Javadoc: using MathJax.

git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1521951 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Gilles Sadowski 2013-09-11 17:50:28 +00:00
parent ec4b45c342
commit 9a50472883
1 changed files with 69 additions and 69 deletions

View File

@ -137,99 +137,99 @@ public class HarmonicCurveFitter extends AbstractCurveFitter<LevenbergMarquardtO
* This class guesses harmonic coefficients from a sample. * This class guesses harmonic coefficients from a sample.
* <p>The algorithm used to guess the coefficients is as follows:</p> * <p>The algorithm used to guess the coefficients is as follows:</p>
* *
* <p>We know f (t) at some sampling points t<sub>i</sub> and want to find a, * <p>We know \( f(t) \) at some sampling points \( t_i \) and want
* &omega; and &phi; such that f (t) = a cos (&omega; t + &phi;). * to find \( a \), \( \omega \) and \( \phi \) such that
* \( f(t) = a \cos (\omega t + \phi) \).
* </p> * </p>
* *
* <p>From the analytical expression, we can compute two primitives : * <p>From the analytical expression, we can compute two primitives :
* <pre> * \[
* If2 (t) = &int; f<sup>2</sup> = a<sup>2</sup> &times; [t + S (t)] / 2 * If2(t) = \int f^2 dt = a^2 (t + S(t)) / 2
* If'2 (t) = &int; f'<sup>2</sup> = a<sup>2</sup> &omega;<sup>2</sup> &times; [t - S (t)] / 2 * \]
* where S (t) = sin (2 (&omega; t + &phi;)) / (2 &omega;) * \[
* </pre> * If'2(t) = \int f'^2 dt = a^2 \omega^2 (t - S(t)) / 2
* \]
* where \(S(t) = \frac{\sin(2 (\omega t + \phi))}{2\omega}\)
* </p> * </p>
* *
* <p>We can remove S between these expressions : * <p>We can remove \(S\) between these expressions :
* <pre> * \[
* If'2 (t) = a<sup>2</sup> &omega;<sup>2</sup> t - &omega;<sup>2</sup> If2 (t) * If'2(t) = a^2 \omega^2 t - \omega^2 If2(t)
* </pre> * \]
* </p> * </p>
* *
* <p>The preceding expression shows that If'2 (t) is a linear * <p>The preceding expression shows that \(If'2 (t)\) is a linear
* combination of both t and If2 (t): If'2 (t) = A &times; t + B &times; If2 (t) * combination of both \(t\) and \(If2(t)\):
* \[
* If'2(t) = A t + B If2(t)
* \]
* </p> * </p>
* *
* <p>From the primitive, we can deduce the same form for definite * <p>From the primitive, we can deduce the same form for definite
* integrals between t<sub>1</sub> and t<sub>i</sub> for each t<sub>i</sub> : * integrals between \(t_1\) and \(t_i\) for each \(t_i\) :
* <pre> * \[
* If2 (t<sub>i</sub>) - If2 (t<sub>1</sub>) = A &times; (t<sub>i</sub> - t<sub>1</sub>) + B &times; (If2 (t<sub>i</sub>) - If2 (t<sub>1</sub>)) * If2(t_i) - If2(t_1) = A (t_i - t_1) + B (If2 (t_i) - If2(t_1))
* </pre> * \]
* </p> * </p>
* *
* <p>We can find the coefficients A and B that best fit the sample * <p>We can find the coefficients \(A\) and \(B\) that best fit the sample
* to this linear expression by computing the definite integrals for * to this linear expression by computing the definite integrals for
* each sample points. * each sample points.
* </p> * </p>
* *
* <p>For a bilinear expression z (x<sub>i</sub>, y<sub>i</sub>) = A &times; x<sub>i</sub> + B &times; y<sub>i</sub>, the * <p>For a bilinear expression \(z(x_i, y_i) = A x_i + B y_i\), the
* coefficients A and B that minimize a least square criterion * coefficients \(A\) and \(B\) that minimize a least-squares criterion
* &sum; (z<sub>i</sub> - z (x<sub>i</sub>, y<sub>i</sub>))<sup>2</sup> are given by these expressions:</p> * \(\sum (z_i - z(x_i, y_i))^2\) are given by these expressions:</p>
* <pre> * \[
* A = \frac{\sum y_i y_i \sum x_i z_i - \sum x_i y_i \sum y_i z_i}
* {\sum x_i x_i \sum y_i y_i - \sum x_i y_i \sum x_i y_i}
* \]
* \[
* B = \frac{\sum x_i x_i \sum y_i z_i - \sum x_i y_i \sum x_i z_i}
* {\sum x_i x_i \sum y_i y_i - \sum x_i y_i \sum x_i y_i}
*
* \]
* *
* &sum;y<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>z<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;y<sub>i</sub>z<sub>i</sub> * <p>In fact, we can assume that both \(a\) and \(\omega\) are positive and
