Added midpoint integration method.

Patch contributed by Oleksandr Kornieiev.

JIRA: MATH-967

git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1488914 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Luc Maisonobe 2013-06-03 09:04:40 +00:00
parent d270055e87
commit 9e62190606
4 changed files with 303 additions and 0 deletions

View File

@ -216,6 +216,9 @@
<contributor>
<name>Eugene Kirpichov</name>
</contributor>
<contributor>
<name>Oleksandr Kornieiev</name>
</contributor>
<contributor>
<name>Piotr Kochanski</name>
</contributor>

View File

@ -51,6 +51,9 @@ If the output is not quite correct, check for invisible trailing spaces!
</properties>
<body>
<release version="x.y" date="TBD" description="TBD">
<action dev="luc" type="add" issue="MATH-967" due-to="Oleksandr Kornieiev">
Added midpoint integration method.
</action>
<action dev="luc" type="fix" issue="MATH-988" due-to="Andreas Huber">
Fixed NullPointerException in 2D and 3D sub-line intersections.
</action>

View File

@ -0,0 +1,165 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.analysis.integration;
import org.apache.commons.math3.exception.MathIllegalArgumentException;
import org.apache.commons.math3.exception.MaxCountExceededException;
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.exception.TooManyEvaluationsException;
import org.apache.commons.math3.util.FastMath;
/**
* Implements the <a href="http://en.wikipedia.org/wiki/Midpoint_method">
* Midpoint Rule</a> for integration of real univariate functions. For
* reference, see <b>Numerical Mathematics</b>, ISBN 0387989595,
* chapter 9.2.
* <p>
* The function should be integrable.</p>
*
* @version $Id$
* @since 3.3
*/
public class MidPointIntegrator extends BaseAbstractUnivariateIntegrator {
/** Maximum number of iterations for midpoint. */
public static final int MIDPOINT_MAX_ITERATIONS_COUNT = 64;
/** Intermediate result. */
private double s;
/**
* Build a midpoint integrator with given accuracies and iterations counts.
* @param relativeAccuracy relative accuracy of the result
* @param absoluteAccuracy absolute accuracy of the result
* @param minimalIterationCount minimum number of iterations
* @param maximalIterationCount maximum number of iterations
* (must be less than or equal to {@link #MIDPOINT_MAX_ITERATIONS_COUNT}
* @exception NotStrictlyPositiveException if minimal number of iterations
* is not strictly positive
* @exception NumberIsTooSmallException if maximal number of iterations
* is lesser than or equal to the minimal number of iterations
* @exception NumberIsTooLargeException if maximal number of iterations
* is greater than {@link #MIDPOINT_MAX_ITERATIONS_COUNT}
*/
public MidPointIntegrator(final double relativeAccuracy,
final double absoluteAccuracy,
final int minimalIterationCount,
final int maximalIterationCount)
throws NotStrictlyPositiveException, NumberIsTooSmallException, NumberIsTooLargeException {
super(relativeAccuracy, absoluteAccuracy, minimalIterationCount, maximalIterationCount);
if (maximalIterationCount > MIDPOINT_MAX_ITERATIONS_COUNT) {
throw new NumberIsTooLargeException(maximalIterationCount,
MIDPOINT_MAX_ITERATIONS_COUNT, false);
}
}
/**
* Build a midpoint integrator with given iteration counts.
* @param minimalIterationCount minimum number of iterations
* @param maximalIterationCount maximum number of iterations
* (must be less than or equal to {@link #MIDPOINT_MAX_ITERATIONS_COUNT}
* @exception NotStrictlyPositiveException if minimal number of iterations
* is not strictly positive
* @exception NumberIsTooSmallException if maximal number of iterations
* is lesser than or equal to the minimal number of iterations
* @exception NumberIsTooLargeException if maximal number of iterations
* is greater than {@link #MIDPOINT_MAX_ITERATIONS_COUNT}
*/
public MidPointIntegrator(final int minimalIterationCount,
final int maximalIterationCount)
throws NotStrictlyPositiveException, NumberIsTooSmallException, NumberIsTooLargeException {
super(minimalIterationCount, maximalIterationCount);
if (maximalIterationCount > MIDPOINT_MAX_ITERATIONS_COUNT) {
throw new NumberIsTooLargeException(maximalIterationCount,
MIDPOINT_MAX_ITERATIONS_COUNT, false);
}
}
/**
* Construct a midpoint integrator with default settings.
* (max iteration count set to {@link #MIDPOINT_MAX_ITERATIONS_COUNT})
*/
public MidPointIntegrator() {
super(DEFAULT_MIN_ITERATIONS_COUNT, MIDPOINT_MAX_ITERATIONS_COUNT);
}
/**
* Compute the n-th stage integral of midpoint rule.
* This function should only be called by API <code>integrate()</code> in the package.
* To save time it does not verify arguments - caller does.
* <p>
* The interval is divided equally into 2^n sections rather than an
* arbitrary m sections because this configuration can best utilize the
* already computed values.</p>
*
* @param n the stage of 1/2 refinement, n = 0 is no refinement
* @return the value of n-th stage integral
* @throws TooManyEvaluationsException if the maximal number of evaluations
* is exceeded.
*/
private double stage(final int n)
throws TooManyEvaluationsException {
final double max = getMax();
final double min = getMin();
if (n == 0) {
final double midPoint = 0.5 * (max - min);
s = (max - min) * computeObjectiveValue(midPoint);
return s;
} else {
final long np = 1L << (n - 1); // number of new points in this stage
double sum = 0;
// spacing between adjacent new points
final double spacing = (max - min) / np;
double x = min + 0.5 * spacing; // the first new point
for (long i = 0; i < np; i++) {
sum += computeObjectiveValue(x);
x += spacing;
}
// add the new sum to previously calculated result
s = 0.5 * (s + sum * spacing);
return s;
}
}
/** {@inheritDoc} */
protected double doIntegrate()
throws MathIllegalArgumentException, TooManyEvaluationsException, MaxCountExceededException {
double oldt = stage(0);
iterations.incrementCount();
while (true) {
final int i = iterations.getCount();
final double t = stage(i);
if (i >= getMinimalIterationCount()) {
final double delta = FastMath.abs(t - oldt);
final double rLimit =
getRelativeAccuracy() * (FastMath.abs(oldt) + FastMath.abs(t)) * 0.5;
if ((delta <= rLimit) || (delta <= getAbsoluteAccuracy())) {
return t;
}
}
oldt = t;
iterations.incrementCount();
}
}
}

