Added all Java 8 StrictMath methods to FastMath.

This change allows FastMath to remain compatible with newer Java
versions, despite it stiil requires only Java 5 to compile and run.

JIRA: MATH-1156
This commit is contained in:
Luc Maisonobe 2014-10-07 13:54:55 +02:00
parent cee04d1648
commit a67f0a33e6
7 changed files with 769 additions and 9 deletions

View File

@ -38,9 +38,9 @@
</issueManagement> </issueManagement>
<scm> <scm>
<connection>scm:svn:http://svn.apache.org/repos/asf/commons/proper/math/trunk</connection> <connection>scm:git:http://git-wip-us.apache.org/repos/asf/commons-math.git</connection>
<developerConnection>scm:svn:https://svn.apache.org/repos/asf/commons/proper/math/trunk</developerConnection> <developerConnection>scm:git:https://git-wip-us.apache.org/repos/asf/commons-math.git</developerConnection>
<url>http://svn.apache.org/viewvc/commons/proper/math/trunk</url> <url>https://git-wip-us.apache.org/repos/asf?p=commons-math.git</url>
</scm> </scm>
<distributionManagement> <distributionManagement>

View File

@ -73,6 +73,10 @@ Users are encouraged to upgrade to this version as this release not
2. A few methods in the FastMath class are in fact slower that their 2. A few methods in the FastMath class are in fact slower that their
counterpart in either Math or StrictMath (cf. MATH-740 and MATH-901). counterpart in either Math or StrictMath (cf. MATH-740 and MATH-901).
"> ">
<action dev="luc" type="add" issue="MATH-1156" >
Added all Java 8 StrictMath methods to FastMath, so FastMath remains compatible
with newer Java versions.
</action>
<action dev="tn" type="add" issue="MATH-1139" due-to="Alexey Volkov"> <action dev="tn" type="add" issue="MATH-1139" due-to="Alexey Volkov">
Added Gumbel, Laplace, Logistic and Nakagami distributions. Added Gumbel, Laplace, Logistic and Nakagami distributions.
</action> </action>

View File

@ -293,6 +293,7 @@ public enum LocalizedFormats implements Localizable {
OVERFLOW_IN_FRACTION("overflow in fraction {0}/{1}, cannot negate"), OVERFLOW_IN_FRACTION("overflow in fraction {0}/{1}, cannot negate"),
OVERFLOW_IN_ADDITION("overflow in addition: {0} + {1}"), OVERFLOW_IN_ADDITION("overflow in addition: {0} + {1}"),
OVERFLOW_IN_SUBTRACTION("overflow in subtraction: {0} - {1}"), OVERFLOW_IN_SUBTRACTION("overflow in subtraction: {0} - {1}"),
OVERFLOW_IN_MULTIPLICATION("overflow in multiplication: {0} * {1}"),
PERCENTILE_IMPLEMENTATION_CANNOT_ACCESS_METHOD("cannot access {0} method in percentile implementation {1}"), PERCENTILE_IMPLEMENTATION_CANNOT_ACCESS_METHOD("cannot access {0} method in percentile implementation {1}"),
PERCENTILE_IMPLEMENTATION_UNSUPPORTED_METHOD("percentile implementation {0} does not support {1}"), PERCENTILE_IMPLEMENTATION_UNSUPPORTED_METHOD("percentile implementation {0} does not support {1}"),
PERMUTATION_EXCEEDS_N("permutation size ({0}) exceeds permuation domain ({1})"), /* keep */ PERMUTATION_EXCEEDS_N("permutation size ({0}) exceeds permuation domain ({1})"), /* keep */

