From a436c93ce3d5816d0fc4518ea5948678c0db5755 Mon Sep 17 00:00:00 2001
From: Thomas Neidhart
* Tests can be:
*
alpha=0.05
).
* Input to tests can be either double[]
arrays or
- * {@link StatisticalSummary} instances.
+ * Uses commons-math {@link org.apache.commons.math.distribution.TDistribution} + * implementation to estimate exact p-values.
* * @version $Id$ */ -public interface TTest { +public class TTest { /** * Computes a paired, 2-sample t-statistic based on the data in the input * arrays. The t-statistic returned is equivalent to what would be returned by @@ -61,12 +71,24 @@ public interface TTest { * @param sample1 array of sample data values * @param sample2 array of sample data values * @return t statistic - * @throws IllegalArgumentException if the precondition is not met - * @throws MathException if the statistic can not be computed do to a - * convergence or other numerical error. + * @throws NullArgumentException if the arrays arenull
+ * @throws NoDataException if the arrays are empty
+ * @throws DimensionMismatchException if the length of the arrays is not equal
+ * @throws NumberIsTooSmallException if the length of the arrays is < 2
*/
- double pairedT(double[] sample1, double[] sample2)
- throws IllegalArgumentException, MathException;
+ public double pairedT(final double[] sample1, final double[] sample2)
+ throws NullArgumentException, NoDataException,
+ DimensionMismatchException, NumberIsTooSmallException {
+
+ checkSampleData(sample1);
+ checkSampleData(sample2);
+ double meanDifference = StatUtils.meanDifference(sample1, sample2);
+ return t(meanDifference, 0,
+ StatUtils.varianceDifference(sample1, sample2, meanDifference),
+ sample1.length);
+
+ }
+
/**
* Returns the observed significance level, or
* p-value, associated with a paired, two-sample, two-tailed t-test
@@ -97,11 +119,23 @@ public interface TTest {
* @param sample1 array of sample data values
* @param sample2 array of sample data values
* @return p-value for t-test
- * @throws IllegalArgumentException if the precondition is not met
- * @throws MathException if an error occurs computing the p-value
+ * @throws NullArgumentException if the arrays are null
+ * @throws NoDataException if the arrays are empty
+ * @throws DimensionMismatchException if the length of the arrays is not equal
+ * @throws NumberIsTooSmallException if the length of the arrays is < 2
+ * @throws MaxCountExceededException if an error occurs computing the p-value
*/
- double pairedTTest(double[] sample1, double[] sample2)
- throws IllegalArgumentException, MathException;
+ public double pairedTTest(final double[] sample1, final double[] sample2)
+ throws NullArgumentException, NoDataException, DimensionMismatchException,
+ NumberIsTooSmallException, MaxCountExceededException {
+
+ double meanDifference = StatUtils.meanDifference(sample1, sample2);
+ return tTest(meanDifference, 0,
+ StatUtils.varianceDifference(sample1, sample2, meanDifference),
+ sample1.length);
+
+ }
+
/**
* Performs a paired t-test evaluating the null hypothesis that the
* mean of the paired differences between sample1
and
@@ -123,7 +157,7 @@ public interface TTest {
* 0 < alpha < 0.5
+ * 0 < alpha < 0.5
* null
+ * @throws NoDataException if the arrays are empty
+ * @throws DimensionMismatchException if the length of the arrays is not equal
+ * @throws NumberIsTooSmallException if the length of the arrays is < 2
+ * @throws OutOfRangeException if alpha
is not in the range (0, 0.5]
+ * @throws MaxCountExceededException if an error occurs computing the p-value
*/
- boolean pairedTTest(
- double[] sample1,
- double[] sample2,
- double alpha)
- throws IllegalArgumentException, MathException;
+ public boolean pairedTTest(final double[] sample1, final double[] sample2,
+ final double alpha)
+ throws NullArgumentException, NoDataException, DimensionMismatchException,
+ NumberIsTooSmallException, OutOfRangeException, MaxCountExceededException {
+
+ checkSignificanceLevel(alpha);
+ return pairedTTest(sample1, sample2) < alpha;
+
+ }
+
/**
* Computes a
* t statistic given observed values and a comparison constant.
@@ -152,10 +195,18 @@ public interface TTest {
* @param mu comparison constant
* @param observed array of values
* @return t statistic
- * @throws IllegalArgumentException if input array length is less than 2
+ * @throws NullArgumentException if observed
is null
+ * @throws NumberIsTooSmallException if the length of observed
is < 2
*/
- double t(double mu, double[] observed)
- throws IllegalArgumentException;
+ public double t(final double mu, final double[] observed)
+ throws NullArgumentException, NumberIsTooSmallException {
+
+ checkSampleData(observed);
+ return t(StatUtils.mean(observed), mu, StatUtils.variance(observed),
+ observed.length);
+
+ }
+
/**
* Computes a
* t statistic to use in comparing the mean of the dataset described by
@@ -164,16 +215,24 @@ public interface TTest {
* This statistic can be used to perform a one sample t-test for the mean.
* * Preconditions:
observed.getN() > = 2
.
+ * observed.getN() ≥ 2
.
* sampleStats
is null
+ * @throws NumberIsTooSmallException if the number of samples is < 2
*/
- double t(double mu, StatisticalSummary sampleStats)
- throws IllegalArgumentException;
+ public double t(final double mu, final StatisticalSummary sampleStats)
+ throws NullArgumentException, NumberIsTooSmallException {
+
+ checkSampleData(sampleStats);
+ return t(sampleStats.getMean(), mu, sampleStats.getVariance(),
+ sampleStats.getN());
+
+ }
+
/**
* Computes a 2-sample t statistic, under the hypothesis of equal
* subpopulation variances. To compute a t-statistic without the
@@ -182,7 +241,7 @@ public interface TTest {
* This statistic can be used to perform a (homoscedastic) two-sample
* t-test to compare sample means.
* - * The t-statisitc is
+ * The t-statistic is *
* t = (m1 - m2) / (sqrt(1/n1 +1/n2) sqrt(var))
*
@@ -205,10 +264,20 @@ public interface TTest {
* @param sample1 array of sample data values
* @param sample2 array of sample data values
* @return t statistic
- * @throws IllegalArgumentException if the precondition is not met
+ * @throws NullArgumentException if the arrays are null
+ * @throws NumberIsTooSmallException if the length of the arrays is < 2
*/
- double homoscedasticT(double[] sample1, double[] sample2)
- throws IllegalArgumentException;
+ public double homoscedasticT(final double[] sample1, final double[] sample2)
+ throws NullArgumentException, NumberIsTooSmallException {
+
+ checkSampleData(sample1);
+ checkSampleData(sample2);
+ return homoscedasticT(StatUtils.mean(sample1), StatUtils.mean(sample2),
+ StatUtils.variance(sample1), StatUtils.variance(sample2),
+ sample1.length, sample2.length);
+
+ }
+
/**
* Computes a 2-sample t statistic, without the hypothesis of equal
* subpopulation variances. To compute a t-statistic assuming equal
@@ -217,7 +286,7 @@ public interface TTest {
* This statistic can be used to perform a two-sample t-test to compare
* sample means.
- * The t-statisitc is
+ * The t-statistic is *
* t = (m1 - m2) / sqrt(var1/n1 + var2/n2)
*
@@ -235,10 +304,20 @@ public interface TTest {
* @param sample1 array of sample data values
* @param sample2 array of sample data values
* @return t statistic
- * @throws IllegalArgumentException if the precondition is not met
+ * @throws NullArgumentException if the arrays are null
+ * @throws NumberIsTooSmallException if the length of the arrays is < 2
*/
- double t(double[] sample1, double[] sample2)
- throws IllegalArgumentException;
+ public double t(final double[] sample1, final double[] sample2)
+ throws NullArgumentException, NumberIsTooSmallException {
+
+ checkSampleData(sample1);
+ checkSampleData(sample2);
+ return t(StatUtils.mean(sample1), StatUtils.mean(sample2),
+ StatUtils.variance(sample1), StatUtils.variance(sample2),
+ sample1.length, sample2.length);
+
+ }
+
/**
* Computes a 2-sample t statistic , comparing the means of the datasets
* described by two {@link StatisticalSummary} instances, without the
@@ -249,7 +328,7 @@ public interface TTest {
* This statistic can be used to perform a two-sample t-test to compare
* sample means.
