Prevent infinite loops in multi-directional direct optimization method when the start point is exactly at the optimal point

JIRA: MATH-283

git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@804328 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Luc Maisonobe 2009-08-14 19:23:27 +00:00
parent 9cb0ca6b0f
commit 8fe6a83eb6
3 changed files with 113 additions and 47 deletions

View File

@ -21,6 +21,7 @@ import java.util.Comparator;
import org.apache.commons.math.FunctionEvaluationException;
import org.apache.commons.math.optimization.OptimizationException;
import org.apache.commons.math.optimization.RealConvergenceChecker;
import org.apache.commons.math.optimization.RealPointValuePair;
/**
@ -60,6 +61,7 @@ public class MultiDirectional extends DirectSearchOptimizer {
protected void iterateSimplex(final Comparator<RealPointValuePair> comparator)
throws FunctionEvaluationException, OptimizationException, IllegalArgumentException {
final RealConvergenceChecker checker = getConvergenceChecker();
while (true) {
incrementIterationsCounter();
@ -91,6 +93,16 @@ public class MultiDirectional extends DirectSearchOptimizer {
return;
}
// check convergence
final int iter = getIterations();
boolean converged = true;
for (int i = 0; i < simplex.length; ++i) {
converged &= checker.converged(iter, original[i], simplex[i]);
}
if (converged) {
return;
}
}
}

View File

@ -38,6 +38,12 @@ The <action> type attribute can be add,update,fix,remove.
<title>Commons Math Release Notes</title>
</properties>
<body>
<release version="2.1" date="TBD" description="TBD">
<action dev="luc" type="fix" issue="MATH-283" due-to="Michael Nischt">
Prevent infinite loops in multi-directional direct optimization method when
the start point is exactly at the optimal point
</action>
</release>
<release version="2.0" date="2009-08-03" description="
This is a major release. It combines bug fixes, new features and
changes to existing features. Most notable among the new features are:

