Fixed FindBugs warning.
git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1373134 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
16a5a02a84
commit
9b5b8d7d45
|
@ -75,6 +75,8 @@ import org.apache.commons.math3.util.FastMath;
|
|||
* @since 2.0 (changed to concrete class in 3.0)
|
||||
*/
|
||||
public class EigenDecomposition {
|
||||
/** Internally used epsilon criteria. */
|
||||
private static final double EPSILON = 1e-12;
|
||||
/** Maximum number of iterations accepted in the implicit QL transformation */
|
||||
private byte maxIter = 30;
|
||||
/** Main diagonal of the tridiagonal matrix. */
|
||||
|
@ -99,9 +101,6 @@ public class EigenDecomposition {
|
|||
/** Cached value of Vt. */
|
||||
private RealMatrix cachedVt;
|
||||
|
||||
/** Internally used epsilon criteria. */
|
||||
private final double epsilon = 1e-12;
|
||||
|
||||
/**
|
||||
* Calculates the eigen decomposition of the given real matrix.
|
||||
* <p>
|
||||
|
@ -246,9 +245,9 @@ public class EigenDecomposition {
|
|||
cachedD = MatrixUtils.createRealDiagonalMatrix(realEigenvalues);
|
||||
|
||||
for (int i = 0; i < imagEigenvalues.length; i++) {
|
||||
if (Precision.compareTo(imagEigenvalues[i], 0.0, epsilon) > 0) {
|
||||
if (Precision.compareTo(imagEigenvalues[i], 0.0, EPSILON) > 0) {
|
||||
cachedD.setEntry(i, i+1, imagEigenvalues[i]);
|
||||
} else if (Precision.compareTo(imagEigenvalues[i], 0.0, epsilon) < 0) {
|
||||
} else if (Precision.compareTo(imagEigenvalues[i], 0.0, EPSILON) < 0) {
|
||||
cachedD.setEntry(i, i-1, imagEigenvalues[i]);
|
||||
}
|
||||
}
|
||||
|
@ -291,7 +290,7 @@ public class EigenDecomposition {
|
|||
*/
|
||||
public boolean hasComplexEigenvalues() {
|
||||
for (int i = 0; i < imagEigenvalues.length; i++) {
|
||||
if (!Precision.equals(imagEigenvalues[i], 0.0, epsilon)) {
|
||||
if (!Precision.equals(imagEigenvalues[i], 0.0, EPSILON)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
@ -726,7 +725,7 @@ public class EigenDecomposition {
|
|||
|
||||
for (int i = 0; i < realEigenvalues.length; i++) {
|
||||
if (i == (realEigenvalues.length - 1) ||
|
||||
Precision.equals(matT[i + 1][i], 0.0, epsilon)) {
|
||||
Precision.equals(matT[i + 1][i], 0.0, EPSILON)) {
|
||||
realEigenvalues[i] = matT[i][i];
|
||||
} else {
|
||||
final double x = matT[i + 1][i + 1];
|
||||
|
@ -777,7 +776,7 @@ public class EigenDecomposition {
|
|||
}
|
||||
|
||||
// we can not handle a matrix with zero norm
|
||||
if (Precision.equals(norm, 0.0, epsilon)) {
|
||||
if (Precision.equals(norm, 0.0, EPSILON)) {
|
||||
throw new MathArithmeticException(LocalizedFormats.ZERO_NORM);
|
||||
}
|
||||
|
||||
|
@ -801,7 +800,7 @@ public class EigenDecomposition {
|
|||
for (int j = l; j <= idx; j++) {
|
||||
r = r + matrixT[i][j] * matrixT[j][idx];
|
||||
}
|
||||
if (Precision.compareTo(imagEigenvalues[i], 0.0, epsilon) < 0.0) {
|
||||
if (Precision.compareTo(imagEigenvalues[i], 0.0, EPSILON) < 0.0) {
|
||||
z = w;
|
||||
s = r;
|
||||
} else {
|
||||
|
@ -863,7 +862,7 @@ public class EigenDecomposition {
|
|||
}
|
||||
double w = matrixT[i][i] - p;
|
||||
|
||||
if (Precision.compareTo(imagEigenvalues[i], 0.0, epsilon) < 0.0) {
|
||||
if (Precision.compareTo(imagEigenvalues[i], 0.0, EPSILON) < 0.0) {
|
||||
z = w;
|
||||
r = ra;
|
||||
s = sa;
|
||||
|
|
Loading…
Reference in New Issue