Unit tests.
git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1488256 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
1fc99654bd
commit
94c9d2e023
|
@ -19,6 +19,9 @@ package org.apache.commons.math3.analysis.interpolation;
|
|||
import org.apache.commons.math3.exception.DimensionMismatchException;
|
||||
import org.apache.commons.math3.exception.MathIllegalArgumentException;
|
||||
import org.apache.commons.math3.analysis.BivariateFunction;
|
||||
import org.apache.commons.math3.distribution.UniformRealDistribution;
|
||||
import org.apache.commons.math3.random.RandomGenerator;
|
||||
import org.apache.commons.math3.random.Well19937c;
|
||||
import org.junit.Assert;
|
||||
import org.junit.Test;
|
||||
import org.junit.Ignore;
|
||||
|
@ -444,4 +447,165 @@ public final class BicubicSplineInterpolatingFunctionTest {
|
|||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Interpolating a plane.
|
||||
* <p>
|
||||
* z = 2 x - 3 y + 5
|
||||
*/
|
||||
@Test
|
||||
public void testInterpolation1() {
|
||||
final int sz = 21;
|
||||
double[] xval = new double[sz];
|
||||
double[] yval = new double[sz];
|
||||
// Coordinate values
|
||||
final double delta = 1d / (sz - 1);
|
||||
for (int i = 0; i < sz; i++) {
|
||||
xval[i] = -1 + 15 * i * delta;
|
||||
yval[i] = -20 + 30 * i * delta;
|
||||
}
|
||||
|
||||
// Function values
|
||||
BivariateFunction f = new BivariateFunction() {
|
||||
public double value(double x, double y) {
|
||||
return 2 * x - 3 * y + 5;
|
||||
}
|
||||
};
|
||||
double[][] zval = new double[xval.length][yval.length];
|
||||
for (int i = 0; i < xval.length; i++) {
|
||||
for (int j = 0; j < yval.length; j++) {
|
||||
zval[i][j] = f.value(xval[i], yval[j]);
|
||||
}
|
||||
}
|
||||
// Partial derivatives with respect to x
|
||||
double[][] dZdX = new double[xval.length][yval.length];
|
||||
for (int i = 0; i < xval.length; i++) {
|
||||
for (int j = 0; j < yval.length; j++) {
|
||||
dZdX[i][j] = 2;
|
||||
}
|
||||
}
|
||||
// Partial derivatives with respect to y
|
||||
double[][] dZdY = new double[xval.length][yval.length];
|
||||
for (int i = 0; i < xval.length; i++) {
|
||||
for (int j = 0; j < yval.length; j++) {
|
||||
dZdY[i][j] = -3;
|
||||
}
|
||||
}
|
||||
// Partial cross-derivatives
|
||||
double[][] dZdXdY = new double[xval.length][yval.length];
|
||||
for (int i = 0; i < xval.length; i++) {
|
||||
for (int j = 0; j < yval.length; j++) {
|
||||
dZdXdY[i][j] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
final BivariateFunction bcf
|
||||
= new BicubicSplineInterpolatingFunction(xval, yval, zval,
|
||||
dZdX, dZdY, dZdXdY);
|
||||
double x, y;
|
||||
double expected, result;
|
||||
|
||||
final RandomGenerator rng = new Well19937c(1234567L); // "tol" depends on the seed.
|
||||
final UniformRealDistribution distX
|
||||
= new UniformRealDistribution(xval[0], xval[xval.length - 1]);
|
||||
final UniformRealDistribution distY
|
||||
= new UniformRealDistribution(yval[0], yval[yval.length - 1]);
|
||||
|
||||
final int numSamples = 50;
|
||||
final double tol = 6;
|
||||
for (int i = 0; i < numSamples; i++) {
|
||||
x = distX.sample();
|
||||
for (int j = 0; j < numSamples; j++) {
|
||||
y = distY.sample();
|
||||
// System.out.println(x + " " + y + " " + f.value(x, y) + " " + bcf.value(x, y));
|
||||
Assert.assertEquals(f.value(x, y), bcf.value(x, y), tol);
|
||||
}
|
||||
// System.out.println();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Interpolating a paraboloid.