View File

@ -0,0 +1,132 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.analysis.integration;
import org.apache.commons.math3.analysis.QuinticFunction;
import org.apache.commons.math3.analysis.UnivariateFunction;
import org.apache.commons.math3.analysis.function.Sin;
import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.util.FastMath;
import org.junit.Assert;
import org.junit.Test;
/**
* Test case for midpoint integrator.
* <p>
* Test runs show that for a default relative accuracy of 1E-6, it generally
* takes 10 to 15 iterations for the integral to converge.
*
* @version $Id: MidPointIntegratorTest.java 1374632 2012-08-18 18:11:11Z luc $
*/
public final class MidPointIntegratorTest {
/**
* Test of integrator for the sine function.
*/
@Test
public void testSinFunction() {
UnivariateFunction f = new Sin();
UnivariateIntegrator integrator = new MidPointIntegrator();
double min = 0;
double max = FastMath.PI;
double expected = 2;
double tolerance = FastMath.abs(expected * integrator.getRelativeAccuracy());
double result = integrator.integrate(Integer.MAX_VALUE, f, min, max);
Assert.assertTrue(integrator.getEvaluations() < Integer.MAX_VALUE / 2);
Assert.assertTrue(integrator.getIterations() < MidPointIntegrator.MIDPOINT_MAX_ITERATIONS_COUNT / 2);
Assert.assertEquals(expected, result, tolerance);
min = -FastMath.PI/3;
max = 0;
expected = -0.5;
tolerance = FastMath.abs(expected * integrator.getRelativeAccuracy());
result = integrator.integrate(Integer.MAX_VALUE, f, min, max);
Assert.assertTrue(integrator.getEvaluations() < Integer.MAX_VALUE / 2);
Assert.assertTrue(integrator.getIterations() < MidPointIntegrator.MIDPOINT_MAX_ITERATIONS_COUNT / 2);
Assert.assertEquals(expected, result, tolerance);
}
/**
* Test of integrator for the quintic function.
*/
@Test
public void testQuinticFunction() {
UnivariateFunction f = new QuinticFunction();
UnivariateIntegrator integrator = new MidPointIntegrator();
double min = 0;
double max = 1;
double expected = -1.0 / 48;
double tolerance = FastMath.abs(expected * integrator.getRelativeAccuracy());
double result = integrator.integrate(Integer.MAX_VALUE, f, min, max);
Assert.assertTrue(integrator.getEvaluations() < Integer.MAX_VALUE / 2);
Assert.assertTrue(integrator.getIterations() < MidPointIntegrator.MIDPOINT_MAX_ITERATIONS_COUNT / 2);
Assert.assertEquals(expected, result, tolerance);
min = 0;
max = 0.5;
expected = 11.0 / 768;
tolerance = FastMath.abs(expected * integrator.getRelativeAccuracy());
result = integrator.integrate(Integer.MAX_VALUE, f, min, max);
Assert.assertTrue(integrator.getEvaluations() < Integer.MAX_VALUE / 2);
Assert.assertTrue(integrator.getIterations() < MidPointIntegrator.MIDPOINT_MAX_ITERATIONS_COUNT / 2);
Assert.assertEquals(expected, result, tolerance);
min = -1;
max = 4;
expected = 2048 / 3.0 - 78 + 1.0 / 48;
tolerance = FastMath.abs(expected * integrator.getRelativeAccuracy());
result = integrator.integrate(Integer.MAX_VALUE, f, min, max);
Assert.assertTrue(integrator.getEvaluations() < Integer.MAX_VALUE / 2);
Assert.assertTrue(integrator.getIterations() < MidPointIntegrator.MIDPOINT_MAX_ITERATIONS_COUNT / 2);
Assert.assertEquals(expected, result, tolerance);
}
/**
* Test of parameters for the integrator.
*/
@Test
public void testParameters() {
UnivariateFunction f = new Sin();
try {
// bad interval
new MidPointIntegrator().integrate(1000, f, 1, -1);
Assert.fail("Expecting NumberIsTooLargeException - bad interval");
} catch (NumberIsTooLargeException ex) {
// expected
}
try {
// bad iteration limits
new MidPointIntegrator(5, 4);
Assert.fail("Expecting NumberIsTooSmallException - bad iteration limits");
} catch (NumberIsTooSmallException ex) {
// expected
}
try {
// bad iteration limits
new MidPointIntegrator(10, 99);
Assert.fail("Expecting NumberIsTooLargeException - bad iteration limits");
} catch (NumberIsTooLargeException ex) {
// expected
}
}
}