- * The returned t-statisitc is
+ * The returned t-statistic is *
* t = (m1 - m2) / sqrt(var1/n1 + var2/n2)
*
@@ -268,12 +347,21 @@ public interface TTest {
* @param sampleStats1 StatisticalSummary describing data from the first sample
* @param sampleStats2 StatisticalSummary describing data from the second sample
* @return t statistic
- * @throws IllegalArgumentException if the precondition is not met
+ * @throws NullArgumentException if the sample statistics are null
+ * @throws NumberIsTooSmallException if the number of samples is < 2
*/
- double t(
- StatisticalSummary sampleStats1,
- StatisticalSummary sampleStats2)
- throws IllegalArgumentException;
+ public double t(final StatisticalSummary sampleStats1,
+ final StatisticalSummary sampleStats2)
+ throws NullArgumentException, NumberIsTooSmallException {
+
+ checkSampleData(sampleStats1);
+ checkSampleData(sampleStats2);
+ return t(sampleStats1.getMean(), sampleStats2.getMean(),
+ sampleStats1.getVariance(), sampleStats2.getVariance(),
+ sampleStats1.getN(), sampleStats2.getN());
+
+ }
+
/**
* Computes a 2-sample t statistic, comparing the means of the datasets
* described by two {@link StatisticalSummary} instances, under the
@@ -284,7 +372,7 @@ public interface TTest {
* This statistic can be used to perform a (homoscedastic) two-sample
* t-test to compare sample means.
- * The t-statisitc returned is
+ * The t-statistic returned is *
* t = (m1 - m2) / (sqrt(1/n1 +1/n2) sqrt(var))
*
@@ -307,12 +395,21 @@ public interface TTest {
* @param sampleStats1 StatisticalSummary describing data from the first sample
* @param sampleStats2 StatisticalSummary describing data from the second sample
* @return t statistic
- * @throws IllegalArgumentException if the precondition is not met
+ * @throws NullArgumentException if the sample statistics are null
+ * @throws NumberIsTooSmallException if the number of samples is < 2
*/
- double homoscedasticT(
- StatisticalSummary sampleStats1,
- StatisticalSummary sampleStats2)
- throws IllegalArgumentException;
+ public double homoscedasticT(final StatisticalSummary sampleStats1,
+ final StatisticalSummary sampleStats2)
+ throws NullArgumentException, NumberIsTooSmallException {
+
+ checkSampleData(sampleStats1);
+ checkSampleData(sampleStats2);
+ return homoscedasticT(sampleStats1.getMean(), sampleStats2.getMean(),
+ sampleStats1.getVariance(), sampleStats2.getVariance(),
+ sampleStats1.getN(), sampleStats2.getN());
+
+ }
+
/**
* Returns the observed significance level, or
* p-value, associated with a one-sample, two-tailed t-test
@@ -336,11 +433,20 @@ public interface TTest {
* @param mu constant value to compare sample mean against
* @param sample array of sample data values
* @return p-value
- * @throws IllegalArgumentException if the precondition is not met
- * @throws MathException if an error occurs computing the p-value
+ * @throws NullArgumentException if the sample array is null
+ * @throws NumberIsTooSmallException if the length of the array is < 2
+ * @throws MaxCountExceededException if an error occurs computing the p-value
*/
- double tTest(double mu, double[] sample)
- throws IllegalArgumentException, MathException;
+ public double tTest(final double mu, final double[] sample)
+ throws NullArgumentException, NumberIsTooSmallException,
+ MaxCountExceededException {
+
+ checkSampleData(sample);
+ return tTest(StatUtils.mean(sample), mu, StatUtils.variance(sample),
+ sample.length);
+
+ }
+
/**
* Performs a
* two-sided t-test evaluating the null hypothesis that the mean of the population from
@@ -373,11 +479,20 @@ public interface TTest {
* @param sample array of sample data values
* @param alpha significance level of the test
* @return p-value
- * @throws IllegalArgumentException if the precondition is not met
- * @throws MathException if an error computing the p-value
+ * @throws NullArgumentException if the sample array is null
+ * @throws NumberIsTooSmallException if the length of the array is < 2
+ * @throws OutOfRangeException if alpha
is not in the range (0, 0.5]
+ * @throws MaxCountExceededException if an error computing the p-value
*/
- boolean tTest(double mu, double[] sample, double alpha)
- throws IllegalArgumentException, MathException;
+ public boolean tTest(final double mu, final double[] sample, final double alpha)
+ throws NullArgumentException, NumberIsTooSmallException,
+ OutOfRangeException, MaxCountExceededException {
+
+ checkSignificanceLevel(alpha);
+ return tTest(mu, sample) < alpha;
+
+ }
+
/**
* Returns the observed significance level, or
* p-value, associated with a one-sample, two-tailed t-test
@@ -403,11 +518,20 @@ public interface TTest {
* @param mu constant value to compare sample mean against
* @param sampleStats StatisticalSummary describing sample data
* @return p-value
- * @throws IllegalArgumentException if the precondition is not met
- * @throws MathException if an error occurs computing the p-value
+ * @throws NullArgumentException if sampleStats
is null
+ * @throws NumberIsTooSmallException if the number of samples is < 2
+ * @throws MaxCountExceededException if an error occurs computing the p-value
*/
- double tTest(double mu, StatisticalSummary sampleStats)
- throws IllegalArgumentException, MathException;
+ public double tTest(final double mu, final StatisticalSummary sampleStats)
+ throws NullArgumentException, NumberIsTooSmallException,
+ MaxCountExceededException {
+
+ checkSampleData(sampleStats);
+ return tTest(sampleStats.getMean(), mu, sampleStats.getVariance(),
+ sampleStats.getN());
+
+ }
+
/**
* Performs a
* two-sided t-test evaluating the null hypothesis that the mean of the
@@ -441,14 +565,21 @@ public interface TTest {
* @param sampleStats StatisticalSummary describing sample data values
* @param alpha significance level of the test
* @return p-value
- * @throws IllegalArgumentException if the precondition is not met
- * @throws MathException if an error occurs computing the p-value
+ * @throws NullArgumentException if sampleStats
is null
+ * @throws NumberIsTooSmallException if the number of samples is < 2
+ * @throws OutOfRangeException if alpha
is not in the range (0, 0.5]
+ * @throws MaxCountExceededException if an error occurs computing the p-value
*/
- boolean tTest(
- double mu,
- StatisticalSummary sampleStats,
- double alpha)
- throws IllegalArgumentException, MathException;
+ public boolean tTest(final double mu, final StatisticalSummary sampleStats,
+ final double alpha)
+ throws NullArgumentException, NumberIsTooSmallException,
+ OutOfRangeException, MaxCountExceededException {
+
+ checkSignificanceLevel(alpha);
+ return tTest(mu, sampleStats) < alpha;
+
+ }
+
/**
* Returns the observed significance level, or
* p-value, associated with a two-sample, two-tailed t-test
@@ -482,11 +613,22 @@ public interface TTest {
* @param sample1 array of sample data values
* @param sample2 array of sample data values
* @return p-value for t-test
- * @throws IllegalArgumentException if the precondition is not met
- * @throws MathException if an error occurs computing the p-value
+ * @throws NullArgumentException if the arrays are null
+ * @throws NumberIsTooSmallException if the length of the arrays is < 2
+ * @throws MaxCountExceededException if an error occurs computing the p-value
*/
- double tTest(double[] sample1, double[] sample2)
- throws IllegalArgumentException, MathException;
+ public double tTest(final double[] sample1, final double[] sample2)
+ throws NullArgumentException, NumberIsTooSmallException,
+ MaxCountExceededException {
+
+ checkSampleData(sample1);
+ checkSampleData(sample2);
+ return tTest(StatUtils.mean(sample1), StatUtils.mean(sample2),
+ StatUtils.variance(sample1), StatUtils.variance(sample2),
+ sample1.length, sample2.length);
+
+ }
+
/**
* Returns the observed significance level, or
* p-value, associated with a two-sample, two-tailed t-test
@@ -517,13 +659,24 @@ public interface TTest {
* @param sample1 array of sample data values
* @param sample2 array of sample data values
* @return p-value for t-test
- * @throws IllegalArgumentException if the precondition is not met
- * @throws MathException if an error occurs computing the p-value
+ * @throws NullArgumentException if the arrays are null
+ * @throws NumberIsTooSmallException if the length of the arrays is < 2
+ * @throws MaxCountExceededException if an error occurs computing the p-value
*/
- double homoscedasticTTest(
- double[] sample1,
- double[] sample2)
- throws IllegalArgumentException, MathException;
+ public double homoscedasticTTest(final double[] sample1, final double[] sample2)
+ throws NullArgumentException, NumberIsTooSmallException,
+ MaxCountExceededException {
+
+ checkSampleData(sample1);
+ checkSampleData(sample2);
+ return homoscedasticTTest(StatUtils.mean(sample1),
+ StatUtils.mean(sample2),
+ StatUtils.variance(sample1),
+ StatUtils.variance(sample2),
+ sample1.length, sample2.length);
+
+ }
+
/**
* Performs a
*
@@ -571,14 +724,21 @@ public interface TTest {
* @param alpha significance level of the test
* @return true if the null hypothesis can be rejected with
* confidence 1 - alpha
- * @throws IllegalArgumentException if the preconditions are not met
- * @throws MathException if an error occurs performing the test
+ * @throws NullArgumentException if the arrays are null
+ * @throws NumberIsTooSmallException if the length of the arrays is < 2
+ * @throws OutOfRangeException if alpha
is not in the range (0, 0.5]
+ * @throws MaxCountExceededException if an error occurs computing the p-value
*/
- boolean tTest(
- double[] sample1,
- double[] sample2,
- double alpha)
- throws IllegalArgumentException, MathException;
+ public boolean tTest(final double[] sample1, final double[] sample2,
+ final double alpha)
+ throws NullArgumentException, NumberIsTooSmallException,
+ OutOfRangeException, MaxCountExceededException {
+
+ checkSignificanceLevel(alpha);
+ return tTest(sample1, sample2) < alpha;
+
+ }
+
/**
* Performs a
*
@@ -627,14 +787,21 @@ public interface TTest {
* @param alpha significance level of the test
* @return true if the null hypothesis can be rejected with
* confidence 1 - alpha
- * @throws IllegalArgumentException if the preconditions are not met
- * @throws MathException if an error occurs performing the test
+ * @throws NullArgumentException if the arrays are null
+ * @throws NumberIsTooSmallException if the length of the arrays is < 2
+ * @throws OutOfRangeException if alpha
is not in the range (0, 0.5]
+ * @throws MaxCountExceededException if an error occurs computing the p-value
*/
- boolean homoscedasticTTest(
- double[] sample1,
- double[] sample2,
- double alpha)
- throws IllegalArgumentException, MathException;
+ public boolean homoscedasticTTest(final double[] sample1, final double[] sample2,
+ final double alpha)
+ throws NullArgumentException, NumberIsTooSmallException,
+ OutOfRangeException, MaxCountExceededException {
+
+ checkSignificanceLevel(alpha);
+ return homoscedasticTTest(sample1, sample2) < alpha;
+
+ }
+
/**
* Returns the observed significance level, or
* p-value, associated with a two-sample, two-tailed t-test
@@ -646,7 +813,7 @@ public interface TTest {
* equal in favor of the two-sided alternative that they are different.
* For a one-sided test, divide the returned value by 2.
- * The test does not assume that the underlying popuation variances are
+ * The test does not assume that the underlying population variances are
* equal and it uses approximated degrees of freedom computed from the
* sample data to compute the p-value. To perform the test assuming
* equal variances, use
@@ -666,13 +833,23 @@ public interface TTest {
* @param sampleStats1 StatisticalSummary describing data from the first sample
* @param sampleStats2 StatisticalSummary describing data from the second sample
* @return p-value for t-test
- * @throws IllegalArgumentException if the precondition is not met
- * @throws MathException if an error occurs computing the p-value
+ * @throws NullArgumentException if the sample statistics are
+ * Does not assume that subpopulation variances are equal.
+ * Does not assume subpopulation variances are equal. Degrees of freedom
+ * are estimated from the data.
+ * The sum of the sample sizes minus 2 is used as degrees of freedom.
- * Uses commons-math {@link org.apache.commons.math.distribution.TDistribution}
- * implementation to estimate exact p-values.
- * Preconditions: null
+ * @throws NumberIsTooSmallException if the number of samples is < 2
+ * @throws MaxCountExceededException if an error occurs computing the p-value
*/
- double tTest(
- StatisticalSummary sampleStats1,
- StatisticalSummary sampleStats2)
- throws IllegalArgumentException, MathException;
+ public double tTest(final StatisticalSummary sampleStats1,
+ final StatisticalSummary sampleStats2)
+ throws NullArgumentException, NumberIsTooSmallException,
+ MaxCountExceededException {
+
+ checkSampleData(sampleStats1);
+ checkSampleData(sampleStats2);
+ return tTest(sampleStats1.getMean(), sampleStats2.getMean(),
+ sampleStats1.getVariance(), sampleStats2.getVariance(),
+ sampleStats1.getN(), sampleStats2.getN());
+
+ }
+
/**
* Returns the observed significance level, or
* p-value, associated with a two-sample, two-tailed t-test
@@ -703,13 +880,25 @@ public interface TTest {
* @param sampleStats1 StatisticalSummary describing data from the first sample
* @param sampleStats2 StatisticalSummary describing data from the second sample
* @return p-value for t-test
- * @throws IllegalArgumentException if the precondition is not met
- * @throws MathException if an error occurs computing the p-value
+ * @throws NullArgumentException if the sample statistics are null
+ * @throws NumberIsTooSmallException if the number of samples is < 2
+ * @throws MaxCountExceededException if an error occurs computing the p-value
*/
- double homoscedasticTTest(
- StatisticalSummary sampleStats1,
- StatisticalSummary sampleStats2)
- throws IllegalArgumentException, MathException;
+ public double homoscedasticTTest(final StatisticalSummary sampleStats1,
+ final StatisticalSummary sampleStats2)
+ throws NullArgumentException, NumberIsTooSmallException,
+ MaxCountExceededException {
+
+ checkSampleData(sampleStats1);
+ checkSampleData(sampleStats2);
+ return homoscedasticTTest(sampleStats1.getMean(),
+ sampleStats2.getMean(),
+ sampleStats1.getVariance(),
+ sampleStats2.getVariance(),
+ sampleStats1.getN(), sampleStats2.getN());
+
+ }
+
/**
* Performs a
*
@@ -760,12 +949,221 @@ public interface TTest {
* @param alpha significance level of the test
* @return true if the null hypothesis can be rejected with
* confidence 1 - alpha
- * @throws IllegalArgumentException if the preconditions are not met
- * @throws MathException if an error occurs performing the test
+ * @throws NullArgumentException if the sample statistics are null
+ * @throws NumberIsTooSmallException if the number of samples is < 2
+ * @throws OutOfRangeException if alpha
is not in the range (0, 0.5]
+ * @throws MaxCountExceededException if an error occurs computing the p-value
*/
- boolean tTest(
- StatisticalSummary sampleStats1,
- StatisticalSummary sampleStats2,
- double alpha)
- throws IllegalArgumentException, MathException;
+ public boolean tTest(final StatisticalSummary sampleStats1,
+ final StatisticalSummary sampleStats2,
+ final double alpha)
+ throws NullArgumentException, NumberIsTooSmallException,
+ OutOfRangeException, MaxCountExceededException {
+
+ checkSignificanceLevel(alpha);
+ return tTest(sampleStats1, sampleStats2) < alpha;
+
+ }
+
+ //----------------------------------------------- Protected methods
+
+ /**
+ * Computes approximate degrees of freedom for 2-sample t-test.
+ *
+ * @param v1 first sample variance
+ * @param v2 second sample variance
+ * @param n1 first sample n
+ * @param n2 second sample n
+ * @return approximate degrees of freedom
+ */
+ protected double df(double v1, double v2, double n1, double n2) {
+ return (((v1 / n1) + (v2 / n2)) * ((v1 / n1) + (v2 / n2))) /
+ ((v1 * v1) / (n1 * n1 * (n1 - 1d)) + (v2 * v2) /
+ (n2 * n2 * (n2 - 1d)));
+ }
+
+ /**
+ * Computes t test statistic for 1-sample t-test.
+ *
+ * @param m sample mean
+ * @param mu constant to test against
+ * @param v sample variance
+ * @param n sample n
+ * @return t test statistic
+ */
+ protected double t(final double m, final double mu,
+ final double v, final double n) {
+ return (m - mu) / FastMath.sqrt(v / n);
+ }
+
+ /**
+ * Computes t test statistic for 2-sample t-test.
+ * mu = 0
and the sample array consisting of the (signed)
- * differences between corresponding entries in sample1
and
- * sample2.
- *
- *
- * The number returned is the smallest significance level - * at which one can reject the null hypothesis that the mean of the paired - * differences is 0 in favor of the two-sided alternative that the mean paired - * difference is not equal to 0. For a one-sided test, divide the returned - * value by 2.
- *
- * This test is equivalent to a one-sample t-test computed using
- * {@link #tTest(double, double[])} with mu = 0
and the sample
- * array consisting of the signed differences between corresponding elements of
- * sample1
and sample2.
- * Usage Note:
- * The validity of the p-value depends on the assumptions of the parametric
- * t-test procedure, as discussed
- *
- * here
- * Preconditions:
sample1
and
- * sample2
is 0 in favor of the two-sided alternative that the
- * mean paired difference is not equal to 0, with significance level
- * alpha
.
- *
- * Returns true
iff the null hypothesis can be rejected with
- * confidence 1 - alpha
. To perform a 1-sided test, use
- * alpha * 2
- * Usage Note:
- * The validity of the test depends on the assumptions of the parametric
- * t-test procedure, as discussed
- *
- * here
- * Preconditions:
0 < alpha < 0.5
- * - * This statistic can be used to perform a one sample t-test for the mean. - *
- * Preconditions:
sampleStats
to mu
.
- * - * This statistic can be used to perform a one sample t-test for the mean. - *
- * Preconditions:
observed.getN() > = 2
.
- * - * This statistic can be used to perform a (homoscedastic) two-sample - * t-test to compare sample means.
- *- * The t-statisitc is
- *
- * t = (m1 - m2) / (sqrt(1/n1 +1/n2) sqrt(var))
- *
- * where n1
is the size of first sample;
- * n2
is the size of second sample;
- * m1
is the mean of first sample;
- * m2
is the mean of second sample
- *
- * and var
is the pooled variance estimate:
- *
- * var = sqrt(((n1 - 1)var1 + (n2 - 1)var2) / ((n1-1) + (n2-1)))
- *
- * with var1
the variance of the first sample and
- * var2
the variance of the second sample.
- *
- * Preconditions:
- * This statistic can be used to perform a two-sample t-test to compare - * sample means.
- *- * The t-statisitc is
- *
- * t = (m1 - m2) / sqrt(var1/n1 + var2/n2)
- *
- * where n1
is the size of the first sample
- * n2
is the size of the second sample;
- * m1
is the mean of the first sample;
- * m2
is the mean of the second sample;
- * var1
is the variance of the first sample;
- * var2
is the variance of the second sample;
- *
- * Preconditions:
- * This statistic can be used to perform a two-sample t-test to compare - * sample means.
- *- * The returned t-statisitc is
- *
- * t = (m1 - m2) / sqrt(var1/n1 + var2/n2)
- *
- * where n1
is the size of the first sample;
- * n2
is the size of the second sample;
- * m1
is the mean of the first sample;
- * m2
is the mean of the second sample
- * var1
is the variance of the first sample;
- * var2
is the variance of the second sample
- *
- * Preconditions:
- * This statistic can be used to perform a (homoscedastic) two-sample - * t-test to compare sample means.
- *- * The t-statisitc returned is
- *
- * t = (m1 - m2) / (sqrt(1/n1 +1/n2) sqrt(var))
- *
- * where n1
is the size of first sample;
- * n2
is the size of second sample;
- * m1
is the mean of first sample;
- * m2
is the mean of second sample
- * and var
is the pooled variance estimate:
- *
- * var = sqrt(((n1 - 1)var1 + (n2 - 1)var2) / ((n1-1) + (n2-1)))
- *
- * with var1
the variance of the first sample and
- * var2
the variance of the second sample.
- *
- * Preconditions:
mu
.
- *
- * The number returned is the smallest significance level
- * at which one can reject the null hypothesis that the mean equals
- * mu
in favor of the two-sided alternative that the mean
- * is different from mu
. For a one-sided test, divide the
- * returned value by 2.
- * Usage Note:
- * The validity of the test depends on the assumptions of the parametric
- * t-test procedure, as discussed
- * here
- *
- * Preconditions:
sample
is drawn equals mu
.
- *
- * Returns true
iff the null hypothesis can be
- * rejected with confidence 1 - alpha
. To
- * perform a 1-sided test, use alpha * 2
- *
- * Examples:
sample mean = mu
at
- * the 95% level, use tTest(mu, sample, 0.05)
- * sample mean < mu
- * at the 99% level, first verify that the measured sample mean is less
- * than mu
and then use
- * tTest(mu, sample, 0.02)
- *
- * Usage Note:
- * The validity of the test depends on the assumptions of the one-sample
- * parametric t-test procedure, as discussed
- * here
- *
- * Preconditions:
sampleStats
- * with the constant mu
.
- *
- * The number returned is the smallest significance level
- * at which one can reject the null hypothesis that the mean equals
- * mu
in favor of the two-sided alternative that the mean
- * is different from mu
. For a one-sided test, divide the
- * returned value by 2.
- * Usage Note:
- * The validity of the test depends on the assumptions of the parametric
- * t-test procedure, as discussed
- *
- * here
- * Preconditions:
stats
is
- * drawn equals mu
.
- *
- * Returns true
iff the null hypothesis can be rejected with
- * confidence 1 - alpha
. To perform a 1-sided test, use
- * alpha * 2.
- * Examples:
sample mean = mu
at
- * the 95% level, use tTest(mu, sampleStats, 0.05)
- * sample mean < mu
- * at the 99% level, first verify that the measured sample mean is less
- * than mu
and then use
- * tTest(mu, sampleStats, 0.02)
- *
- * Usage Note:
- * The validity of the test depends on the assumptions of the one-sample
- * parametric t-test procedure, as discussed
- * here
- *
- * Preconditions:
- * The number returned is the smallest significance level - * at which one can reject the null hypothesis that the two means are - * equal in favor of the two-sided alternative that they are different. - * For a one-sided test, divide the returned value by 2.
- *- * The test does not assume that the underlying popuation variances are - * equal and it uses approximated degrees of freedom computed from the - * sample data to compute the p-value. The t-statistic used is as defined in - * {@link #t(double[], double[])} and the Welch-Satterthwaite approximation - * to the degrees of freedom is used, - * as described - * - * here. To perform the test under the assumption of equal subpopulation - * variances, use {@link #homoscedasticTTest(double[], double[])}.
- *
- * Usage Note:
- * The validity of the p-value depends on the assumptions of the parametric
- * t-test procedure, as discussed
- *
- * here
- * Preconditions:
- * The number returned is the smallest significance level - * at which one can reject the null hypothesis that the two means are - * equal in favor of the two-sided alternative that they are different. - * For a one-sided test, divide the returned value by 2.
- *- * A pooled variance estimate is used to compute the t-statistic. See - * {@link #homoscedasticT(double[], double[])}. The sum of the sample sizes - * minus 2 is used as the degrees of freedom.
- *
- * Usage Note:
- * The validity of the p-value depends on the assumptions of the parametric
- * t-test procedure, as discussed
- *
- * here
- * Preconditions:
sample1
- * and sample2
are drawn from populations with the same mean,
- * with significance level alpha
. This test does not assume
- * that the subpopulation variances are equal. To perform the test assuming
- * equal variances, use
- * {@link #homoscedasticTTest(double[], double[], double)}.
- *
- * Returns true
iff the null hypothesis that the means are
- * equal can be rejected with confidence 1 - alpha
. To
- * perform a 1-sided test, use alpha / 2
- * See {@link #t(double[], double[])} for the formula used to compute the - * t-statistic. Degrees of freedom are approximated using the - * - * Welch-Satterthwaite approximation.
- - *
- * Examples:
mean 1 = mean 2
at
- * the 95% level, use
- * tTest(sample1, sample2, 0.05).
- * mean 1 < mean 2
at
- * the 99% level, first verify that the measured mean of sample 1
- * is less than the mean of sample 2
and then use
- * tTest(sample1, sample2, 0.02)
- *
- * Usage Note:
- * The validity of the test depends on the assumptions of the parametric
- * t-test procedure, as discussed
- *
- * here
- * Preconditions:
0 < alpha < 0.5
- * sample1
- * and sample2
are drawn from populations with the same mean,
- * with significance level alpha
, assuming that the
- * subpopulation variances are equal. Use
- * {@link #tTest(double[], double[], double)} to perform the test without
- * the assumption of equal variances.
- *
- * Returns true
iff the null hypothesis that the means are
- * equal can be rejected with confidence 1 - alpha
. To
- * perform a 1-sided test, use alpha * 2.
To perform the test
- * without the assumption of equal subpopulation variances, use
- * {@link #tTest(double[], double[], double)}.
- * A pooled variance estimate is used to compute the t-statistic. See - * {@link #t(double[], double[])} for the formula. The sum of the sample - * sizes minus 2 is used as the degrees of freedom.
- *
- * Examples:
mean 1 = mean 2
at
- * the 95% level, use tTest(sample1, sample2, 0.05).
- * mean 1 < mean 2,
- * at the 99% level, first verify that the measured mean of
- * sample 1
is less than the mean of sample 2
- * and then use
- * tTest(sample1, sample2, 0.02)
- *
- * Usage Note:
- * The validity of the test depends on the assumptions of the parametric
- * t-test procedure, as discussed
- *
- * here
- * Preconditions:
0 < alpha < 0.5
- * - * The number returned is the smallest significance level - * at which one can reject the null hypothesis that the two means are - * equal in favor of the two-sided alternative that they are different. - * For a one-sided test, divide the returned value by 2.
- *- * The test does not assume that the underlying popuation variances are - * equal and it uses approximated degrees of freedom computed from the - * sample data to compute the p-value. To perform the test assuming - * equal variances, use - * {@link #homoscedasticTTest(StatisticalSummary, StatisticalSummary)}.
- *
- * Usage Note:
- * The validity of the p-value depends on the assumptions of the parametric
- * t-test procedure, as discussed
- *
- * here
- * Preconditions:
- * The number returned is the smallest significance level - * at which one can reject the null hypothesis that the two means are - * equal in favor of the two-sided alternative that they are different. - * For a one-sided test, divide the returned value by 2.
- *- * See {@link #homoscedasticT(double[], double[])} for the formula used to - * compute the t-statistic. The sum of the sample sizes minus 2 is used as - * the degrees of freedom.
- *
- * Usage Note:
- * The validity of the p-value depends on the assumptions of the parametric
- * t-test procedure, as discussed
- * here
- *
- * Preconditions:
sampleStats1
and sampleStats2
describe
- * datasets drawn from populations with the same mean, with significance
- * level alpha
. This test does not assume that the
- * subpopulation variances are equal. To perform the test under the equal
- * variances assumption, use
- * {@link #homoscedasticTTest(StatisticalSummary, StatisticalSummary)}.
- *
- * Returns true
iff the null hypothesis that the means are
- * equal can be rejected with confidence 1 - alpha
. To
- * perform a 1-sided test, use alpha * 2
- * See {@link #t(double[], double[])} for the formula used to compute the - * t-statistic. Degrees of freedom are approximated using the - * - * Welch-Satterthwaite approximation.
- *
- * Examples:
mean 1 = mean 2
at
- * the 95%, use
- * tTest(sampleStats1, sampleStats2, 0.05)
- * mean 1 < mean 2
- * at the 99% level, first verify that the measured mean of
- * sample 1
is less than the mean of sample 2
- * and then use
- * tTest(sampleStats1, sampleStats2, 0.02)
- *
- * Usage Note:
- * The validity of the test depends on the assumptions of the parametric
- * t-test procedure, as discussed
- *
- * here
- * Preconditions:
0 < alpha < 0.5
- * - * Does not assume that subpopulation variances are equal.
- * - * @param m1 first sample mean - * @param m2 second sample mean - * @param v1 first sample variance - * @param v2 second sample variance - * @param n1 first sample n - * @param n2 second sample n - * @return t test statistic - */ - protected double t(double m1, double m2, double v1, double v2, double n1, - double n2) { - return (m1 - m2) / FastMath.sqrt((v1 / n1) + (v2 / n2)); - } - - /** - * Computes t test statistic for 2-sample t-test under the hypothesis - * of equal subpopulation variances. - * - * @param m1 first sample mean - * @param m2 second sample mean - * @param v1 first sample variance - * @param v2 second sample variance - * @param n1 first sample n - * @param n2 second sample n - * @return t test statistic - */ - protected double homoscedasticT(double m1, double m2, double v1, - double v2, double n1, double n2) { - double pooledVariance = ((n1 - 1) * v1 + (n2 -1) * v2 ) / (n1 + n2 - 2); - return (m1 - m2) / FastMath.sqrt(pooledVariance * (1d / n1 + 1d / n2)); - } - - /** - * Computes p-value for 2-sided, 1-sample t-test. - * - * @param m sample mean - * @param mu constant to test against - * @param v sample variance - * @param n sample n - * @return p-value - * @throws MathException if an error occurs computing the p-value - */ - protected double tTest(double m, double mu, double v, double n) - throws MathException { - double t = FastMath.abs(t(m, mu, v, n)); - TDistribution distribution = new TDistribution(n - 1); - return 2.0 * distribution.cumulativeProbability(-t); - } - - /** - * Computes p-value for 2-sided, 2-sample t-test. - *- * Does not assume subpopulation variances are equal. Degrees of freedom - * are estimated from the data.
- * - * @param m1 first sample mean - * @param m2 second sample mean - * @param v1 first sample variance - * @param v2 second sample variance - * @param n1 first sample n - * @param n2 second sample n - * @return p-value - * @throws MathException if an error occurs computing the p-value - */ - protected double tTest(double m1, double m2, - double v1, double v2, - double n1, double n2) - throws MathException { - double t = FastMath.abs(t(m1, m2, v1, v2, n1, n2)); - double degreesOfFreedom = 0; - degreesOfFreedom = df(v1, v2, n1, n2); - TDistribution distribution = new TDistribution(degreesOfFreedom); - return 2.0 * distribution.cumulativeProbability(-t); - } - - /** - * Computes p-value for 2-sided, 2-sample t-test, under the assumption - * of equal subpopulation variances. - *- * The sum of the sample sizes minus 2 is used as degrees of freedom.
