Merge branch 'master' of https://git-wip-us.apache.org/repos/asf/commons-math
This commit is contained in:
commit
9786ad4de8
|
@ -8,3 +8,7 @@ target
|
||||||
/lib
|
/lib
|
||||||
/site-content
|
/site-content
|
||||||
*.class
|
*.class
|
||||||
|
*.iml
|
||||||
|
*.ipr
|
||||||
|
*.iws
|
||||||
|
.idea
|
||||||
|
|
|
@ -73,6 +73,10 @@ Users are encouraged to upgrade to this version as this release not
|
||||||
2. A few methods in the FastMath class are in fact slower that their
|
2. A few methods in the FastMath class are in fact slower that their
|
||||||
counterpart in either Math or StrictMath (cf. MATH-740 and MATH-901).
|
counterpart in either Math or StrictMath (cf. MATH-740 and MATH-901).
|
||||||
">
|
">
|
||||||
|
<action dev="tn" type="fix" issue="MATH-1165" due-to="Pashutan Modaresi">
|
||||||
|
"FuzzyKMeansClusterer" has thrown an exception in case one of the data
|
||||||
|
points was equal to a cluster center.
|
||||||
|
</action>
|
||||||
<action dev="erans" type="add" issue="MATH-1144">
|
<action dev="erans" type="add" issue="MATH-1144">
|
||||||
Interface to allow parameter validation in "o.a.c.m.fitting.leastsquares":
|
Interface to allow parameter validation in "o.a.c.m.fitting.leastsquares":
|
||||||
the point computed by by the optimizer can be modified before evaluation.
|
the point computed by by the optimizer can be modified before evaluation.
|
||||||
|
|
|
@ -51,6 +51,7 @@ public class LeastSquaresFactory {
|
||||||
* @param model the model function. Produces the computed values.
|
* @param model the model function. Produces the computed values.
|
||||||
* @param observed the observed (target) values
|
* @param observed the observed (target) values
|
||||||
* @param start the initial guess.
|
* @param start the initial guess.
|
||||||
|
* @param weight the weight matrix
|
||||||
* @param checker convergence checker
|
* @param checker convergence checker
|
||||||
* @param maxEvaluations the maximum number of times to evaluate the model
|
* @param maxEvaluations the maximum number of times to evaluate the model
|
||||||
* @param maxIterations the maximum number to times to iterate in the algorithm
|
* @param maxIterations the maximum number to times to iterate in the algorithm
|
||||||
|
@ -74,7 +75,7 @@ public class LeastSquaresFactory {
|
||||||
observed,
|
observed,
|
||||||
start,
|
start,
|
||||||
checker,
|
checker,
|
||||||
maxEvaluations,
|
maxEvaluations,
|
||||||
maxIterations,
|
maxIterations,
|
||||||
lazyEvaluation,
|
lazyEvaluation,
|
||||||
paramValidator);
|
paramValidator);
|
||||||
|
|
|
@ -346,18 +346,32 @@ public class FuzzyKMeansClusterer<T extends Clusterable> extends Clusterer<T> {
|
||||||
private void updateMembershipMatrix() {
|
private void updateMembershipMatrix() {
|
||||||
for (int i = 0; i < points.size(); i++) {
|
for (int i = 0; i < points.size(); i++) {
|
||||||
final T point = points.get(i);
|
final T point = points.get(i);
|
||||||
double maxMembership = 0.0;
|
double maxMembership = Double.MIN_VALUE;
|
||||||
int newCluster = -1;
|
int newCluster = -1;
|
||||||
for (int j = 0; j < clusters.size(); j++) {
|
for (int j = 0; j < clusters.size(); j++) {
|
||||||
double sum = 0.0;
|
double sum = 0.0;
|
||||||
final double distA = FastMath.abs(distance(point, clusters.get(j).getCenter()));
|
final double distA = FastMath.abs(distance(point, clusters.get(j).getCenter()));
|
||||||
|
|
||||||
for (final CentroidCluster<T> c : clusters) {
|
if (distA != 0.0) {
|
||||||
final double distB = FastMath.abs(distance(point, c.getCenter()));
|
