Tab police

git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1499813 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Sebastian Bazley 2013-07-04 17:24:47 +00:00
parent a6dfb27d91
commit 99db22a8df
9 changed files with 47 additions and 47 deletions

View File

@ -97,7 +97,7 @@
<!-- Should Java compilations set the 'optimize' compiler option? -->
<property name="compile.optimize" value="true"/>
<!-- File encoding -->
<property name="source.encoding" value="UTF-8"/>
@ -241,9 +241,9 @@
author="true"
private="true"
version="true"
encoding="${source.encoding}"
charset="${source.encoding}"
docencoding="${source.encoding}"
encoding="${source.encoding}"
charset="${source.encoding}"
docencoding="${source.encoding}"
doctitle="&lt;h1&gt;${component.title} ${component.version}&lt;/h1&gt;"
windowtitle="${component.title} ${component.version}"
bottom="Copyright (c) 2003-${current.year} Apache Software Foundation"

View File

@ -105,7 +105,7 @@
<!-- The following equality test is intentional and needed for rounding purposes -->
<Match>
<Class name="org.apache.commons.math3.util.Precision" />
<Method name="roundUnscaled" params="double,double,int" returns="double" />
<Method name="roundUnscaled" params="double,double,int" returns="double" />
<Bug pattern="FE_FLOATING_POINT_EQUALITY" />
</Match>

View File

@ -707,17 +707,17 @@ counterpart in either Math or StrictMath (cf. MATH-740).
Removed "MathRuntimeException" (from package "o.a.c.math").
</action>
<action dev="tn" type="fix" issue="MATH-739">
Merged interface and implementation of statistical tests in
o.a.c.m.stat.inference package.
Merged interface and implementation of statistical tests in
o.a.c.m.stat.inference package.
</action>
<action dev="tn" type="update" issue="MATH-670">
Merged interface and implementation of EmpiricalDistribution.
Merged interface and implementation of EmpiricalDistribution.
</action>
<action dev="tn" type="fix" issue="MATH-588">
Relaxed test for equality in UnivariateStatisticAbstractTest.
Relaxed test for equality in UnivariateStatisticAbstractTest.
</action>
<action dev="tn" type="update" issue="MATH-575">
Modified the genetics package to use localized exception messages.
Modified the genetics package to use localized exception messages.
</action>
<action dev="tn" type="fix" issue="MATH-652" due-to="Greg Sterijevski">
Fixed a faulty test for zero in TridiagonalTransformer.

View File

@ -141,7 +141,7 @@ public class MidPointIntegrator extends BaseAbstractUnivariateIntegrator {
/** {@inheritDoc} */
@Override
protected double doIntegrate()
protected double doIntegrate()
throws MathIllegalArgumentException, TooManyEvaluationsException, MaxCountExceededException {
final double min = getMin();

View File

@ -41,22 +41,22 @@
MeasurementModel</a>, which contain the corresponding transformation and noise covariance matrices.
The parameter names used in the respective models correspond to the following names commonly used
in the mathematical literature:
<ul>
<li>A - state transition matrix</li>
<li>B - control input matrix</li>
<li>H - measurement matrix</li>
<li>Q - process noise covariance matrix</li>
<li>R - measurement noise covariance matrix</li>
<li>P - error covariance matrix</li>
</ul>
</p>
<ul>
<li>A - state transition matrix</li>
<li>B - control input matrix</li>
<li>H - measurement matrix</li>
<li>Q - process noise covariance matrix</li>
<li>R - measurement noise covariance matrix</li>
<li>P - error covariance matrix</li>
</ul>
</p>
<p>
<dl>
<dt>Initialization</dt>
<dt>Initialization</dt>
<dd> The following code will create a Kalman filter using the provided
DefaultMeasurementModel and DefaultProcessModel classes. To support dynamically changing
process and measurement noises, simply implement your own models.
<source>
<source>
// A = [ 1 ]
RealMatrix A = new Array2DRowRealMatrix(new double[] { 1d });
// no control input
@ -72,11 +72,11 @@ ProcessModel pm
= new DefaultProcessModel(A, B, Q, new ArrayRealVector(new double[] { 0 }), null);
MeasurementModel mm = new DefaultMeasurementModel(H, R);
KalmanFilter filter = new KalmanFilter(pm, mm);
</source>
</dd>
<dt>Iteration</dt>
</source>
</dd>
<dt>Iteration</dt>
<dd>The following code illustrates how to perform the predict/correct cycle:
<source>
<source>
for (;;) {
// predict the state estimate one time-step ahead
// optionally provide some control input
@ -91,9 +91,9 @@ for (;;) {
double[] stateEstimate = filter.getStateEstimation();
// do something with it
}
</source>
</dd>
<dt>Constant Voltage Example</dt>
</source>
</dd>
<dt>Constant Voltage Example</dt>
<dd>The following example creates a Kalman filter for a static process: a system with a
constant voltage as internal state. We observe this process with an artificially
imposed measurement noise of 0.1V and assume an internal process noise of 1e-5V.
@ -148,7 +148,7 @@ for (int i = 0; i &lt; 60; i++) {
}
</source>
</dd>
<dt>Increasing Speed Vehicle Example</dt>
<dt>Increasing Speed Vehicle Example</dt>
<dd>The following example creates a Kalman filter for a simple linear process: a
vehicle driving along a street with a velocity increasing at a constant rate. The process
state is modeled as (position, velocity) and we only observe the position. A measurement

