Tab police

git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1499813 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Sebastian Bazley 2013-07-04 17:24:47 +00:00
parent a6dfb27d91
commit 99db22a8df
9 changed files with 47 additions and 47 deletions

View File

@ -97,7 +97,7 @@
<!-- Should Java compilations set the 'optimize' compiler option? --> <!-- Should Java compilations set the 'optimize' compiler option? -->
<property name="compile.optimize" value="true"/> <property name="compile.optimize" value="true"/>
<!-- File encoding --> <!-- File encoding -->
<property name="source.encoding" value="UTF-8"/> <property name="source.encoding" value="UTF-8"/>
@ -241,9 +241,9 @@
author="true" author="true"
private="true" private="true"
version="true" version="true"
encoding="${source.encoding}" encoding="${source.encoding}"
charset="${source.encoding}" charset="${source.encoding}"
docencoding="${source.encoding}" docencoding="${source.encoding}"
doctitle="&lt;h1&gt;${component.title} ${component.version}&lt;/h1&gt;" doctitle="&lt;h1&gt;${component.title} ${component.version}&lt;/h1&gt;"
windowtitle="${component.title} ${component.version}" windowtitle="${component.title} ${component.version}"
bottom="Copyright (c) 2003-${current.year} Apache Software Foundation" bottom="Copyright (c) 2003-${current.year} Apache Software Foundation"

View File

@ -105,7 +105,7 @@
<!-- The following equality test is intentional and needed for rounding purposes --> <!-- The following equality test is intentional and needed for rounding purposes -->
<Match> <Match>
<Class name="org.apache.commons.math3.util.Precision" /> <Class name="org.apache.commons.math3.util.Precision" />
<Method name="roundUnscaled" params="double,double,int" returns="double" /> <Method name="roundUnscaled" params="double,double,int" returns="double" />
<Bug pattern="FE_FLOATING_POINT_EQUALITY" /> <Bug pattern="FE_FLOATING_POINT_EQUALITY" />
</Match> </Match>

View File

@ -707,17 +707,17 @@ counterpart in either Math or StrictMath (cf. MATH-740).
Removed "MathRuntimeException" (from package "o.a.c.math"). Removed "MathRuntimeException" (from package "o.a.c.math").
</action> </action>
<action dev="tn" type="fix" issue="MATH-739"> <action dev="tn" type="fix" issue="MATH-739">
Merged interface and implementation of statistical tests in Merged interface and implementation of statistical tests in
o.a.c.m.stat.inference package. o.a.c.m.stat.inference package.
</action> </action>
<action dev="tn" type="update" issue="MATH-670"> <action dev="tn" type="update" issue="MATH-670">
Merged interface and implementation of EmpiricalDistribution. Merged interface and implementation of EmpiricalDistribution.
</action> </action>
<action dev="tn" type="fix" issue="MATH-588"> <action dev="tn" type="fix" issue="MATH-588">
Relaxed test for equality in UnivariateStatisticAbstractTest. Relaxed test for equality in UnivariateStatisticAbstractTest.
</action> </action>
<action dev="tn" type="update" issue="MATH-575"> <action dev="tn" type="update" issue="MATH-575">
Modified the genetics package to use localized exception messages. Modified the genetics package to use localized exception messages.
</action> </action>
<action dev="tn" type="fix" issue="MATH-652" due-to="Greg Sterijevski"> <action dev="tn" type="fix" issue="MATH-652" due-to="Greg Sterijevski">
Fixed a faulty test for zero in TridiagonalTransformer. Fixed a faulty test for zero in TridiagonalTransformer.

View File

@ -141,7 +141,7 @@ public class MidPointIntegrator extends BaseAbstractUnivariateIntegrator {
/** {@inheritDoc} */ /** {@inheritDoc} */
@Override @Override
protected double doIntegrate() protected double doIntegrate()
throws MathIllegalArgumentException, TooManyEvaluationsException, MaxCountExceededException { throws MathIllegalArgumentException, TooManyEvaluationsException, MaxCountExceededException {
final double min = getMin(); final double min = getMin();

