Code upgraded following MATH-1500.
This commit is contained in:
parent
ec77f54bef
commit
9988a5b3c4
|
@ -21,16 +21,17 @@ import java.util.Arrays;
|
|||
import java.util.HashMap;
|
||||
import java.util.Map;
|
||||
|
||||
import org.apache.commons.math4.fraction.BigFraction;
|
||||
import org.apache.commons.numbers.fraction.BigFraction;
|
||||
import org.apache.commons.numbers.field.BigFractionField;
|
||||
import org.apache.commons.math4.linear.Array2DRowFieldMatrix;
|
||||
import org.apache.commons.math4.linear.Array2DRowRealMatrix;
|
||||
import org.apache.commons.math4.linear.ArrayFieldVector;
|
||||
import org.apache.commons.math4.linear.FieldDecompositionSolver;
|
||||
import org.apache.commons.math4.linear.FieldLUDecomposition;
|
||||
import org.apache.commons.math4.linear.FieldMatrix;
|
||||
import org.apache.commons.math4.linear.MatrixUtils;
|
||||
import org.apache.commons.math4.linear.QRDecomposition;
|
||||
import org.apache.commons.math4.linear.RealMatrix;
|
||||
import org.apache.commons.math4.field.linalg.FieldDenseMatrix;
|
||||
import org.apache.commons.math4.field.linalg.FieldDecompositionSolver;
|
||||
import org.apache.commons.math4.field.linalg.FieldLUDecomposition;
|
||||
|
||||
/** Transformer to Nordsieck vectors for Adams integrators.
|
||||
* <p>This class is used by {@link AdamsBashforthIntegrator Adams-Bashforth} and
|
||||
|
@ -148,38 +149,45 @@ public class AdamsNordsieckTransformer {
|
|||
* (excluding the one being computed)
|
||||
*/
|
||||
private AdamsNordsieckTransformer(final int n) {
|
||||
|
||||
final int rows = n - 1;
|
||||
final int dim = n - 1;
|
||||
|
||||
// compute exact coefficients
|
||||
FieldMatrix<BigFraction> bigP = buildP(rows);
|
||||
FieldDecompositionSolver<BigFraction> pSolver =
|
||||
new FieldLUDecomposition<>(bigP).getSolver();
|
||||
final FieldDenseMatrix<BigFraction> bigP = buildP(dim);
|
||||
final FieldDecompositionSolver<BigFraction> pSolver = FieldLUDecomposition.of(bigP).getSolver();
|
||||
|
||||
BigFraction[] u = new BigFraction[rows];
|
||||
Arrays.fill(u, BigFraction.ONE);
|
||||
BigFraction[] bigC1 = pSolver.solve(new ArrayFieldVector<>(u, false)).toArray();
|
||||
final FieldDenseMatrix<BigFraction> u = FieldDenseMatrix.create(BigFractionField.get(), dim, 1)
|
||||
.fill(BigFraction.ONE);
|
||||
final FieldDenseMatrix<BigFraction> bigC1 = pSolver.solve(u);
|
||||
|
||||
// update coefficients are computed by combining transform from
|
||||
// Nordsieck to multistep, then shifting rows to represent step advance
|
||||
// then applying inverse transform
|
||||
BigFraction[][] shiftedP = bigP.getData();
|
||||
for (int i = shiftedP.length - 1; i > 0; --i) {
|
||||
final FieldDenseMatrix<BigFraction> shiftedP = bigP.copy();
|
||||
for (int i = dim - 1; i > 0; --i) {
|
||||
// shift rows
|
||||
shiftedP[i] = shiftedP[i - 1];
|
||||
for (int j = 0; j < dim; j++) {
|
||||
shiftedP.set(i, j, shiftedP.get(i - 1, j));
|
||||
}
|
||||
}
|
||||
shiftedP[0] = new BigFraction[rows];
|
||||
Arrays.fill(shiftedP[0], BigFraction.ZERO);
|
||||
FieldMatrix<BigFraction> bigMSupdate =
|
||||
pSolver.solve(new Array2DRowFieldMatrix<>(shiftedP, false));
|
||||
for (int j = 0; j < dim; j++) {
|
||||
shiftedP.set(0, j, BigFraction.ZERO);
|
||||
}
|
||||
|
||||
final FieldDenseMatrix<BigFraction> bigMSupdate = pSolver.solve(shiftedP);
|
||||
|
||||
// convert coefficients to double
|
||||
update = MatrixUtils.bigFractionMatrixToRealMatrix(bigMSupdate);
|
||||
c1 = new double[rows];
|
||||
for (int i = 0; i < rows; ++i) {
|
||||
c1[i] = bigC1[i].doubleValue();
|
||||
final double[][] updateData = new double[dim][dim];
|
||||
for (int i = 0; i < dim; i++) {
|
||||
for (int j = 0; j < dim; j++) {
|
||||
updateData[i][j] = bigMSupdate.get(i, j).doubleValue();
|
||||
}
|
||||
}
|
||||
|
||||
update = new Array2DRowRealMatrix(updateData, false);
|
||||
c1 = new double[dim];
|
||||
for (int i = 0; i < dim; ++i) {
|
||||
c1[i] = bigC1.get(i, 0).doubleValue();
|
||||
}
|
||||
}
|
||||
|
||||
/** Get the Nordsieck transformer for a given number of steps.
|
||||
|
@ -223,23 +231,23 @@ public class AdamsNordsieckTransformer {
|
|||
* @param rows number of rows of the matrix
|
||||
* @return P matrix
|
||||
*/
|
||||
private FieldMatrix<BigFraction> buildP(final int rows) {
|
||||
private FieldDenseMatrix<BigFraction> buildP(final int rows) {
|
||||
final FieldDenseMatrix<BigFraction> pData = FieldDenseMatrix.create(BigFractionField.get(),
|
||||
rows, rows)
|
||||
.fill(BigFraction.ZERO);
|
||||
|
||||
final BigFraction[][] pData = new BigFraction[rows][rows];
|
||||
|
||||
for (int i = 1; i <= pData.length; ++i) {
|
||||
for (int i = 1; i <= rows; ++i) {
|
||||
// build the P matrix elements from Taylor series formulas
|
||||
final BigFraction[] pI = pData[i - 1];
|
||||
final int factor = -i;
|
||||
int aj = factor;
|
||||
for (int j = 1; j <= pI.length; ++j) {
|
||||
pI[j - 1] = new BigFraction(aj * (j + 1));
|
||||
for (int j = 1; j <= rows; ++j) {
|
||||
pData.set(i - 1, j - 1,
|
||||
BigFraction.of(aj * (j + 1)));
|
||||
aj *= factor;
|
||||
}
|
||||
}
|
||||
|
||||
return new Array2DRowFieldMatrix<>(pData, false);
|
||||
|
||||
return pData;
|
||||
}
|
||||
|
||||
/** Initialize the high order scaled derivatives at step start.
|
||||
|
|
Loading…
Reference in New Issue