Added correlated vector generation example.
git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/branches/MATH_2_X@1067592 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
e380da5bd1
commit
a59bf744d0
|
@ -34,6 +34,7 @@
|
|||
The Commons Math random package includes utilities for
|
||||
<ul>
|
||||
<li>generating random numbers</li>
|
||||
<li>generating random vectors</li>
|
||||
<li>generating random strings</li>
|
||||
<li>generating cryptographically secure sequences of random numbers or
|
||||
strings</li>
|
||||
|
@ -184,7 +185,48 @@ for (int i = 0; i < 1000; i++) {
|
|||
href="http://en.wikipedia.org/wiki/Multivariate_normal_distribution">
|
||||
Multivariate Normal Distribution</a>.
|
||||
</p>
|
||||
</subsection>
|
||||
<p><dl>
|
||||
<dt>Generating random vectors from a bivariate normal distribution</dt><dd>
|
||||
<source>
|
||||
// Create and seed a RandomGenerator (could use any of the generators in the random package here)
|
||||
RandomGenerator rg = new JDKRandomGenerator();
|
||||
rg.setSeed(17399225432l); // Fixed seed means same results every time
|
||||
|
||||
// Create a GassianRandomGenerator using rg as its source of randomness
|
||||
GaussianRandomGenerator rawGenerator = new GaussianRandomGenerator(rg);
|
||||
|
||||
// Create a CorrelatedRandomVectorGenerator using rawGenerator for the components
|
||||
CorrelatedRandomVectorGenerator generator =
|
||||
new CorrelatedRandomVectorGenerator(mean, covariance, 1.0e-12 * covariance.getNorm(), rawGenerator);
|
||||
|
||||
// Use the generator to generate correlated vectors
|
||||
double[] randomVector = generator.nextVector();
|
||||
... </source>
|
||||
The <code>mean</code> argument is a double[] array holding the means of the random vector
|
||||
components. In the bivariate case, it must have length 2. The <code>covariance</code> argument
|
||||
is a RealMatrix, which needs to be 2 x 2. The main diagonal elements are the
|
||||
variances of the vector components and the off-diagonal elements are the covariances.
|
||||
For example, if the means are 1 and 2 respectively, and the desired standard deviations
|
||||
are 3 and 4, respectively, then we need to use
|
||||
<source>
|
||||
double[] mean = {1, 2};
|
||||
double[][] cov = {{9, c}, {c, 16}};
|
||||
RealMatrix covariance = MatrixUtils.createRealMatrix(cov); </source>
|
||||
where c is the desired covariance. If you are starting with a desired correlation,
|
||||
you need to translate this to a covariance by multiplying it by the product of the
|
||||
standard deviations. For example, if you want to generate data that will give Pearson's
|
||||
R of 0.5, you would use c = 3 * 4 * .5 = 6.
|
||||
</dd></dl></p>
|
||||
<p>
|
||||
In addition to multivariate normal distributions, correlated vectors from multivariate uniform
|
||||
distributions can be generated by creating a
|
||||
<a href="../apidocs/org/apache/commons/math/random/UniformRandomGenerator.html">UniformRandomGenerator</a>
|
||||
in place of the
|
||||
<code>GaussianRandomGenerator</code> above. More generally, any
|
||||
<a href="../apidocs/org/apache/commons/math/random/NormalizedRandomGenerator.html">NormalizedRandomGenerator</a>
|
||||
may be used.
|
||||
</p>
|
||||
</subsection>
|
||||
|
||||
<subsection name="2.4 Random Strings" href="strings">
|
||||
<p>
|
||||
|
|
Loading…
Reference in New Issue