View File

@ -164,7 +164,7 @@
</p>
</subsection>
<subsection name="11.3 Binary Space Partitioning" href="partitioning">
<p>
<p>
<a href="../apidocs/org/apache/commons/math3/geometry/partitioning/BSPTree.html">
BSP trees</a> are an efficient way to represent space partitions and
to associate attributes with each cell. Each node in a BSP tree

View File

@ -253,11 +253,11 @@
<dl>
<dt>Quadratic Problem Example</dt>
<dd>
We are looking to find the best parameters [a, b, c] for the quadratic function
We are looking to find the best parameters [a, b, c] for the quadratic function
<b><code>f(x) = a x<sup>2</sup> + b x + c</code></b>.
The data set below was generated using [a = 8, b = 10, c = 16].
The data set below was generated using [a = 8, b = 10, c = 16].
A random number between zero and one was added to each y value calculated.
<table cellspacing="0" cellpadding="3">
@ -323,9 +323,9 @@ We'll tackle the implementation of the <code>MultivariateMatrixFunction jacobian
In this case the Jacobian is the partial derivative of the function with respect
to the parameters a, b and c. These derivatives are computed as follows:
<ul>
<li>d(ax<sup>2</sup> + bx + c)/da = x<sup>2</sup></li>
<li>d(ax<sup>2</sup> + bx + c)/db = x</li>
<li>d(ax<sup>2</sup> + bx + c)/dc = 1</li>
<li>d(ax<sup>2</sup> + bx + c)/da = x<sup>2</sup></li>
<li>d(ax<sup>2</sup> + bx + c)/db = x</li>
<li>d(ax<sup>2</sup> + bx + c)/dc = 1</li>
</ul>
</p>
@ -478,11 +478,11 @@ private static class QuadraticProblem
}
public double[] calculateTarget() {
double[] target = new double[y.size()];
for (int i = 0; i &lt; y.size(); i++) {
target[i] = y.get(i).doubleValue();
}
return target;
double[] target = new double[y.size()];
for (int i = 0; i &lt; y.size(); i++) {
target[i] = y.get(i).doubleValue();
}
return target;
}
private double[][] jacobian(double[] variables) {

View File

@ -81,8 +81,8 @@ public abstract class GaussianQuadratureAbstractTest {
*/
public abstract double getExpectedValue(final int n);
/**
* Checks that the value of the integral of each monomial
/**
* Checks that the value of the integral of each monomial
* <code>x<sup>0</sup>, ... , x<sup>p</sup></code>
* returned by the quadrature rule under test conforms with the expected
* value.
@ -104,7 +104,7 @@ public abstract class GaussianQuadratureAbstractTest {
" with a " +
integrator.getNumberOfPoints() + "-point quadrature rule",
expected, actual, eps);
} else {
} else {
double err = Math.abs(actual - expected) / Math.ulp(expected);
Assert.assertEquals("while integrating monomial x**" + n + " with a " +
+ integrator.getNumberOfPoints() + "-point quadrature rule, " +

View File

@ -955,7 +955,7 @@ public class RandomDataGeneratorTest {
}
String[] labels = {"{0, 1, 2}", "{ 0, 2, 1 }", "{ 1, 0, 2 }",
"{ 1, 2, 0 }", "{ 2, 0, 1 }", "{ 2, 1, 0 }"};
"{ 1, 2, 0 }", "{ 2, 0, 1 }", "{ 2, 1, 0 }"};
TestUtils.assertChiSquareAccept(labels, expected, observed, 0.001);
// Check size = 1 boundary case