removed the StatisticalMultivariateSummaryValues class
git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@620288 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
e671f72818
commit
9e0d00dc7e
|
@ -133,19 +133,6 @@ public class MultivariateSummaryStatistics
|
|||
/** Covariance statistic implementation - cannot be reset. */
|
||||
private VectorialCovariance covarianceImpl;
|
||||
|
||||
/**
|
||||
* Return a {@link StatisticalMultivariateSummary} instance reporting current
|
||||
* statistics.
|
||||
*
|
||||
* @return Current values of statistics
|
||||
*/
|
||||
public StatisticalMultivariateSummary getSummary() {
|
||||
return new StatisticalMultivariateSummaryValues(getDimension(), getMean(),
|
||||
getCovariance(), getStandardDeviation(),
|
||||
getN(), getMax(), getMin(),
|
||||
getSum(), getSumSq(), getSumLog());
|
||||
}
|
||||
|
||||
/**
|
||||
* Add an n-tuple to the data
|
||||
*
|
||||
|
@ -268,7 +255,7 @@ public class MultivariateSummaryStatistics
|
|||
/**
|
||||
* Returns the covariance matrix of the values that have been added.
|
||||
*
|
||||
* @return the variance
|
||||
* @return the covariance matrix
|
||||
*/
|
||||
public RealMatrix getCovariance() {
|
||||
return covarianceImpl.getResult();
|
||||
|
|
|
@ -1,215 +0,0 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
package org.apache.commons.math.stat.descriptive;
|
||||
|
||||
import java.io.Serializable;
|
||||
|
||||
import org.apache.commons.math.linear.RealMatrix;
|
||||
import org.apache.commons.math.util.MathUtils;
|
||||
|
||||
/**
|
||||
* Value object representing the results of a statistical multivariate summary.
|
||||
*
|
||||
* @since 1.2
|
||||
* @version $Revision: 480440 $ $Date: 2006-11-29 08:14:12 +0100 (mer., 29 nov. 2006) $
|
||||
*/
|
||||
public class StatisticalMultivariateSummaryValues
|
||||
implements Serializable, StatisticalMultivariateSummary {
|
||||
|
||||
/** Serialization id */
|
||||
private static final long serialVersionUID = 8152538650791979064L;
|
||||
|
||||
/** Dimension of the data. */
|
||||
private final int k;
|
||||
|
||||
/** The sample mean */
|
||||
private final double[] mean;
|
||||
|
||||
/** The sample covariance */
|
||||
private final RealMatrix covariance;
|
||||
|
||||
/** The sample standard deviation. */
|
||||
private double[] stdev;
|
||||
|
||||
/** The number of observations in the sample */
|
||||
private final long n;
|
||||
|
||||
/** The maximum value */
|
||||
private final double[] max;
|
||||
|
||||
/** The minimum value */
|
||||
private final double[] min;
|
||||
|
||||
/** The sum of the sample values */
|
||||
private final double[] sum;
|
||||
|
||||
/** The sum of the squares of the sample values */
|
||||
private final double[] sumSq;
|
||||
|
||||
/** The sum of the logarithms of the sample values */
|
||||
private final double[] sumLog;
|
||||
|
||||
/**
|
||||
* Constructor
|
||||
*
|
||||
* @param mean the sample mean
|
||||
* @param covariance the sample covariance
|
||||
* @param stdev the sample standard deviation
|
||||
* @param k dimension of the data
|
||||
* @param n the number of observations in the sample
|
||||
* @param max the maximum value
|
||||
* @param min the minimum value
|
||||
* @param sum the sum of the values
|
||||
* @param sumSq the sum of the squares of the values
|
||||
* @param sumLog the sum of the logarithms of the values
|
||||
*/
|
||||
public StatisticalMultivariateSummaryValues(int k, double[] mean,
|
||||
RealMatrix covariance, double[] stdev,
|
||||
long n, double[] max, double[] min,
|
||||
double[] sum, double[] sumSq, double[] sumLog) {
|
||||
super();
|
||||
this.k = k;
|
||||
this.mean = (double[]) mean.clone();
|
||||
this.covariance = covariance;
|
||||
this.stdev = (double[]) stdev.clone();
|
||||
this.n = n;
|
||||
this.max = (double[]) max.clone();
|
||||
this.min = (double[]) min.clone();
|
||||
this.sum = (double[]) sum.clone();
|
||||
this.sumSq = (double[]) sumSq.clone();
|
||||
this.sumLog = (double[]) sumLog.clone();
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the dimension of the data
|
||||
* @return The dimension of the data
|
||||
*/
|
||||
public int getDimension() {
|
||||
return k;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return Returns the max.
|
||||
*/
|
||||
public double[] getMax() {
|
||||
return (double[]) max.clone();
|
||||
}
|
||||
|
||||
/**
|
||||
* @return Returns the mean.
|
||||
*/
|
||||
public double[] getMean() {
|
||||
return (double[]) mean.clone();
|
||||
}
|
||||
|
||||
/**
|
||||
* @return Returns the min.
|
||||
*/
|
||||
public double[] getMin() {
|
||||
return (double[]) min.clone();
|
||||
}
|
||||
|
||||
/**
|
||||
* @return Returns the number of values.
|
||||
*/
|
||||
public long getN() {
|
||||
return n;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return Returns the sum.
|
||||
*/
|
||||
public double[] getSum() {
|
||||
return (double[]) sum.clone();
|
||||
}
|
||||
|
||||
/**
|
||||
* @return Returns the sum of the squares.
|
||||
*/
|
||||
public double[] getSumSq() {
|
||||
return (double[]) sumSq.clone();
|
||||
}
|
||||
|
||||
/**
|
||||
* @return Returns the sum of the logarithms.
|
||||
*/
|
||||
public double[] getSumLog() {
|
||||
return (double[]) sumLog.clone();
|
||||
}
|
||||
|
||||
/**
|
||||
* @return Returns the standard deviation (roots of the diagonal elements)
|
||||
*/
|
||||
public double[] getStandardDeviation() {
|
||||
return (double[]) stdev.clone();
|
||||
}
|
||||
|
||||
/**
|
||||
* @return Returns the covariance.
|
||||
*/
|
||||
public RealMatrix getCovariance() {
|
||||
return covariance;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns true iff <code>object</code> is a
|
||||
* <code>StatisticalSummaryValues</code> instance and all statistics have
|
||||
* the same values as this.
|
||||
*
|
||||
* @param object the object to test equality against.
|
||||
* @return true if object equals this
|
||||
*/
|
||||
public boolean equals(Object object) {
|
||||
if (object == this ) {
|
||||
return true;
|
||||
}
|
||||
if (object instanceof StatisticalMultivariateSummaryValues == false) {
|
||||
return false;
|
||||
}
|
||||
StatisticalMultivariateSummaryValues stat = (StatisticalMultivariateSummaryValues) object;
|
||||
return ((stat.getDimension() == this.getDimension()) &&
|
||||
MathUtils.equals(stat.getMax(), this.getMax()) &&
|
||||
MathUtils.equals(stat.getMean(),this.getMean()) &&
|
||||
MathUtils.equals(stat.getMin(),this.getMin()) &&
|
||||
MathUtils.equals(stat.getN(), this.getN()) &&
|
||||
MathUtils.equals(stat.getSum(), this.getSum()) &&
|
||||
MathUtils.equals(stat.getSumSq(), this.getSumSq()) &&
|
||||
MathUtils.equals(stat.getSumLog(), this.getSumLog()) &&
|
||||
MathUtils.equals(stat.getStandardDeviation(), this.getStandardDeviation()) &&
|
||||
stat.getCovariance().equals(this.getCovariance()));
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns hash code based on values of statistics
|
||||
*
|
||||
* @return hash code
|
||||
*/
|
||||
public int hashCode() {
|
||||
int result = getDimension();
|
||||
result = result * 31 + MathUtils.hash(getMax());
|
||||
result = result * 31 + MathUtils.hash(getMean());
|
||||
result = result * 31 + MathUtils.hash(getMin());
|
||||
result = result * 31 + MathUtils.hash(getN());
|
||||
result = result * 31 + MathUtils.hash(getSum());
|
||||
result = result * 31 + MathUtils.hash(getSumSq());
|
||||
result = result * 31 + MathUtils.hash(getSumLog());
|
||||
result = result * 31 + getCovariance().hashCode();
|
||||
result = result * 31 + MathUtils.hash(getStandardDeviation());
|
||||
return result;
|
||||
}
|
||||
|
||||
}
|
|
@ -48,13 +48,6 @@ public class SynchronizedMultivariateSummaryStatistics
|
|||
super(k, isCovarianceBiasCorrected);
|
||||
}
|
||||
|
||||
/**
|
||||
* @see org.apache.commons.math.stat.descriptive.MultivariateSummary#getSummary()
|
||||
*/
|
||||
public synchronized StatisticalMultivariateSummary getSummary() {
|
||||
return super.getSummary();
|
||||
}
|
||||
|
||||
/**
|
||||
* @see org.apache.commons.math.stat.descriptive.MultivariateSummary#addValue(double[])
|
||||
*/
|
||||
|
|
Loading…
Reference in New Issue