- * - * @param m1 first sample mean - * @param m2 second sample mean - * @param v1 first sample variance - * @param v2 second sample variance - * @param n1 first sample n - * @param n2 second sample n - * @return p-value - * @throws MathException if an error occurs computing the p-value - */ - protected double homoscedasticTTest(double m1, double m2, - double v1, double v2, - double n1, double n2) - throws MathException { - double t = FastMath.abs(homoscedasticT(m1, m2, v1, v2, n1, n2)); - double degreesOfFreedom = n1 + n2 - 2; - TDistribution distribution = new TDistribution(degreesOfFreedom); - return 2.0 * distribution.cumulativeProbability(-t); - } - - /** - * Check significance level. - * - * @param alpha significance level - * @throws OutOfRangeException if the significance level is out of bounds. - */ - private void checkSignificanceLevel(final double alpha) { - if (alpha <= 0 || alpha > 0.5) { - throw new OutOfRangeException(LocalizedFormats.SIGNIFICANCE_LEVEL, - alpha, 0.0, 0.5); - } - } - - /** - * Check sample data. - * - * @param data Sample data. - * @throws NullArgumentException if {@code data} is {@code null}. - * @throws NumberIsTooSmallException if there is not enough sample data. - */ - private void checkSampleData(final double[] data) { - if (data == null) { - throw new NullArgumentException(); - } - if (data.length < 2) { - throw new NumberIsTooSmallException(LocalizedFormats.INSUFFICIENT_DATA_FOR_T_STATISTIC, - data.length, 2, true); - } - } - - /** - * Check sample data. - * - * @param stat Statistical summary. - * @throws NullArgumentException if {@code data} is {@code null}. - * @throws NumberIsTooSmallException if there is not enough sample data. - */ - private void checkSampleData(final StatisticalSummary stat) { - if (stat == null) { - throw new NullArgumentException(); - } - if (stat.getN() < 2) { - throw new NumberIsTooSmallException(LocalizedFormats.INSUFFICIENT_DATA_FOR_T_STATISTIC, - stat.getN(), 2, true); - } - } -} diff --git a/src/main/java/org/apache/commons/math/stat/inference/TestUtils.java b/src/main/java/org/apache/commons/math/stat/inference/TestUtils.java index 8f026ec6b..c92f1d28b 100644 --- a/src/main/java/org/apache/commons/math/stat/inference/TestUtils.java +++ b/src/main/java/org/apache/commons/math/stat/inference/TestUtils.java @@ -17,13 +17,14 @@ package org.apache.commons.math.stat.inference; import java.util.Collection; -import org.apache.commons.math.MathException; import org.apache.commons.math.exception.ConvergenceException; import org.apache.commons.math.exception.DimensionMismatchException; import org.apache.commons.math.exception.MaxCountExceededException; +import org.apache.commons.math.exception.NoDataException; import org.apache.commons.math.exception.NotPositiveException; import org.apache.commons.math.exception.NotStrictlyPositiveException; import org.apache.commons.math.exception.NullArgumentException; +import org.apache.commons.math.exception.NumberIsTooSmallException; import org.apache.commons.math.exception.OutOfRangeException; import org.apache.commons.math.exception.ZeroException; import org.apache.commons.math.stat.descriptive.StatisticalSummary; @@ -38,7 +39,7 @@ import org.apache.commons.math.stat.descriptive.StatisticalSummary; public class TestUtils { /** Singleton TTest instance. */ - private static final TTest T_TEST = new TTestImpl(); + private static final TTest T_TEST = new TTest(); /** Singleton ChiSquareTest instance. */ private static final ChiSquareTest CHI_SQUARE_TEST = new ChiSquareTest(); @@ -58,168 +59,182 @@ public class TestUtils { /** * @see org.apache.commons.math.stat.inference.TTest#homoscedasticT(double[], double[]) */ - public static double homoscedasticT(double[] sample1, double[] sample2) - throws IllegalArgumentException { + public static double homoscedasticT(final double[] sample1, final double[] sample2) + throws NullArgumentException, NumberIsTooSmallException { return T_TEST.homoscedasticT(sample1, sample2); } /** * @see org.apache.commons.math.stat.inference.TTest#homoscedasticT(org.apache.commons.math.stat.descriptive.StatisticalSummary, org.apache.commons.math.stat.descriptive.StatisticalSummary) */ - public static double homoscedasticT(StatisticalSummary sampleStats1, - StatisticalSummary sampleStats2) - throws IllegalArgumentException { + public static double homoscedasticT(final StatisticalSummary sampleStats1, + final StatisticalSummary sampleStats2) + throws NullArgumentException, NumberIsTooSmallException { return T_TEST.homoscedasticT(sampleStats1, sampleStats2); } /** * @see org.apache.commons.math.stat.inference.TTest#homoscedasticTTest(double[], double[], double) */ - public static boolean homoscedasticTTest(double[] sample1, double[] sample2, - double alpha) - throws IllegalArgumentException, MathException { + public static boolean homoscedasticTTest(final double[] sample1, final double[] sample2, + final double alpha) + throws NullArgumentException, NumberIsTooSmallException, + OutOfRangeException, MaxCountExceededException { return T_TEST.homoscedasticTTest(sample1, sample2, alpha); } /** * @see org.apache.commons.math.stat.inference.TTest#homoscedasticTTest(double[], double[]) */ - public static double homoscedasticTTest(double[] sample1, double[] sample2) - throws IllegalArgumentException, MathException { + public static double homoscedasticTTest(final double[] sample1, final double[] sample2) + throws NullArgumentException, NumberIsTooSmallException, MaxCountExceededException { return T_TEST.homoscedasticTTest(sample1, sample2); } /** * @see org.apache.commons.math.stat.inference.TTest#homoscedasticTTest(org.apache.commons.math.stat.descriptive.StatisticalSummary, org.apache.commons.math.stat.descriptive.StatisticalSummary) */ - public static double homoscedasticTTest(StatisticalSummary sampleStats1, - StatisticalSummary sampleStats2) - throws IllegalArgumentException, MathException { + public static double homoscedasticTTest(final StatisticalSummary sampleStats1, + final StatisticalSummary sampleStats2) + throws NullArgumentException, NumberIsTooSmallException, MaxCountExceededException { return T_TEST.homoscedasticTTest(sampleStats1, sampleStats2); } /** * @see org.apache.commons.math.stat.inference.TTest#pairedT(double[], double[]) */ - public static double pairedT(double[] sample1, double[] sample2) - throws IllegalArgumentException, MathException { + public static double pairedT(final double[] sample1, final double[] sample2) + throws NullArgumentException, NoDataException, + DimensionMismatchException, NumberIsTooSmallException { return T_TEST.pairedT(sample1, sample2); } /** * @see org.apache.commons.math.stat.inference.TTest#pairedTTest(double[], double[], double) */ - public static boolean pairedTTest(double[] sample1, double[] sample2, - double alpha) - throws IllegalArgumentException, MathException { + public static boolean pairedTTest(final double[] sample1, final double[] sample2, + final double alpha) + throws NullArgumentException, NoDataException, DimensionMismatchException, + NumberIsTooSmallException, OutOfRangeException, MaxCountExceededException { return T_TEST.pairedTTest(sample1, sample2, alpha); } /** * @see org.apache.commons.math.stat.inference.TTest#pairedTTest(double[], double[]) */ - public static double pairedTTest(double[] sample1, double[] sample2) - throws IllegalArgumentException, MathException { + public static double pairedTTest(final double[] sample1, final double[] sample2) + throws NullArgumentException, NoDataException, DimensionMismatchException, + NumberIsTooSmallException, MaxCountExceededException { return T_TEST.pairedTTest(sample1, sample2); } /** * @see org.apache.commons.math.stat.inference.TTest#t(double, double[]) */ - public static double t(double mu, double[] observed) - throws IllegalArgumentException { + public static double t(final double mu, final double[] observed) + throws NullArgumentException, NumberIsTooSmallException { return T_TEST.t(mu, observed); } /** * @see org.apache.commons.math.stat.inference.TTest#t(double, org.apache.commons.math.stat.descriptive.StatisticalSummary) */ - public static double t(double mu, StatisticalSummary sampleStats) - throws IllegalArgumentException { + public static double t(final double mu, final StatisticalSummary sampleStats) + throws NullArgumentException, NumberIsTooSmallException { return T_TEST.t(mu, sampleStats); } /** * @see org.apache.commons.math.stat.inference.TTest#t(double[], double[]) */ - public static double t(double[] sample1, double[] sample2) - throws IllegalArgumentException { + public static double t(final double[] sample1, final double[] sample2) + throws NullArgumentException, NumberIsTooSmallException { return T_TEST.t(sample1, sample2); } /** * @see