Added standalone test class for AbstractIntegerDistribution default implementations. JIRA: MATH-587.

git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1134966 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Phil Steitz 2011-06-12 19:39:27 +00:00
parent 72858b8447
commit 94415d4462

View File

@ -0,0 +1,171 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math.distribution;
import org.apache.commons.math.MathException;
import org.junit.Assert;
import org.junit.Test;
/**
* Test cases for AbstractIntegerDistribution default implementations
*
* @version $Id$
*/
public class AbtractIntegerDistributionTest {
protected final DiceDistribution diceDistribution = new DiceDistribution();
protected final double p = diceDistribution.probability(1);
@Test
public void testCumulativeProbabilitiesSingleIntegerArguments() throws Exception {
int lower = 1;
for (int i = 1; i < 7; i++) {
Assert.assertEquals(p * i,
diceDistribution.cumulativeProbability(lower), Double.MIN_VALUE);
lower++;
}
Assert.assertEquals(0,
diceDistribution.cumulativeProbability(-1), Double.MIN_VALUE);
Assert.assertEquals(1,
diceDistribution.cumulativeProbability(7), Double.MIN_VALUE);
}
@Test
public void testCumulativeProbabilitiesSingleDoubleArguments() throws Exception {
int lower = 1;
double arg = 0;
for (int i = 1; i < 7; i++) {
// Exact integer
arg = lower;
Assert.assertEquals(p * i,
diceDistribution.cumulativeProbability(arg), Double.MIN_VALUE);
// Add a fraction
arg = lower + Math.random();
Assert.assertEquals(p * i,
diceDistribution.cumulativeProbability(arg), Double.MIN_VALUE);
lower++;
}
}
@Test
public void testCumulativeProbabilitiesRangeIntegerArguments() throws Exception {
int lower = 1;
int upper = 6;
for (int i = 0; i < 2; i++) {
// cum(1,6) = p(1 <= X <= 6) = 1, cum(2,5) = 4/6, cum(3,4) = 2/6
Assert.assertEquals(1 - p * 2 * i,
diceDistribution.cumulativeProbability(lower, upper), 1E-12);
lower++;
upper--;
}
for (int i = 1; i < 7; i++) {
Assert.assertEquals(p, diceDistribution.cumulativeProbability(i, i), 1E-12);
}
}
@Test
public void testCumulativeProbabilitiesRangeDoubleArguments() throws Exception {
int lower = 1;
int upper = 6;
double dlower = lower;
double dupper = upper;
for (int i = 0; i < 2; i++) {
// cum(1,6) = p(1 <= X <= 6) = 1, cum(2,5) = 4/6, cum(3,4) = 2/6
// Exact integers
Assert.assertEquals(1 - p * 2 * i,
diceDistribution.cumulativeProbability(dlower, dupper), 1E-12);
// Subtract a fraction from lower, add to upper. Should be no change.
dlower -= Math.random();
dupper += Math.random();
Assert.assertEquals(1 - p * 2 * i,
diceDistribution.cumulativeProbability(dlower, dupper), 1E-12);
lower++;
upper--;
dlower = lower;
dupper = upper;
}
for (int i = 1; i < 7; i++) {
lower = i;
Assert.assertEquals(p, diceDistribution.cumulativeProbability(
lower, lower), 1E-12);
Assert.assertEquals(p, diceDistribution.cumulativeProbability(
lower, lower + Math.random()), 1E-12);
Assert.assertEquals(p, diceDistribution.cumulativeProbability(
lower - Math.random(), lower), 1E-12);
Assert.assertEquals(p, diceDistribution.cumulativeProbability(
lower - Math.random(), lower + Math.random()), 1E-12);
}
}
/**
* Simple distribution modeling a 6-sided die
*/
class DiceDistribution extends AbstractIntegerDistribution {
public static final long serialVersionUID = 23734213;
private final double p = 1d/6d;
public double probability(int x) {
if (x < 1 || x > 6) {
return 0;
} else {
return p;
}
}
@Override
public double cumulativeProbability(int x) throws MathException {
if (x < 1) {
return 0;
} else if (x >= 6) {
return 1;
} else {
return p * x;
}
}
@Override
protected int getDomainLowerBound(double p) {
return 1;
}
@Override
protected int getDomainUpperBound(double p) {
return 6;
}
@Override
public int getSupportLowerBound() {
return 1;
}
@Override
public int getSupportUpperBound() {
return 6;
}
@Override
protected double calculateNumericalMean() {
return 3.5;
}
@Override
protected double calculateNumericalVariance() {
return 12.5 - 3.5 * 3.5; // E(X^2) - E(X)^2
}
}
}