1.0, -1.0 }, + new EstimatedParameter[] { p[0], p[1] }, + 1.0), + new LinearMeasurement(new double[] { 1.0, 3.0 }, + new EstimatedParameter[] { p[0], p[1] }, + 4.0) + }); + + GaussNewtonEstimator estimator = new GaussNewtonEstimator(100, 1.0e-6, 1.0e-6); + estimator.estimate(problem); + assertTrue(estimator.getRMS(problem) > 0.1); + + } + + public void testCircleFitting() throws EstimationException { + Circle circle = new Circle(98.680, 47.345); + circle.addPoint( 30.0, 68.0); + circle.addPoint( 50.0, -6.0); + circle.addPoint(110.0, -20.0); + circle.addPoint( 35.0, 15.0); + circle.addPoint( 45.0, 97.0); + GaussNewtonEstimator estimator = new GaussNewtonEstimator(100, 1.0e-10, 1.0e-10); + estimator.estimate(circle); + double rms = estimator.getRMS(circle); + assertEquals(1.768262623567235, Math.sqrt(circle.getM()) * rms, 1.0e-10); + assertEquals(69.96016176931406, circle.getRadius(), 1.0e-10); + assertEquals(96.07590211815305, circle.getX(), 1.0e-10); + assertEquals(48.13516790438953, circle.getY(), 1.0e-10); + } + + public void testCircleFittingBadInit() throws EstimationException { + Circle circle = new Circle(-12, -12); + double[][] points = new double[][] { + {-0.312967, 0.072366}, {-0.339248, 0.132965}, {-0.379780, 0.202724}, + {-0.390426, 0.260487}, {-0.361212, 0.328325}, {-0.346039, 0.392619}, + {-0.280579, 0.444306}, {-0.216035, 0.470009}, {-0.149127, 0.493832}, + {-0.075133, 0.483271}, {-0.007759, 0.452680}, { 0.060071, 0.410235}, + { 0.103037, 0.341076}, { 0.118438, 0.273884}, { 0.131293, 0.192201}, + { 0.115869, 0.129797}, { 0.072223, 0.058396}, { 0.022884, 0.000718}, + {-0.053355, -0.020405}, {-0.123584, -0.032451}, {-0.216248, -0.032862}, + {-0.278592, -0.005008}, {-0.337655, 0.056658}, {-0.385899, 0.112526}, + {-0.405517, 0.186957}, {-0.415374, 0.262071}, {-0.387482, 0.343398}, + {-0.347322, 0.397943}, {-0.287623, 0.458425}, {-0.223502, 0.475513}, + {-0.135352, 0.478186}, {-0.061221, 0.483371}, { 0.003711, 0.422737}, + { 0.065054, 0.375830}, { 0.108108, 0.297099}, { 0.123882, 0.222850}, + { 0.117729, 0.134382}, { 0.085195, 0.056820}, { 0.029800, -0.019138}, + {-0.027520, -0.072374}, {-0.102268, -0.091555}, {-0.200299, -0.106578}, + {-0.292731, -0.091473}, {-0.356288, -0.051108}, {-0.420561, 0.014926}, + {-0.471036, 0.074716}, {-0.488638, 0.182508}, {-0.485990, 0.254068}, + {-0.463943, 0.338438}, {-0.406453, 0.404704}, {-0.334287, 0.466119}, + {-0.254244, 0.503188}, {-0.161548, 0.495769}, {-0.075733, 0.495560}, + { 0.001375, 0.434937}, { 0.082787, 0.385806}, { 0.115490, 0.323807}, + { 0.141089, 0.223450}, { 0.138693, 0.131703}, { 0.126415, 0.049174}, + { 0.066518, -0.010217}, {-0.005184, -0.070647}, {-0.080985, -0.103635}, + {-0.177377, -0.116887}, {-0.260628, -0.100258}, {-0.335756, -0.056251}, + {-0.405195, -0.000895}, {-0.444937, 0.085456}, {-0.484357, 0.175597}, + {-0.472453, 0.248681}, {-0.438580, 0.347463}, {-0.402304, 0.422428}, + {-0.326777, 0.479438}, {-0.247797, 0.505581}, {-0.152676, 0.519380}, + {-0.071754, 0.516264}, { 0.015942, 0.472802}, { 0.076608, 0.419077}, + { 0.127673, 0.330264}, { 0.159951, 0.262150}, { 0.153530, 0.172681}, + { 0.140653, 0.089229}, { 0.078666, 0.024981}, { 0.023807, -0.037022}, + {-0.048837, -0.077056}, {-0.127729, -0.075338}, {-0.221271, -0.067526} + }; + for (int i = 0; i < points.length; ++i) { + circle.addPoint(points[i][0], points[i][1]); + } + GaussNewtonEstimator estimator = new GaussNewtonEstimator(100, 1.0e-6, 1.0e-6); + try { + estimator.estimate(circle); + fail("an exception should have been caught"); + } catch (EstimationException ee) { + // expected behavior + } catch (Exception e) { + fail("wrong exception type caught"); + } +} + + private static class LinearProblem extends SimpleEstimationProblem { + + public LinearProblem(LinearMeasurement[] measurements) { + HashSet set = new HashSet(); + for (int i = 0; i < measurements.length; ++i) { + addMeasurement(measurements[i]); + EstimatedParameter[] parameters = measurements[i].getParameters(); + for (int j = 0; j < parameters.length; ++j) { + set.add(parameters[j]); + } + } + for (Iterator iterator = set.iterator(); iterator.hasNext();) { + addParameter((EstimatedParameter) iterator.next()); + } + } + + } + + private static class LinearMeasurement extends WeightedMeasurement { + + public LinearMeasurement(double[] factors, EstimatedParameter[] parameters, + double setPoint) { + super(1.0, setPoint, true); + this.factors = factors; + this.parameters = parameters; + setIgnored(false); + } + + public double getTheoreticalValue() { + double v = 0; + for (int i = 0; i < factors.length; ++i) { + v += factors[i] * parameters[i].getEstimate(); + } + return v; + } + + public double getPartial(EstimatedParameter parameter) { + for (int i = 0; i < parameters.length; ++i) { + if (parameters[i] == parameter) { + return factors[i]; + } + } + return 0; + } + + public EstimatedParameter[] getParameters() { + return parameters; + } + + private double[] factors; + private EstimatedParameter[] parameters; + private static final long serialVersionUID = -3922448707008868580L; + + } + + private static class Circle implements EstimationProblem { + + public Circle(double cx, double cy) { + this.cx = new EstimatedParameter("cx", cx); + this.cy = new EstimatedParameter(new EstimatedParameter("cy", cy)); + points = new ArrayList(); + } + + public void addPoint(double px, double py) { + points.add(new PointModel(px, py)); + } + + public int getM() { + return points.size(); + } + + public WeightedMeasurement[] getMeasurements() { + return (WeightedMeasurement[]) points.toArray(new PointModel[points.size()]); + } + + public EstimatedParameter[] getAllParameters() { + return new EstimatedParameter[] { cx, cy }; + } + + public EstimatedParameter[] getUnboundParameters() { + return new EstimatedParameter[] { cx, cy }; + } + + public double getPartialRadiusX() { + double dRdX = 0; + for (Iterator iterator = points.iterator(); iterator.hasNext();) { + dRdX += ((PointModel) iterator.next()).getPartialDiX(); + } + return dRdX / points.size(); + } + + public double getPartialRadiusY() { + double dRdY = 0; + for (Iterator iterator = points.iterator(); iterator.hasNext();) { + dRdY += ((PointModel) iterator.next()).getPartialDiY(); + } + return dRdY / points.size(); + } + + public double getRadius() { + double r = 0; + for (Iterator iterator = points.iterator(); iterator.hasNext();) { + r += ((PointModel) iterator.next()).getCenterDistance(); + } + return r / points.size(); + } + + public double getX() { + return cx.getEstimate(); + } + + public double getY() { + return cy.getEstimate(); + } + + private class PointModel extends WeightedMeasurement { + + public PointModel(double px, double py) { + super(1.0, 0.0); + this.px = px; + this.py = py; + } + + public double getPartial(EstimatedParameter parameter) { + if (parameter == cx) { + return getPartialDiX() - getPartialRadiusX(); + } else if (parameter == cy) { + return getPartialDiY() - getPartialRadiusY(); + } + return 0; + } + + public double getCenterDistance() { + double dx = px - cx.getEstimate(); + double dy = py - cy.getEstimate(); + return Math.sqrt(dx * dx + dy * dy); + } + + public double getPartialDiX() { + return (cx.getEstimate() - px) / getCenterDistance(); + } + + public double getPartialDiY() { + return (cy.getEstimate() - py) / getCenterDistance(); + } + + public double getTheoreticalValue() { + return getCenterDistance() - getRadius(); + } + + private double px; + private double py; + private static final long serialVersionUID = 1L; + + } + + private EstimatedParameter cx; + private EstimatedParameter cy; + private ArrayList points; + + } + + public static Test suite() { + return new TestSuite(GaussNewtonEstimatorTest.class); + } + +}