org.apache.commons.math.stat.inference.TTest#t(org.apache.commons.math.stat.descriptive.StatisticalSummary, org.apache.commons.math.stat.descriptive.StatisticalSummary) */ - public static double t(StatisticalSummary sampleStats1, - StatisticalSummary sampleStats2) - throws IllegalArgumentException { + public static double t(final StatisticalSummary sampleStats1, + final StatisticalSummary sampleStats2) + throws NullArgumentException, NumberIsTooSmallException { return T_TEST.t(sampleStats1, sampleStats2); } /** * @see org.apache.commons.math.stat.inference.TTest#tTest(double, double[], double) */ - public static boolean tTest(double mu, double[] sample, double alpha) - throws IllegalArgumentException, MathException { + public static boolean tTest(final double mu, final double[] sample, final double alpha) + throws NullArgumentException, NumberIsTooSmallException, + OutOfRangeException, MaxCountExceededException { return T_TEST.tTest(mu, sample, alpha); } /** * @see org.apache.commons.math.stat.inference.TTest#tTest(double, double[]) */ - public static double tTest(double mu, double[] sample) - throws IllegalArgumentException, MathException { + public static double tTest(final double mu, final double[] sample) + throws NullArgumentException, NumberIsTooSmallException, + MaxCountExceededException { return T_TEST.tTest(mu, sample); } /** * @see org.apache.commons.math.stat.inference.TTest#tTest(double, org.apache.commons.math.stat.descriptive.StatisticalSummary, double) */ - public static boolean tTest(double mu, StatisticalSummary sampleStats, - double alpha) - throws IllegalArgumentException, MathException { + public static boolean tTest(final double mu, final StatisticalSummary sampleStats, + final double alpha) + throws NullArgumentException, NumberIsTooSmallException, + OutOfRangeException, MaxCountExceededException { return T_TEST.tTest(mu, sampleStats, alpha); } /** * @see org.apache.commons.math.stat.inference.TTest#tTest(double, org.apache.commons.math.stat.descriptive.StatisticalSummary) */ - public static double tTest(double mu, StatisticalSummary sampleStats) - throws IllegalArgumentException, MathException { + public static double tTest(final double mu, final StatisticalSummary sampleStats) + throws NullArgumentException, NumberIsTooSmallException, + MaxCountExceededException { return T_TEST.tTest(mu, sampleStats); } /** * @see org.apache.commons.math.stat.inference.TTest#tTest(double[], double[], double) */ - public static boolean tTest(double[] sample1, double[] sample2, double alpha) - throws IllegalArgumentException, MathException { + public static boolean tTest(final double[] sample1, final double[] sample2, + final double alpha) + throws NullArgumentException, NumberIsTooSmallException, + OutOfRangeException, MaxCountExceededException { return T_TEST.tTest(sample1, sample2, alpha); } /** * @see org.apache.commons.math.stat.inference.TTest#tTest(double[], double[]) */ - public static double tTest(double[] sample1, double[] sample2) - throws IllegalArgumentException, MathException { + public static double tTest(final double[] sample1, final double[] sample2) + throws NullArgumentException, NumberIsTooSmallException, + MaxCountExceededException { return T_TEST.tTest(sample1, sample2); } /** * @see org.apache.commons.math.stat.inference.TTest#tTest(org.apache.commons.math.stat.descriptive.StatisticalSummary, org.apache.commons.math.stat.descriptive.StatisticalSummary, double) */ - public static boolean tTest(StatisticalSummary sampleStats1, - StatisticalSummary sampleStats2, double alpha) - throws IllegalArgumentException, MathException { + public static boolean tTest(final StatisticalSummary sampleStats1, + final StatisticalSummary sampleStats2, + final double alpha) + throws NullArgumentException, NumberIsTooSmallException, + OutOfRangeException, MaxCountExceededException { return T_TEST.tTest(sampleStats1, sampleStats2, alpha); } /** * @see org.apache.commons.math.stat.inference.TTest#tTest(org.apache.commons.math.stat.descriptive.StatisticalSummary, org.apache.commons.math.stat.descriptive.StatisticalSummary) */ - public static double tTest(StatisticalSummary sampleStats1, - StatisticalSummary sampleStats2) - throws IllegalArgumentException, MathException { + public static double tTest(final StatisticalSummary sampleStats1, + final StatisticalSummary sampleStats2) + throws NullArgumentException, NumberIsTooSmallException, + MaxCountExceededException { return T_TEST.tTest(sampleStats1, sampleStats2); } diff --git a/src/test/java/org/apache/commons/math/stat/inference/TTestTest.java b/src/test/java/org/apache/commons/math/stat/inference/TTestTest.java index 42b18beae..441784410 100644 --- a/src/test/java/org/apache/commons/math/stat/inference/TTestTest.java +++ b/src/test/java/org/apache/commons/math/stat/inference/TTestTest.java @@ -17,7 +17,9 @@ package org.apache.commons.math.stat.inference; -import org.apache.commons.math.exception.MathIllegalArgumentException; +import org.apache.commons.math.exception.NullArgumentException; +import org.apache.commons.math.exception.NumberIsTooSmallException; +import org.apache.commons.math.exception.OutOfRangeException; import org.apache.commons.math.stat.descriptive.SummaryStatistics; import org.junit.Assert; import org.junit.Before; @@ -30,7 +32,7 @@ import org.junit.Test; */ public class TTestTest { - protected TTest testStatistic = new TTestImpl(); + protected TTest testStatistic = new TTest(); private double[] tooShortObs = { 1.0 }; private double[] emptyObs = {}; @@ -66,55 +68,55 @@ public class TTestTest { try { testStatistic.t(mu, (double[]) null); - Assert.fail("arguments too short, MathIllegalArgumentException expected"); - } catch (MathIllegalArgumentException ex) { + Assert.fail("arguments too short, NullArgumentException expected"); + } catch (NullArgumentException ex) { // expected } try { testStatistic.t(mu, (SummaryStatistics) null); - Assert.fail("arguments too short, MathIllegalArgumentException expected"); - } catch (MathIllegalArgumentException ex) { + Assert.fail("arguments too short, NullArgumentException expected"); + } catch (NullArgumentException ex) { // expected } try { testStatistic.t(mu, emptyObs); - Assert.fail("arguments too short, MathIllegalArgumentException expected"); - } catch (MathIllegalArgumentException ex) { + Assert.fail("arguments too short, NumberIsTooSmallException expected"); + } catch (NumberIsTooSmallException ex) { // expected } try { testStatistic.t(mu, emptyStats); - Assert.fail("arguments too short, MathIllegalArgumentException expected"); - } catch (MathIllegalArgumentException ex) { + Assert.fail("arguments too short, NumberIsTooSmallException expected"); + } catch (NumberIsTooSmallException ex) { // expected } try { testStatistic.t(mu, tooShortObs); - Assert.fail("insufficient data to compute t statistic, MathIllegalArgumentException expected"); - } catch (MathIllegalArgumentException ex) { + Assert.fail("insufficient data to compute t statistic, NumberIsTooSmallException expected"); + } catch (NumberIsTooSmallException ex) { // expected } try { testStatistic.tTest(mu, tooShortObs); - Assert.fail("insufficient data to perform t test, MathIllegalArgumentException expected"); - } catch (MathIllegalArgumentException ex) { + Assert.fail("insufficient data to perform t test, NumberIsTooSmallException expected"); + } catch (NumberIsTooSmallException ex) { // expected } try { testStatistic.t(mu, tooShortStats); - Assert.fail("insufficient data to compute t statistic, MathIllegalArgumentException expected"); - } catch (MathIllegalArgumentException ex) { + Assert.fail("insufficient data to compute t statistic, NumberIsTooSmallException expected"); + } catch (NumberIsTooSmallException ex) { // expected } try { testStatistic.tTest(mu, tooShortStats); - Assert.fail("insufficient data to perform t test, MathIllegalArgumentException expected"); - } catch (MathIllegalArgumentException ex) { + Assert.fail("insufficient data to perform t test, NumberIsTooSmallException expected"); + } catch (NumberIsTooSmallException ex) { // expected } } @@ -143,15 +145,15 @@ public class TTestTest { try { testStatistic.tTest(0d, oneSidedP, 95); - Assert.fail("alpha out of range, MathIllegalArgumentException expected"); - } catch (MathIllegalArgumentException ex) { + Assert.fail("alpha out of range, OutOfRangeException expected"); + } catch (OutOfRangeException ex) { // expected } try { testStatistic.tTest(0d, oneSidedPStats, 95); - Assert.fail("alpha out of range, MathIllegalArgumentException expected"); - } catch (MathIllegalArgumentException ex) { + Assert.fail("alpha out of range, OutOfRangeException expected"); + } catch (OutOfRangeException ex) { // expected } @@ -190,57 +192,57 @@ public class TTestTest { try { testStatistic.tTest(sample1, sample2, .95); - Assert.fail("alpha out of range, MathIllegalArgumentException expected"); - } catch (MathIllegalArgumentException