Javadoc fixes.

git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1179926 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Phil Steitz 2011-10-07 03:18:05 +00:00
parent 23da497319
commit 91f737519e
5 changed files with 14 additions and 14 deletions

View File

@ -29,13 +29,13 @@ import org.apache.commons.math.util.FastMath;
* Legendre-Gauss</a> quadrature formula.
* <p>
* Legendre-Gauss integrators are efficient integrators that can
* accurately integrate functions with few functions evaluations. A
* accurately integrate functions with few function evaluations. A
* Legendre-Gauss integrator using an n-points quadrature formula can
* integrate exactly 2n-1 degree polynomialss.
* integrate 2n-1 degree polynomials exactly.
* </p>
* <p>
* These integrators evaluate the function on n carefully chosen
* abscissas in each step interval (mapped to the canonical [-1 1] interval).
* abscissas in each step interval (mapped to the canonical [-1,1] interval).
* The evaluation abscissas are not evenly spaced and none of them are
* at the interval endpoints. This implies the function integrated can be
* undefined at integration interval endpoints.
@ -231,7 +231,7 @@ public class LegendreGaussIntegrator extends UnivariateRealIntegratorImpl {
* Compute the n-th stage integral.
* @param n number of steps
* @return the value of n-th stage integral
* @throws TooManyEvaluationsException if the maximal number of evaluations
* @throws TooManyEvaluationsException if the maximum number of evaluations
* is exceeded.
*/
private double stage(final int n)

View File

@ -24,13 +24,13 @@ import org.apache.commons.math.exception.TooManyEvaluationsException;
import org.apache.commons.math.util.FastMath;
/**
* Implements the <a href="http://mathworld.wolfram.com/SimpsonsRule.html">
* Implements <a href="http://mathworld.wolfram.com/SimpsonsRule.html">
* Simpson's Rule</a> for integration of real univariate functions. For
* reference, see <b>Introduction to Numerical Analysis</b>, ISBN 038795452X,
* chapter 3.
* <p>
* This implementation employs basic trapezoid rule as building blocks to
* calculate the Simpson's rule of alternating 2/3 and 4/3.</p>
* This implementation employs the basic trapezoid rule to calculate Simpson's
* rule.</p>
*
* @version $Id$
* @since 1.2

View File

@ -25,7 +25,7 @@ import org.apache.commons.math.util.FastMath;
/**
* Implements the <a href="http://mathworld.wolfram.com/TrapezoidalRule.html">
* Trapezoidal Rule</a> for integration of real univariate functions. For
* Trapezoid Rule</a> for integration of real univariate functions. For
* reference, see <b>Introduction to Numerical Analysis</b>, ISBN 038795452X,
* chapter 3.
* <p>
@ -36,7 +36,7 @@ import org.apache.commons.math.util.FastMath;
*/
public class TrapezoidIntegrator extends UnivariateRealIntegratorImpl {
/** Maximal number of iterations for trapezoid. */
/** Maximum number of iterations for trapezoid. */
public static final int TRAPEZOID_MAX_ITERATIONS_COUNT = 64;
/** Intermediate result. */
@ -105,7 +105,7 @@ public class TrapezoidIntegrator extends UnivariateRealIntegratorImpl {
* <p>
* The interval is divided equally into 2^n sections rather than an
* arbitrary m sections because this configuration can best utilize the
* alrealy computed values.</p>
* already computed values.</p>
*
* @param baseIntegrator integrator holding integration parameters
* @param n the stage of 1/2 refinement, n = 0 is no refinement

View File

@ -65,8 +65,8 @@ public interface UnivariateRealIntegrator {
* @param min the min bound for the interval
* @param max the upper bound for the interval
* @return the value of integral
* @throws TooManyEvaluationsException if the maximal number of evaluations
* is exceeded.
* @throws TooManyEvaluationsException if the maximum number of function
* evaluations is exceeded.
* @throws MaxCountExceededException if the maximum iteration count is exceeded
* or the integrator detects convergence problems otherwise
* @throws MathIllegalArgumentException if min > max or the endpoints do not

View File

@ -194,8 +194,8 @@ public abstract class UnivariateRealIntegratorImpl implements UnivariateRealInte
*
* @param point Point at which the objective function must be evaluated.
* @return the objective function value at specified point.
* @throws TooManyEvaluationsException if the maximal number of evaluations
* is exceeded.
* @throws TooManyEvaluationsException if the maximal number of function
* evaluations is exceeded.
*/
protected double computeObjectiveValue(final double point)
throws TooManyEvaluationsException {