View File

@ -17,24 +17,19 @@
package org.apache.commons.math.optimization.direct;
import junit.framework.Test;
import junit.framework.TestCase;
import junit.framework.TestSuite;
import org.apache.commons.math.ConvergenceException;
import org.apache.commons.math.FunctionEvaluationException;
import org.apache.commons.math.analysis.MultivariateRealFunction;
import org.apache.commons.math.optimization.GoalType;
import org.apache.commons.math.optimization.OptimizationException;
import org.apache.commons.math.optimization.RealPointValuePair;
import org.apache.commons.math.optimization.SimpleScalarValueChecker;
import org.junit.Assert;
import org.junit.Test;
public class MultiDirectionalTest
extends TestCase {
public MultiDirectionalTest(String name) {
super(name);
}
public class MultiDirectionalTest {
@Test
public void testFunctionEvaluationExceptions() {
MultivariateRealFunction wrong =
new MultivariateRealFunction() {
@ -52,25 +47,26 @@ public class MultiDirectionalTest
try {
MultiDirectional optimizer = new MultiDirectional(0.9, 1.9);
optimizer.optimize(wrong, GoalType.MINIMIZE, new double[] { -1.0 });
fail("an exception should have been thrown");
Assert.fail("an exception should have been thrown");
} catch (FunctionEvaluationException ce) {
// expected behavior
assertNull(ce.getCause());
Assert.assertNull(ce.getCause());
} catch (Exception e) {
fail("wrong exception caught: " + e.getMessage());
Assert.fail("wrong exception caught: " + e.getMessage());
}
try {
MultiDirectional optimizer = new MultiDirectional(0.9, 1.9);
optimizer.optimize(wrong, GoalType.MINIMIZE, new double[] { +2.0 });
fail("an exception should have been thrown");
Assert.fail("an exception should have been thrown");
} catch (FunctionEvaluationException ce) {
// expected behavior
assertNotNull(ce.getCause());
Assert.assertNotNull(ce.getCause());
} catch (Exception e) {
fail("wrong exception caught: " + e.getMessage());
Assert.fail("wrong exception caught: " + e.getMessage());
}
}
@Test
public void testMinimizeMaximize()
throws FunctionEvaluationException, ConvergenceException {
@ -93,43 +89,45 @@ public class MultiDirectionalTest
};
MultiDirectional optimizer = new MultiDirectional();
optimizer.setConvergenceChecker(new SimpleScalarValueChecker(1.0e-10, 1.0e-30));
optimizer.setConvergenceChecker(new SimpleScalarValueChecker(1.0e-11, 1.0e-30));
optimizer.setMaxIterations(200);
optimizer.setStartConfiguration(new double[] { 0.2, 0.2 });
RealPointValuePair optimum;
// minimization
optimum = optimizer.optimize(fourExtrema, GoalType.MINIMIZE, new double[] { -3.0, 0 });
assertEquals(xM, optimum.getPoint()[0], 4.0e-6);
assertEquals(yP, optimum.getPoint()[1], 3.0e-6);
assertEquals(valueXmYp, optimum.getValue(), 8.0e-13);
assertTrue(optimizer.getEvaluations() > 120);
assertTrue(optimizer.getEvaluations() < 150);
Assert.assertEquals(xM, optimum.getPoint()[0], 4.0e-6);
Assert.assertEquals(yP, optimum.getPoint()[1], 3.0e-6);
Assert.assertEquals(valueXmYp, optimum.getValue(), 8.0e-13);
Assert.assertTrue(optimizer.getEvaluations() > 120);
Assert.assertTrue(optimizer.getEvaluations() < 150);
optimum = optimizer.optimize(fourExtrema, GoalType.MINIMIZE, new double[] { +1, 0 });
assertEquals(xP, optimum.getPoint()[0], 2.0e-8);
assertEquals(yM, optimum.getPoint()[1], 3.0e-6);
assertEquals(valueXpYm, optimum.getValue(), 2.0e-12);
assertTrue(optimizer.getEvaluations() > 120);
assertTrue(optimizer.getEvaluations() < 150);
Assert.assertEquals(xP, optimum.getPoint()[0], 2.0e-8);
Assert.assertEquals(yM, optimum.getPoint()[1], 3.0e-6);
Assert.assertEquals(valueXpYm, optimum.getValue(), 2.0e-12);
Assert.assertTrue(optimizer.getEvaluations() > 120);
Assert.assertTrue(optimizer.getEvaluations() < 150);
// maximization
optimum = optimizer.optimize(fourExtrema, GoalType.MAXIMIZE, new double[] { -3.0, 0.0 });
assertEquals(xM, optimum.getPoint()[0], 7.0e-7);
assertEquals(yM, optimum.getPoint()[1], 3.0e-7);
assertEquals(valueXmYm, optimum.getValue(), 2.0e-14);
assertTrue(optimizer.getEvaluations() > 120);
assertTrue(optimizer.getEvaluations() < 150);
Assert.assertEquals(xM, optimum.getPoint()[0], 7.0e-7);
Assert.assertEquals(yM, optimum.getPoint()[1], 3.0e-7);
Assert.assertEquals(valueXmYm, optimum.getValue(), 2.0e-14);
Assert.assertTrue(optimizer.getEvaluations() > 120);
Assert.assertTrue(optimizer.getEvaluations() < 150);
optimizer.setConvergenceChecker(new SimpleScalarValueChecker(1.0e-15, 1.0e-30));
optimum = optimizer.optimize(fourExtrema, GoalType.MAXIMIZE, new double[] { +1, 0 });
assertEquals(xP, optimum.getPoint()[0], 2.0e-8);
assertEquals(yP, optimum.getPoint()[1], 3.0e-6);
assertEquals(valueXpYp, optimum.getValue(), 2.0e-12);
assertTrue(optimizer.getEvaluations() > 120);
assertTrue(optimizer.getEvaluations() < 150);
Assert.assertEquals(xP, optimum.getPoint()[0], 2.0e-8);
Assert.assertEquals(yP, optimum.getPoint()[1], 3.0e-6);
Assert.assertEquals(valueXpYp, optimum.getValue(), 2.0e-12);
Assert.assertTrue(optimizer.getEvaluations() > 180);
Assert.assertTrue(optimizer.getEvaluations() < 220);
}
@Test
public void testRosenbrock()
throws FunctionEvaluationException, ConvergenceException {
@ -154,13 +152,14 @@ public class MultiDirectionalTest
RealPointValuePair optimum =
optimizer.optimize(rosenbrock, GoalType.MINIMIZE, new double[] { -1.2, 1.0 });
assertEquals(count, optimizer.getEvaluations());
assertTrue(optimizer.getEvaluations() > 70);
assertTrue(optimizer.getEvaluations() < 100);
assertTrue(optimum.getValue() > 1.0e-2);
Assert.assertEquals(count, optimizer.getEvaluations());
Assert.assertTrue(optimizer.getEvaluations() > 50);
Assert.assertTrue(optimizer.getEvaluations() < 100);
Assert.assertTrue(optimum.getValue() > 1.0e-2);
}
@Test
public void testPowell()
throws FunctionEvaluationException, ConvergenceException {
@ -183,15 +182,64 @@ public class MultiDirectionalTest
optimizer.setMaxIterations(1000);
RealPointValuePair optimum =
optimizer.optimize(powell, GoalType.MINIMIZE, new double[] { 3.0, -1.0, 0.0, 1.0 });
assertEquals(count, optimizer.getEvaluations());
assertTrue(optimizer.getEvaluations() > 800);
assertTrue(optimizer.getEvaluations() < 900);
assertTrue(optimum.getValue() > 1.0e-2);
Assert.assertEquals(count, optimizer.getEvaluations());
Assert.assertTrue(optimizer.getEvaluations() > 800);
Assert.assertTrue(optimizer.getEvaluations() < 900);
Assert.assertTrue(optimum.getValue() > 1.0e-2);
}
public static Test suite() {
return new TestSuite(MultiDirectionalTest.class);
@Test
public void testMath283()
throws FunctionEvaluationException, OptimizationException {
// fails because MultiDirectional.iterateSimplex is looping forever
// the while(true) should be replaced with a convergence check
MultiDirectional multiDirectional = new MultiDirectional();
multiDirectional.setMaxIterations(100);
multiDirectional.setMaxEvaluations(1000);
final Gaussian2D function = new Gaussian2D(0.0, 0.0, 1.0);
RealPointValuePair estimate = multiDirectional.optimize(function,
GoalType.MAXIMIZE, function.getMaximumPosition());
final double EPSILON = 1e-5;
final double expectedMaximum = function.getMaximum();
final double actualMaximum = estimate.getValue();
Assert.assertEquals(expectedMaximum, actualMaximum, EPSILON);
final double[] expectedPosition = function.getMaximumPosition();
final double[] actualPosition = estimate.getPoint();
Assert.assertEquals(expectedPosition[0], actualPosition[0], EPSILON );
Assert.assertEquals(expectedPosition[1], actualPosition[1], EPSILON );
}
private static class Gaussian2D implements MultivariateRealFunction {
private final double[] maximumPosition;
private final double std;
public Gaussian2D(double xOpt, double yOpt, double std) {
maximumPosition = new double[] { xOpt, yOpt };
this.std = std;
}
public double getMaximum() {
return value(maximumPosition);
}
public double[] getMaximumPosition() {
return maximumPosition.clone();
}
public double value(double[] point) {
final double x = point[0], y = point[1];
final double twoS2 = 2.0 * std * std;
return 1.0 / (twoS2 * Math.PI) * Math.exp(-(x * x + y * y) / twoS2);
}
}
private int count;