ex) { + Assert.fail("alpha out of range, OutOfRangeException expected"); + } catch (OutOfRangeException ex) { // expected } try { testStatistic.tTest(sampleStats1, sampleStats2, .95); - Assert.fail("alpha out of range, MathIllegalArgumentException expected"); - } catch (MathIllegalArgumentException ex) { + Assert.fail("alpha out of range, OutOfRangeException expected"); + } catch (OutOfRangeException ex) { // expected } try { testStatistic.tTest(sample1, tooShortObs, .01); - Assert.fail("insufficient data, MathIllegalArgumentException expected"); - } catch (MathIllegalArgumentException ex) { + Assert.fail("insufficient data, NumberIsTooSmallException expected"); + } catch (NumberIsTooSmallException ex) { // expected } try { testStatistic.tTest(sampleStats1, tooShortStats, .01); - Assert.fail("insufficient data, MathIllegalArgumentException expected"); - } catch (MathIllegalArgumentException ex) { + Assert.fail("insufficient data, NumberIsTooSmallException expected"); + } catch (NumberIsTooSmallException ex) { // expected } try { testStatistic.tTest(sample1, tooShortObs); - Assert.fail("insufficient data, MathIllegalArgumentException expected"); - } catch (MathIllegalArgumentException ex) { + Assert.fail("insufficient data, NumberIsTooSmallException expected"); + } catch (NumberIsTooSmallException ex) { // expected } try { testStatistic.tTest(sampleStats1, tooShortStats); - Assert.fail("insufficient data, MathIllegalArgumentException expected"); - } catch (MathIllegalArgumentException ex) { + Assert.fail("insufficient data, NumberIsTooSmallException expected"); + } catch (NumberIsTooSmallException ex) { // expected } try { testStatistic.t(sample1, tooShortObs); - Assert.fail("insufficient data, MathIllegalArgumentException expected"); - } catch (MathIllegalArgumentException ex) { + Assert.fail("insufficient data, NumberIsTooSmallException expected"); + } catch (NumberIsTooSmallException ex) { // expected } try { testStatistic.t(sampleStats1, tooShortStats); - Assert.fail("insufficient data, MathIllegalArgumentException expected"); - } catch (MathIllegalArgumentException ex) { + Assert.fail("insufficient data, NumberIsTooSmallException expected"); + } catch (NumberIsTooSmallException ex) { // expected } } diff --git a/src/test/java/org/apache/commons/math/stat/inference/TestUtilsTest.java b/src/test/java/org/apache/commons/math/stat/inference/TestUtilsTest.java index 503b9f514..2b4c9892b 100644 --- a/src/test/java/org/apache/commons/math/stat/inference/TestUtilsTest.java +++ b/src/test/java/org/apache/commons/math/stat/inference/TestUtilsTest.java @@ -20,9 +20,10 @@ import java.util.ArrayList; import java.util.List; import org.apache.commons.math.exception.DimensionMismatchException; -import org.apache.commons.math.exception.MathIllegalArgumentException; import org.apache.commons.math.exception.NotPositiveException; import org.apache.commons.math.exception.NotStrictlyPositiveException; +import org.apache.commons.math.exception.NullArgumentException; +import org.apache.commons.math.exception.NumberIsTooSmallException; import org.apache.commons.math.exception.OutOfRangeException; import org.apache.commons.math.stat.descriptive.SummaryStatistics; import org.junit.Assert; @@ -218,55 +219,55 @@ public class TestUtilsTest { try { TestUtils.t(mu, (double[]) null); - Assert.fail("arguments too short, MathIllegalArgumentException expected"); - } catch (MathIllegalArgumentException ex) { + Assert.fail("arguments too short, NullArgumentException expected"); + } catch (NullArgumentException ex) { // expected } try { TestUtils.t(mu, (SummaryStatistics) null); - Assert.fail("arguments too short, MathIllegalArgumentException expected"); - } catch (MathIllegalArgumentException ex) { + Assert.fail("arguments too short, NullArgumentException expected"); + } catch (NullArgumentException ex) { // expected } try { TestUtils.t(mu, emptyObs); - Assert.fail("arguments too short, MathIllegalArgumentException expected"); - } catch (MathIllegalArgumentException ex) { + Assert.fail("arguments too short, NumberIsTooSmallException expected"); + } catch (NumberIsTooSmallException ex) { // expected } try { TestUtils.t(mu, emptyStats); - Assert.fail("arguments too short, MathIllegalArgumentException expected"); - } catch (MathIllegalArgumentException ex) { + Assert.fail("arguments too short, NumberIsTooSmallException expected"); + } catch (NumberIsTooSmallException ex) { // expected } try { TestUtils.t(mu, tooShortObs); - Assert.fail("insufficient data to compute t statistic, MathIllegalArgumentException expected"); - } catch (MathIllegalArgumentException ex) { + Assert.fail("insufficient data to compute t statistic, NumberIsTooSmallException expected"); + } catch (NumberIsTooSmallException ex) { // expected } try { TestUtils.tTest(mu, tooShortObs); - Assert.fail("insufficient data to perform t test, MathIllegalArgumentException expected"); - } catch (MathIllegalArgumentException ex) { + Assert.fail("insufficient data to perform t test, NumberIsTooSmallException expected"); + } catch (NumberIsTooSmallException ex) { // expected } try { TestUtils.t(mu, (SummaryStatistics) null); - Assert.fail("insufficient data to compute t statistic, MathIllegalArgumentException expected"); - } catch (MathIllegalArgumentException ex) { + Assert.fail("insufficient data to compute t statistic, NullArgumentException expected"); + } catch (NullArgumentException ex) { // expected } try { TestUtils.tTest(mu, (SummaryStatistics) null); - Assert.fail("insufficient data to perform t test, MathIllegalArgumentException expected"); - } catch (MathIllegalArgumentException ex) { + Assert.fail("insufficient data to perform t test, NullArgumentException expected"); + } catch (NullArgumentException ex) { // expected } } @@ -295,15 +296,15 @@ public class TestUtilsTest { try { TestUtils.tTest(0d, oneSidedP, 95); - Assert.fail("alpha out of range, MathIllegalArgumentException expected"); - } catch (MathIllegalArgumentException ex) { + Assert.fail("alpha out of range, OutOfRangeException expected"); + } catch (OutOfRangeException ex) { // expected } try { TestUtils.tTest(0d, oneSidedPStats, 95); - Assert.fail("alpha out of range, MathIllegalArgumentException expected"); - } catch (MathIllegalArgumentException ex) { + Assert.fail("alpha out of range, OutOfRangeException expected"); + } catch (OutOfRangeException ex) { // expected } @@ -342,57 +343,57 @@ public class TestUtilsTest { try { TestUtils.tTest(sample1, sample2, .95); - Assert.fail("alpha out of range, MathIllegalArgumentException expected"); - } catch (MathIllegalArgumentException ex) { + Assert.fail("alpha out of range, OutOfRangeException expected"); + } catch (OutOfRangeException ex) { // expected } try { TestUtils.tTest(sampleStats1, sampleStats2, .95); - Assert.fail("alpha out of range, MathIllegalArgumentException expected"); - } catch (MathIllegalArgumentException ex) { + Assert.fail("alpha out of range, OutOfRangeException expected"); + } catch (OutOfRangeException ex) { // expected } try { TestUtils.tTest(sample1, tooShortObs, .01); - Assert.fail("insufficient data, MathIllegalArgumentException expected"); - } catch (MathIllegalArgumentException ex) { + Assert.fail("insufficient data, NumberIsTooSmallException expected"); + } catch (NumberIsTooSmallException ex) { // expected } try { TestUtils.tTest(sampleStats1, (SummaryStatistics) null, .01); - Assert.fail("insufficient data, MathIllegalArgumentException expected"); - } catch (MathIllegalArgumentException ex) { + Assert.fail("insufficient data, NullArgumentException expected"); + } catch (NullArgumentException ex) { // expected } try { TestUtils.tTest(sample1, tooShortObs); - Assert.fail("insufficient data, MathIllegalArgumentException expected"); - } catch (MathIllegalArgumentException ex) { + Assert.fail("insufficient data, NumberIsTooSmallException expected"); + } catch (NumberIsTooSmallException ex) { // expected } try { TestUtils.tTest(sampleStats1, (SummaryStatistics) null); - Assert.fail("insufficient data, MathIllegalArgumentException expected"); - } catch (MathIllegalArgumentException ex) { + Assert.fail("insufficient data, NullArgumentException expected"); + } catch (NullArgumentException ex) { // expected } try { TestUtils.t(sample1, tooShortObs); - Assert.fail("insufficient data, MathIllegalArgumentException expected"); - } catch (MathIllegalArgumentException ex) { + Assert.fail("insufficient data, NumberIsTooSmallException expected"); + } catch (NumberIsTooSmallException ex) { // expected } try { TestUtils.t(sampleStats1, (SummaryStatistics) null); - Assert.fail("insufficient data, MathIllegalArgumentException expected"); - } catch (MathIllegalArgumentException ex) { + Assert.fail("insufficient data, NullArgumentException expected"); + } catch (NullArgumentException ex) { // expected } }