View File

@ -41,22 +41,22 @@
MeasurementModel</a>, which contain the corresponding transformation and noise covariance matrices. MeasurementModel</a>, which contain the corresponding transformation and noise covariance matrices.
The parameter names used in the respective models correspond to the following names commonly used The parameter names used in the respective models correspond to the following names commonly used
in the mathematical literature: in the mathematical literature:
<ul> <ul>
<li>A - state transition matrix</li> <li>A - state transition matrix</li>
<li>B - control input matrix</li> <li>B - control input matrix</li>
<li>H - measurement matrix</li> <li>H - measurement matrix</li>
<li>Q - process noise covariance matrix</li> <li>Q - process noise covariance matrix</li>
<li>R - measurement noise covariance matrix</li> <li>R - measurement noise covariance matrix</li>
<li>P - error covariance matrix</li> <li>P - error covariance matrix</li>
</ul> </ul>
</p> </p>
<p> <p>
<dl> <dl>
<dt>Initialization</dt> <dt>Initialization</dt>
<dd> The following code will create a Kalman filter using the provided <dd> The following code will create a Kalman filter using the provided
DefaultMeasurementModel and DefaultProcessModel classes. To support dynamically changing DefaultMeasurementModel and DefaultProcessModel classes. To support dynamically changing
process and measurement noises, simply implement your own models. process and measurement noises, simply implement your own models.
<source> <source>
// A = [ 1 ] // A = [ 1 ]
RealMatrix A = new Array2DRowRealMatrix(new double[] { 1d }); RealMatrix A = new Array2DRowRealMatrix(new double[] { 1d });
// no control input // no control input
@ -72,11 +72,11 @@ ProcessModel pm
= new DefaultProcessModel(A, B, Q, new ArrayRealVector(new double[] { 0 }), null); = new DefaultProcessModel(A, B, Q, new ArrayRealVector(new double[] { 0 }), null);
MeasurementModel mm = new DefaultMeasurementModel(H, R); MeasurementModel mm = new DefaultMeasurementModel(H, R);
KalmanFilter filter = new KalmanFilter(pm, mm); KalmanFilter filter = new KalmanFilter(pm, mm);
</source> </source>
</dd> </dd>
<dt>Iteration</dt> <dt>Iteration</dt>
<dd>The following code illustrates how to perform the predict/correct cycle: <dd>The following code illustrates how to perform the predict/correct cycle:
<source> <source>
for (;;) { for (;;) {
// predict the state estimate one time-step ahead // predict the state estimate one time-step ahead
// optionally provide some control input // optionally provide some control input
@ -91,9 +91,9 @@ for (;;) {
double[] stateEstimate = filter.getStateEstimation(); double[] stateEstimate = filter.getStateEstimation();
// do something with it // do something with it
} }
</source> </source>
</dd> </dd>
<dt>Constant Voltage Example</dt> <dt>Constant Voltage Example</dt>
<dd>The following example creates a Kalman filter for a static process: a system with a <dd>The following example creates a Kalman filter for a static process: a system with a
constant voltage as internal state. We observe this process with an artificially constant voltage as internal state. We observe this process with an artificially
imposed measurement noise of 0.1V and assume an internal process noise of 1e-5V. imposed measurement noise of 0.1V and assume an internal process noise of 1e-5V.
@ -148,7 +148,7 @@ for (int i = 0; i &lt; 60; i++) {
} }
</source> </source>
</dd> </dd>
<dt>Increasing Speed Vehicle Example</dt> <dt>Increasing Speed Vehicle Example</dt>
<dd>The following example creates a Kalman filter for a simple linear process: a <dd>The following example creates a Kalman filter for a simple linear process: a
vehicle driving along a street with a velocity increasing at a constant rate. The process vehicle driving along a street with a velocity increasing at a constant rate. The process
state is modeled as (position, velocity) and we only observe the position. A measurement state is modeled as (position, velocity) and we only observe the position. A measurement

View File

@ -164,7 +164,7 @@
</p> </p>
</subsection> </subsection>
<subsection name="11.3 Binary Space Partitioning" href="partitioning"> <subsection name="11.3 Binary Space Partitioning" href="partitioning">
<p> <p>
<a href="../apidocs/org/apache/commons/math3/geometry/partitioning/BSPTree.html"> <a href="../apidocs/org/apache/commons/math3/geometry/partitioning/BSPTree.html">
BSP trees</a> are an efficient way to represent space partitions and BSP trees</a> are an efficient way to represent space partitions and
to associate attributes with each cell. Each node in a BSP tree to associate attributes with each cell. Each node in a BSP tree