|
||||
* <p>
|
||||
* z = 2 x<sup>2</sup> - 3 y<sup>2</sup> + 4 x y - 5
|
||||
*/
|
||||
@Test
|
||||
public void testInterpolation2() {
|
||||
final int sz = 21;
|
||||
double[] xval = new double[sz];
|
||||
double[] yval = new double[sz];
|
||||
// Coordinate values
|
||||
final double delta = 1d / (sz - 1);
|
||||
for (int i = 0; i < sz; i++) {
|
||||
xval[i] = -1 + 15 * i * delta;
|
||||
yval[i] = -20 + 30 * i * delta;
|
||||
}
|
||||
|
||||
// Function values
|
||||
BivariateFunction f = new BivariateFunction() {
|
||||
public double value(double x, double y) {
|
||||
return 2 * x * x - 3 * y * y + 4 * x * y - 5;
|
||||
}
|
||||
};
|
||||
double[][] zval = new double[xval.length][yval.length];
|
||||
for (int i = 0; i < xval.length; i++) {
|
||||
for (int j = 0; j < yval.length; j++) {
|
||||
zval[i][j] = f.value(xval[i], yval[j]);
|
||||
}
|
||||
}
|
||||
// Partial derivatives with respect to x
|
||||
double[][] dZdX = new double[xval.length][yval.length];
|
||||
BivariateFunction dfdX = new BivariateFunction() {
|
||||
public double value(double x, double y) {
|
||||
return 4 * (x + y);
|
||||
}
|
||||
};
|
||||
for (int i = 0; i < xval.length; i++) {
|
||||
for (int j = 0; j < yval.length; j++) {
|
||||
dZdX[i][j] = dfdX.value(xval[i], yval[j]);
|
||||
}
|
||||
}
|
||||
// Partial derivatives with respect to y
|
||||
double[][] dZdY = new double[xval.length][yval.length];
|
||||
BivariateFunction dfdY = new BivariateFunction() {
|
||||
public double value(double x, double y) {
|
||||
return 4 * x - 6 * y;
|
||||
}
|
||||
};
|
||||
for (int i = 0; i < xval.length; i++) {
|
||||
for (int j = 0; j < yval.length; j++) {
|
||||
dZdY[i][j] = dfdY.value(xval[i], yval[j]);
|
||||
}
|
||||
}
|
||||
// Partial cross-derivatives
|
||||
double[][] dZdXdY = new double[xval.length][yval.length];
|
||||
for (int i = 0; i < xval.length; i++) {
|
||||
for (int j = 0; j < yval.length; j++) {
|
||||
dZdXdY[i][j] = 4;
|
||||
}
|
||||
}
|
||||
|
||||
BivariateFunction bcf = new BicubicSplineInterpolatingFunction(xval, yval, zval,
|
||||
dZdX, dZdY, dZdXdY);
|
||||
double x, y;
|
||||
double expected, result;
|
||||
|
||||
final RandomGenerator rng = new Well19937c(1234567L); // "tol" depends on the seed.
|
||||
final UniformRealDistribution distX
|
||||
= new UniformRealDistribution(rng, xval[0], xval[xval.length - 1]);
|
||||
final UniformRealDistribution distY
|
||||
= new UniformRealDistribution(rng, yval[0], yval[yval.length - 1]);
|
||||
|
||||
final double tol = 224;
|
||||
double max = 0;
|
||||
for (int i = 0; i < sz; i++) {
|
||||
x = distX.sample();
|
||||
for (int j = 0; j < sz; j++) {
|
||||
y = distY.sample();
|
||||
// System.out.println(x + " " + y + " " + f.value(x, y) + " " + bcf.value(x, y));
|
||||
Assert.assertEquals(f.value(x, y), bcf.value(x, y), tol);
|
||||
}
|
||||
// System.out.println();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue