added FastMath.scalb(double, int) and FastMath.scalb(float, int)
deprecated MathUtils.scalb(double, int) JIRA: MATH-498 git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/branches/MATH_2_X@1062549 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
c111a2fe34
commit
9af0c6fc0f
|
@ -3400,6 +3400,162 @@ public class FastMath {
|
|||
return abs(x - Float.intBitsToFloat(Float.floatToIntBits(x) ^ 1));
|
||||
}
|
||||
|
||||
/**
|
||||
* Multiply a double number by a power of 2.
|
||||
* @param d number to multiply
|
||||
* @param n power of 2
|
||||
* @return d × 2<sup>n</sup>
|
||||
*/
|
||||
public static double scalb(final double d, final int n) {
|
||||
|
||||
// first simple and fast handling when 2^n can be represented using normal numbers
|
||||
if ((n > -1023) && (n < 1024)) {
|
||||
return d * Double.longBitsToDouble(((long) (n + 1023)) << 52);
|
||||
}
|
||||
|
||||
// handle special cases
|
||||
if (Double.isNaN(d) || Double.isInfinite(d) || (d == 0)) {
|
||||
return d;
|
||||
}
|
||||
|
||||
// decompose d
|
||||
final long bits = Double.doubleToLongBits(d);
|
||||
final long sign = bits & 0x8000000000000000L;
|
||||
int exponent = ((int) (bits >>> 52)) & 0x7ff;
|
||||
long mantissa = bits & 0x000fffffffffffffL;
|
||||
|
||||
// compute scaled exponent
|
||||
int scaledExponent = exponent + n;
|
||||
|
||||
if (n < 0) {
|
||||
// we are really in the case n <= -1023
|
||||
if (scaledExponent > 0) {
|
||||
// both the input and the result are normal numbers, we only adjust the exponent
|
||||
return Double.longBitsToDouble(sign | (((long) scaledExponent) << 52) | mantissa);
|
||||
} else if (scaledExponent > -53) {
|
||||
// the input is a normal number and the result is a subnormal number
|
||||
|
||||
// recover the hidden mantissa bit
|
||||
mantissa = mantissa | (1L << 52);
|
||||
|
||||
// scales down complete mantissa, hence losing least significant bits
|
||||
final long mostSignificantLostBit = mantissa & (1L << (-scaledExponent));
|
||||
mantissa = mantissa >>> (1 - scaledExponent);
|
||||
if (mostSignificantLostBit != 0) {
|
||||
// we need to add 1 bit to round up the result
|
||||
mantissa++;
|
||||
}
|
||||
return Double.longBitsToDouble(sign | mantissa);
|
||||
|
||||
} else {
|
||||
// no need to compute the mantissa, the number scales down to 0
|
||||
return (sign == 0L) ? 0.0 : -0.0;
|
||||
}
|
||||
} else {
|
||||
// we are really in the case n >= 1024
|
||||
if (exponent == 0) {
|
||||
|
||||
// the input number is subnormal, normalize it
|
||||
while ((mantissa >>> 52) != 1) {
|
||||
mantissa = mantissa << 1;
|
||||
--scaledExponent;
|
||||
}
|
||||
++scaledExponent;
|
||||
mantissa = mantissa & 0x000fffffffffffffL;
|
||||
|
||||
if (scaledExponent < 2047) {
|
||||
return Double.longBitsToDouble(sign | (((long) scaledExponent) << 52) | mantissa);
|
||||
} else {
|
||||
return (sign == 0L) ? Double.POSITIVE_INFINITY : Double.NEGATIVE_INFINITY;
|
||||
}
|
||||
|
||||
} else if (scaledExponent < 2047) {
|
||||
return Double.longBitsToDouble(sign | (((long) scaledExponent) << 52) | mantissa);
|
||||
} else {
|
||||
return (sign == 0L) ? Double.POSITIVE_INFINITY : Double.NEGATIVE_INFINITY;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Multiply a float number by a power of 2.
|
||||
* @param f number to multiply
|
||||
* @param n power of 2
|
||||
* @return f × 2<sup>n</sup>
|
||||
*/
|
||||
public static float scalb(final float f, final int n) {
|
||||
|
||||
// first simple and fast handling when 2^n can be represented using normal numbers
|
||||
if ((n > -127) && (n < 128)) {
|
||||
return f * Float.intBitsToFloat((n + 127) << 23);
|
||||
}
|
||||
|
||||
// handle special cases
|
||||
if (Float.isNaN(f) || Float.isInfinite(f) || (f == 0f)) {
|
||||
return f;
|
||||
}
|
||||
|
||||
// decompose f
|
||||
final int bits = Float.floatToIntBits(f);
|
||||
final int sign = bits & 0x80000000;
|
||||
int exponent = (bits >>> 23) & 0xff;
|
||||
int mantissa = bits & 0x007fffff;
|
||||
|
||||
// compute scaled exponent
|
||||
int scaledExponent = exponent + n;
|
||||
|
||||
if (n < 0) {
|
||||
// we are really in the case n <= -127
|
||||
if (scaledExponent > 0) {
|
||||
// both the input and the result are normal numbers, we only adjust the exponent
|
||||
return Float.intBitsToFloat(sign | (scaledExponent << 23) | mantissa);
|
||||
} else if (scaledExponent > -24) {
|
||||
// the input is a normal number and the result is a subnormal number
|
||||
|
||||
// recover the hidden mantissa bit
|
||||
mantissa = mantissa | (1 << 23);
|
||||
|
||||
// scales down complete mantissa, hence losing least significant bits
|
||||
final int mostSignificantLostBit = mantissa & (1 << (-scaledExponent));
|
||||
mantissa = mantissa >>> (1 - scaledExponent);
|
||||
if (mostSignificantLostBit != 0) {
|
||||
// we need to add 1 bit to round up the result
|
||||
mantissa++;
|
||||
}
|
||||
return Float.intBitsToFloat(sign | mantissa);
|
||||
|
||||
} else {
|
||||
// no need to compute the mantissa, the number scales down to 0
|
||||
return (sign == 0) ? 0.0f : -0.0f;
|
||||
}
|
||||
} else {
|
||||
// we are really in the case n >= 128
|
||||
if (exponent == 0) {
|
||||
|
||||
// the input number is subnormal, normalize it
|
||||
while ((mantissa >>> 23) != 1) {
|
||||
mantissa = mantissa << 1;
|
||||
--scaledExponent;
|
||||
}
|
||||
++scaledExponent;
|
||||
mantissa = mantissa & 0x007fffff;
|
||||
|
||||
if (scaledExponent < 255) {
|
||||
return Float.intBitsToFloat(sign | (scaledExponent << 23) | mantissa);
|
||||
} else {
|
||||
return (sign == 0) ? Float.POSITIVE_INFINITY : Float.NEGATIVE_INFINITY;
|
||||
}
|
||||
|
||||
} else if (scaledExponent < 255) {
|
||||
return Float.intBitsToFloat(sign | (scaledExponent << 23) | mantissa);
|
||||
} else {
|
||||
return (sign == 0) ? Float.POSITIVE_INFINITY : Float.NEGATIVE_INFINITY;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the next machine representable number after a number, moving
|
||||
* in the direction of another number.
|
||||
|
|
|
@ -1301,26 +1301,14 @@ public final class MathUtils {
|
|||
* <p>If <code>d</code> is 0 or NaN or Infinite, it is returned unchanged.</p>
|
||||
*
|
||||
* @param d base number
|
||||
* @param scaleFactor power of two by which d sould be multiplied
|
||||
* @param scaleFactor power of two by which d should be multiplied
|
||||
* @return d × 2<sup>scaleFactor</sup>
|
||||
* @since 2.0
|
||||
* @deprecated as of 2.2, replaced by {@link FastMath#scalb(double, int)}
|
||||
*/
|
||||
@Deprecated
|
||||
public static double scalb(final double d, final int scaleFactor) {
|
||||
|
||||
// handling of some important special cases
|
||||
if ((d == 0) || Double.isNaN(d) || Double.isInfinite(d)) {
|
||||
return d;
|
||||
}
|
||||
|
||||
// split the double in raw components
|
||||
final long bits = Double.doubleToLongBits(d);
|
||||
final long exponent = bits & 0x7ff0000000000000L;
|
||||
final long rest = bits & 0x800fffffffffffffL;
|
||||
|
||||
// shift the exponent
|
||||
final long newBits = rest | (exponent + (((long) scaleFactor) << 52));
|
||||
return Double.longBitsToDouble(newBits);
|
||||
|
||||
return FastMath.scalb(d, scaleFactor);
|
||||
}
|
||||
|
||||
/**
|
||||
|
|
|
@ -52,15 +52,19 @@ The <action> type attribute can be add,update,fix,remove.
|
|||
If the output is not quite correct, check for invisible trailing spaces!
|
||||
-->
|
||||
<release version="2.2" date="TBD" description="TBD">
|
||||
<action dev="luc" type="fix" issue="MATH-498">
|
||||
FastMath is not an exact replacement for StrictMath
|
||||
(partially fixed) added scalb(double, int), scalb(float, int)
|
||||
</action>
|
||||
<action dev="luc" type="fix" issue="MATH-478">
|
||||
FastMath is not an exact replacement for StrictMath
|
||||
(partially fixed) fixed nextAfter(double, double) and nextAfter(float,double)
|
||||
(partially fixed) added nextAfter(double, double) and nextAfter(float,double)
|
||||
(beware of the strange double second argument) so that they handle
|
||||
special values in the way as StrictMath
|
||||
</action>
|
||||
<action dev="luc" type="fix" issue="MATH-497">
|
||||
FastMath is not an exact replacement for StrictMath
|
||||
(partially fixed) Add getExponent(double), getExponent(float)
|
||||
(partially fixed) added getExponent(double) and getExponent(float)
|
||||
</action>
|
||||
<action dev="sebb" type="fix" issue="MATH-496">
|
||||
FastMath is not an exact replacement for StrictMath
|
||||
|
|
|
@ -1066,6 +1066,40 @@ public class FastMathTest {
|
|||
Assert.assertEquals(0F, FastMath.nextAfter(-Float.MIN_VALUE, 1F), 0F);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testDoubleScalbSpecialCases() {
|
||||
Assert.assertEquals(2.5269841324701218E-175, FastMath.scalb(2.2250738585072014E-308, 442), 0D);
|
||||
Assert.assertEquals(1.307993905256674E297, FastMath.scalb(1.1102230246251565E-16, 1040), 0D);
|
||||
Assert.assertEquals(7.2520887996488946E-217, FastMath.scalb(Double.MIN_VALUE, 356), 0D);
|
||||
Assert.assertEquals(8.98846567431158E307, FastMath.scalb(Double.MIN_VALUE, 2097), 0D);
|
||||
Assert.assertEquals(Double.POSITIVE_INFINITY, FastMath.scalb(Double.MIN_VALUE, 2098), 0D);
|
||||
Assert.assertEquals(1.1125369292536007E-308, FastMath.scalb(2.225073858507201E-308, -1), 0D);
|
||||
Assert.assertEquals(1.0E-323, FastMath.scalb(Double.MAX_VALUE, -2097), 0D);
|
||||
Assert.assertEquals(Double.MIN_VALUE, FastMath.scalb(Double.MAX_VALUE, -2098), 0D);
|
||||
Assert.assertEquals(0, FastMath.scalb(Double.MAX_VALUE, -2099), 0D);
|
||||
Assert.assertEquals(Double.POSITIVE_INFINITY, FastMath.scalb(Double.POSITIVE_INFINITY, -1000000), 0D);
|
||||
Assert.assertEquals(Double.NEGATIVE_INFINITY, FastMath.scalb(-1.1102230246251565E-16, 1078), 0D);
|
||||
Assert.assertEquals(Double.NEGATIVE_INFINITY, FastMath.scalb(-1.1102230246251565E-16, 1079), 0D);
|
||||
Assert.assertEquals(Double.NEGATIVE_INFINITY, FastMath.scalb(-2.2250738585072014E-308, 2047), 0D);
|
||||
Assert.assertEquals(Double.NEGATIVE_INFINITY, FastMath.scalb(-2.2250738585072014E-308, 2048), 0D);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testFloatScalbSpecialCases() {
|
||||
Assert.assertEquals(0f, FastMath.scalb(Float.MIN_VALUE, -30), 0F);
|
||||
Assert.assertEquals(2 * Float.MIN_VALUE, FastMath.scalb(Float.MIN_VALUE, 1), 0F);
|
||||
Assert.assertEquals(7.555786e22f, FastMath.scalb(Float.MAX_VALUE, -52), 0F);
|
||||
Assert.assertEquals(1.7014118e38f, FastMath.scalb(Float.MIN_VALUE, 276), 0F);
|
||||
Assert.assertEquals(Float.POSITIVE_INFINITY, FastMath.scalb(Float.MIN_VALUE, 277), 0F);
|
||||
Assert.assertEquals(5.8774718e-39f, FastMath.scalb(1.1754944e-38f, -1), 0F);
|
||||
Assert.assertEquals(2 * Float.MIN_VALUE, FastMath.scalb(Float.MAX_VALUE, -276), 0F);
|
||||
Assert.assertEquals(Float.MIN_VALUE, FastMath.scalb(Float.MAX_VALUE, -277), 0F);
|
||||
Assert.assertEquals(0, FastMath.scalb(Float.MAX_VALUE, -278), 0F);
|
||||
Assert.assertEquals(Float.POSITIVE_INFINITY, FastMath.scalb(Float.POSITIVE_INFINITY, -1000000), 0F);
|
||||
Assert.assertEquals(-3.13994498e38f, FastMath.scalb(-1.1e-7f, 151), 0F);
|
||||
Assert.assertEquals(Float.NEGATIVE_INFINITY, FastMath.scalb(-1.1e-7f, 152), 0F);
|
||||
}
|
||||
|
||||
private static void reportError(String message) {
|
||||
final boolean fatal = false;
|
||||
if (fatal) {
|
||||
|
|
|
@ -957,16 +957,6 @@ public final class MathUtilsTest extends TestCase {
|
|||
}
|
||||
}
|
||||
|
||||
public void testScalb() {
|
||||
assertEquals( 0.0, MathUtils.scalb(0.0, 5), 1.0e-15);
|
||||
assertEquals(32.0, MathUtils.scalb(1.0, 5), 1.0e-15);
|
||||
assertEquals(1.0 / 32.0, MathUtils.scalb(1.0, -5), 1.0e-15);
|
||||
assertEquals(FastMath.PI, MathUtils.scalb(FastMath.PI, 0), 1.0e-15);
|
||||
assertTrue(Double.isInfinite(MathUtils.scalb(Double.POSITIVE_INFINITY, 1)));
|
||||
assertTrue(Double.isInfinite(MathUtils.scalb(Double.NEGATIVE_INFINITY, 1)));
|
||||
assertTrue(Double.isNaN(MathUtils.scalb(Double.NaN, 1)));
|
||||
}
|
||||
|
||||
public void testNormalizeAngle() {
|
||||
for (double a = -15.0; a <= 15.0; a += 0.1) {
|
||||
for (double b = -15.0; b <= 15.0; b += 0.2) {
|
||||
|
|
Loading…
Reference in New Issue