View File

@ -253,11 +253,11 @@
<dl> <dl>
<dt>Quadratic Problem Example</dt> <dt>Quadratic Problem Example</dt>
<dd> <dd>
We are looking to find the best parameters [a, b, c] for the quadratic function We are looking to find the best parameters [a, b, c] for the quadratic function
<b><code>f(x) = a x<sup>2</sup> + b x + c</code></b>. <b><code>f(x) = a x<sup>2</sup> + b x + c</code></b>.
The data set below was generated using [a = 8, b = 10, c = 16]. The data set below was generated using [a = 8, b = 10, c = 16].
A random number between zero and one was added to each y value calculated. A random number between zero and one was added to each y value calculated.
<table cellspacing="0" cellpadding="3"> <table cellspacing="0" cellpadding="3">
@ -323,9 +323,9 @@ We'll tackle the implementation of the <code>MultivariateMatrixFunction jacobian
In this case the Jacobian is the partial derivative of the function with respect In this case the Jacobian is the partial derivative of the function with respect
to the parameters a, b and c. These derivatives are computed as follows: to the parameters a, b and c. These derivatives are computed as follows:
<ul> <ul>
<li>d(ax<sup>2</sup> + bx + c)/da = x<sup>2</sup></li> <li>d(ax<sup>2</sup> + bx + c)/da = x<sup>2</sup></li>
<li>d(ax<sup>2</sup> + bx + c)/db = x</li> <li>d(ax<sup>2</sup> + bx + c)/db = x</li>
<li>d(ax<sup>2</sup> + bx + c)/dc = 1</li> <li>d(ax<sup>2</sup> + bx + c)/dc = 1</li>
</ul> </ul>
</p> </p>
@ -478,11 +478,11 @@ private static class QuadraticProblem
} }
public double[] calculateTarget() { public double[] calculateTarget() {
double[] target = new double[y.size()]; double[] target = new double[y.size()];
for (int i = 0; i &lt; y.size(); i++) { for (int i = 0; i &lt; y.size(); i++) {
target[i] = y.get(i).doubleValue(); target[i] = y.get(i).doubleValue();
} }
return target; return target;
} }
private double[][] jacobian(double[] variables) { private double[][] jacobian(double[] variables) {

View File

@ -81,8 +81,8 @@ public abstract class GaussianQuadratureAbstractTest {
*/ */
public abstract double getExpectedValue(final int n); public abstract double getExpectedValue(final int n);
/** /**
* Checks that the value of the integral of each monomial * Checks that the value of the integral of each monomial
* <code>x<sup>0</sup>, ... , x<sup>p</sup></code> * <code>x<sup>0</sup>, ... , x<sup>p</sup></code>
* returned by the quadrature rule under test conforms with the expected * returned by the quadrature rule under test conforms with the expected
* value. * value.
@ -104,7 +104,7 @@ public abstract class GaussianQuadratureAbstractTest {
" with a " + " with a " +
integrator.getNumberOfPoints() + "-point quadrature rule", integrator.getNumberOfPoints() + "-point quadrature rule",
expected, actual, eps); expected, actual, eps);
} else { } else {
double err = Math.abs(actual - expected) / Math.ulp(expected); double err = Math.abs(actual - expected) / Math.ulp(expected);
Assert.assertEquals("while integrating monomial x**" + n + " with a " + Assert.assertEquals("while integrating monomial x**" + n + " with a " +
+ integrator.getNumberOfPoints() + "-point quadrature rule, " + + integrator.getNumberOfPoints() + "-point quadrature rule, " +

View File

@ -955,7 +955,7 @@ public class RandomDataGeneratorTest {
} }
String[] labels = {"{0, 1, 2}", "{ 0, 2, 1 }", "{ 1, 0, 2 }", String[] labels = {"{0, 1, 2}", "{ 0, 2, 1 }", "{ 1, 0, 2 }",
"{ 1, 2, 0 }", "{ 2, 0, 1 }", "{ 2, 1, 0 }"}; "{ 1, 2, 0 }", "{ 2, 0, 1 }", "{ 2, 1, 0 }"};
TestUtils.assertChiSquareAccept(labels, expected, observed, 0.001); TestUtils.assertChiSquareAccept(labels, expected, observed, 0.001);
// Check size = 1 boundary case // Check size = 1 boundary case