for (final CentroidCluster<T> c : clusters) {
|
||||||
sum += FastMath.pow(distA / distB, 2.0 / (fuzziness - 1.0));
|
final double distB = FastMath.abs(distance(point, c.getCenter()));
|
||||||
|
if (distB == 0.0) {
|
||||||
|
sum = Double.POSITIVE_INFINITY;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
sum += FastMath.pow(distA / distB, 2.0 / (fuzziness - 1.0));
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
membershipMatrix[i][j] = 1.0 / sum;
|
double membership;
|
||||||
|
if (sum == 0.0) {
|
||||||
|
membership = 1.0;
|
||||||
|
} else if (sum == Double.POSITIVE_INFINITY) {
|
||||||
|
membership = 0.0;
|
||||||
|
} else {
|
||||||
|
membership = 1.0 / sum;
|
||||||
|
}
|
||||||
|
membershipMatrix[i][j] = membership;
|
||||||
|
|
||||||
if (membershipMatrix[i][j] > maxMembership) {
|
if (membershipMatrix[i][j] > maxMembership) {
|
||||||
maxMembership = membershipMatrix[i][j];
|
maxMembership = membershipMatrix[i][j];
|
||||||
|
|
|
@ -16,9 +16,6 @@
|
||||||
*/
|
*/
|
||||||
package org.apache.commons.math3.ml.clustering;
|
package org.apache.commons.math3.ml.clustering;
|
||||||
|
|
||||||
import org.hamcrest.CoreMatchers;
|
|
||||||
import org.junit.Assert;
|
|
||||||
|
|
||||||
import java.util.ArrayList;
|
import java.util.ArrayList;
|
||||||
import java.util.Arrays;
|
import java.util.Arrays;
|
||||||
import java.util.List;
|
import java.util.List;
|
||||||
|
@ -29,6 +26,8 @@ import org.apache.commons.math3.ml.distance.CanberraDistance;
|
||||||
import org.apache.commons.math3.ml.distance.DistanceMeasure;
|
import org.apache.commons.math3.ml.distance.DistanceMeasure;
|
||||||
import org.apache.commons.math3.random.JDKRandomGenerator;
|
import org.apache.commons.math3.random.JDKRandomGenerator;
|
||||||
import org.apache.commons.math3.random.RandomGenerator;
|
import org.apache.commons.math3.random.RandomGenerator;
|
||||||
|
import org.hamcrest.CoreMatchers;
|
||||||
|
import org.junit.Assert;
|
||||||
import org.junit.Test;
|
import org.junit.Test;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
|
@ -106,4 +105,31 @@ public class FuzzyKMeansClustererTest {
|
||||||
Assert.assertThat(clusterer.getRandomGenerator(), CoreMatchers.is(random));
|
Assert.assertThat(clusterer.getRandomGenerator(), CoreMatchers.is(random));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void testSingleCluster() {
|
||||||
|
final List<DoublePoint> points = new ArrayList<DoublePoint>();
|
||||||
|
points.add(new DoublePoint(new double[] { 1, 1 }));
|
||||||
|
|
||||||
|
final FuzzyKMeansClusterer<DoublePoint> transformer =
|
||||||
|
new FuzzyKMeansClusterer<DoublePoint>(1, 2.0);
|
||||||
|
final List<CentroidCluster<DoublePoint>> clusters = transformer.cluster(points);
|
||||||
|
|
||||||
|
Assert.assertEquals(1, clusters.size());
|
||||||
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void testClusterCenterEqualsPoints() {
|
||||||
|
final List<DoublePoint> points = new ArrayList<DoublePoint>();
|
||||||
|
points.add(new DoublePoint(new double[] { 1, 1 }));
|
||||||
|
points.add(new DoublePoint(new double[] { 1.00001, 1.00001 }));
|
||||||
|
points.add(new DoublePoint(new double[] { 2, 2 }));
|
||||||
|
points.add(new DoublePoint(new double[] { 3, 3 }));
|
||||||
|
|
||||||
|
final FuzzyKMeansClusterer<DoublePoint> transformer =
|
||||||
|
new FuzzyKMeansClusterer<DoublePoint>(3, 2.0);
|
||||||
|
final List<CentroidCluster<DoublePoint>> clusters = transformer.cluster(points);
|
||||||
|
|
||||||
|
Assert.assertEquals(3, clusters.size());
|
||||||
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in New Issue