* A = ------------------------ * compute them directly, knowing that \(A = a^2 \omega^2\) and that
* &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>y<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>y<sub>i</sub> * \(B = -\omega^2\). The complete algorithm is therefore:</p>
* *
* &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>z<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>z<sub>i</sub> * For each \(t_i\) from \(t_1\) to \(t_{n-1}\), compute:
* B = ------------------------ * \[ f(t_i) \]
* &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>y<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>y<sub>i</sub> * \[ f'(t_i) = \frac{f (t_{i+1}) - f(t_{i-1})}{t_{i+1} - t_{i-1}} \]
* </pre> * \[ x_i = t_i - t_1 \]
* \[ y_i = \int_{t_1}^{t_i} f^2(t) dt \]
* \[ z_i = \int_{t_1}^{t_i} f'^2(t) dt \]
* and update the sums:
* \[ \sum x_i x_i, \sum y_i y_i, \sum x_i y_i, \sum x_i z_i, \sum y_i z_i \]
*
* Then:
* \[
* a = \sqrt{\frac{\sum y_i y_i \sum x_i z_i - \sum x_i y_i \sum y_i z_i }
* {\sum x_i y_i \sum x_i z_i - \sum x_i x_i \sum y_i z_i }}
* \]
* \[
* \omega = \sqrt{\frac{\sum x_i y_i \sum x_i z_i - \sum x_i x_i \sum y_i z_i}
* {\sum x_i x_i \sum y_i y_i - \sum x_i y_i \sum x_i y_i}}
* \]
*
* <p>Once we know \(\omega\) we can compute:
* \[
* fc = \omega f(t) \cos(\omega t) - f'(t) \sin(\omega t)
* \]
* \[
* fs = \omega f(t) \sin(\omega t) + f'(t) \cos(\omega t)
* \]
* </p> * </p>
* *
* * <p>It appears that \(fc = a \omega \cos(\phi)\) and
* <p>In fact, we can assume both a and &omega; are positive and * \(fs = -a \omega \sin(\phi)\), so we can use these
* compute them directly, knowing that A = a<sup>2</sup> &omega;<sup>2</sup> and that * expressions to compute \(\phi\). The best estimate over the sample is
* B = - &omega;<sup>2</sup>. The complete algorithm is therefore:</p>
* <pre>
*
* for each t<sub>i</sub> from t<sub>1</sub> to t<sub>n-1</sub>, compute:
* f (t<sub>i</sub>)
* f' (t<sub>i</sub>) = (f (t<sub>i+1</sub>) - f(t<sub>i-1</sub>)) / (t<sub>i+1</sub> - t<sub>i-1</sub>)
* x<sub>i</sub> = t<sub>i</sub> - t<sub>1</sub>
* y<sub>i</sub> = &int; f<sup>2</sup> from t<sub>1</sub> to t<sub>i</sub>
* z<sub>i</sub> = &int; f'<sup>2</sup> from t<sub>1</sub> to t<sub>i</sub>
* update the sums &sum;x<sub>i</sub>x<sub>i</sub>, &sum;y<sub>i</sub>y<sub>i</sub>, &sum;x<sub>i</sub>y<sub>i</sub>, &sum;x<sub>i</sub>z<sub>i</sub> and &sum;y<sub>i</sub>z<sub>i</sub>
* end for
*
* |--------------------------
* \ | &sum;y<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>z<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;y<sub>i</sub>z<sub>i</sub>
* a = \ | ------------------------
* \| &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>z<sub>i</sub> - &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>z<sub>i</sub>
*
*
* |--------------------------
* \ | &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>z<sub>i</sub> - &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>z<sub>i</sub>
* &omega; = \ | ------------------------
* \| &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>y<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>y<sub>i</sub>
*
* </pre>
* </p>
*
* <p>Once we know &omega;, we can compute:
* <pre>
* fc = &omega; f (t) cos (&omega; t) - f' (t) sin (&omega; t)
* fs = &omega; f (t) sin (&omega; t) + f' (t) cos (&omega; t)
* </pre>
* </p>
*
* <p>It appears that <code>fc = a &omega; cos (&phi;)</code> and
* <code>fs = -a &omega; sin (&phi;)</code>, so we can use these
* expressions to compute &phi;. The best estimate over the sample is
* given by averaging these expressions. * given by averaging these expressions.
* </p> * </p>
* *
* <p>Since integrals and means are involved in the preceding * <p>Since integrals and means are involved in the preceding
* estimations, these operations run in O(n) time, where n is the * estimations, these operations run in \(O(n)\) time, where \(n\) is the
* number of measurements.</p> * number of measurements.</p>
*/ */
public static class ParameterGuesser { public static class ParameterGuesser {