View File

@ -18,6 +18,9 @@ package org.apache.commons.math3.util;
import java.io.PrintStream; import java.io.PrintStream;
import org.apache.commons.math3.exception.MathArithmeticException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
/** /**
* Faster, more accurate, portable alternative to {@link Math} and * Faster, more accurate, portable alternative to {@link Math} and
* {@link StrictMath} for large scale computation. * {@link StrictMath} for large scale computation.
@ -804,6 +807,24 @@ public class FastMath {
return nextAfter(a, Float.POSITIVE_INFINITY); return nextAfter(a, Float.POSITIVE_INFINITY);
} }
/** Compute next number towards negative infinity.
* @param a number to which neighbor should be computed
* @return neighbor of a towards negative infinity
* @since 3.4
*/
public static double nextDown(final double a) {
return nextAfter(a, Double.NEGATIVE_INFINITY);
}
/** Compute next number towards negative infinity.
* @param a number to which neighbor should be computed
* @return neighbor of a towards negative infinity
* @since 3.4
*/
public static float nextDown(final float a) {
return nextAfter(a, Float.NEGATIVE_INFINITY);
}
/** Returns a pseudo-random number between 0.0 and 1.0. /** Returns a pseudo-random number between 0.0 and 1.0.
* <p><b>Note:</b> this implementation currently delegates to {@link Math#random} * <p><b>Note:</b> this implementation currently delegates to {@link Math#random}
* @return a random number between 0.0 and 1.0 * @return a random number between 0.0 and 1.0
@ -3634,6 +3655,319 @@ public class FastMath {
return StrictMath.IEEEremainder(dividend, divisor); // TODO provide our own implementation return StrictMath.IEEEremainder(dividend, divisor); // TODO provide our own implementation
} }
/** Convert a long to interger, detecting overflows
* @param n number to convert to int
* @return integer with same valie as n if no overflows occur
* @exception MathArithmeticException if n cannot fit into an int
* @since 3.4
*/
public static int toIntExact(final long n) throws MathArithmeticException {
if (n < Integer.MIN_VALUE || n > Integer.MAX_VALUE) {
throw new MathArithmeticException(LocalizedFormats.OVERFLOW);
}
return (int) n;
}
/** Increment a number, detecting overflows.
* @param n number to increment
* @return n+1 if no overflows occur
* @exception MathArithmeticException if an overflow occurs
* @since 3.4
*/
public static int incrementExact(final int n) throws MathArithmeticException {
if (n == Integer.MAX_VALUE) {
throw new MathArithmeticException(LocalizedFormats.OVERFLOW_IN_ADDITION, n, 1);
}
return n + 1;
}
/** Increment a number, detecting overflows.
* @param n number to increment
* @return n+1 if no overflows occur
* @exception MathArithmeticException if an overflow occurs
* @since 3.4
*/
public static long incrementExact(final long n) throws MathArithmeticException {
if (n == Long.MAX_VALUE) {
throw new MathArithmeticException(LocalizedFormats.OVERFLOW_IN_ADDITION, n, 1);
}
return n + 1;
}
/** Decrement a number, detecting overflows.
* @param n number to decrement
* @return n-1 if no overflows occur
* @exception MathArithmeticException if an overflow occurs
* @since 3.4
*/
public static int decrementExact(final int n) throws MathArithmeticException {
if (n == Integer.MIN_VALUE) {
throw new MathArithmeticException(LocalizedFormats.OVERFLOW_IN_SUBTRACTION, n, 1);
}
return n - 1;
}
/** Decrement a number, detecting overflows.
* @param n number to decrement
* @return n-1 if no overflows occur
* @exception MathArithmeticException if an overflow occurs
* @since 3.4
*/
public static long decrementExact(final long n) throws MathArithmeticException {
if (n == Long.MIN_VALUE) {
throw new MathArithmeticException(LocalizedFormats.OVERFLOW_IN_SUBTRACTION, n, 1);
}
return n - 1;
}
/** Add two numbers, detecting overflows.
* @param a first number to add
* @param b second number to add
* @return a+b if no overflows occur
* @exception MathArithmeticException if an overflow occurs
* @since 3.4
*/
public static int addExact(final int a, final int b) throws MathArithmeticException {
// compute sum
final int sum = a + b;
// check for overflow
if ((a ^ b) >= 0 && (sum ^ b) < 0) {
throw new MathArithmeticException(LocalizedFormats.OVERFLOW_IN_ADDITION, a, b);
}
return sum;
}
/** Add two numbers, detecting overflows.
* @param a first number to add
* @param b second number to add
* @return a+b if no overflows occur
* @exception MathArithmeticException if an overflow occurs
* @since 3.4
*/
public static long addExact(final long a, final long b) throws MathArithmeticException {
// compute sum
final long sum = a + b;
// check for overflow
if ((a ^ b) >= 0 && (sum ^ b) < 0) {
throw new MathArithmeticException(LocalizedFormats.OVERFLOW_IN_ADDITION, a, b);
}
return sum;
}
/** Subtract two numbers, detecting overflows.
* @param a first number
* @param b second number to subtract from a
* @return a-b if no overflows occur
* @exception MathArithmeticException if an overflow occurs
* @since 3.4
*/
public static int subtractExact(final int a, final int b) {
// compute subtraction
final int sub = a - b;
// check for overflow
if ((a ^ b) < 0 && (sub ^ b) >= 0) {
throw new MathArithmeticException(LocalizedFormats.OVERFLOW_IN_SUBTRACTION, a, b);
}
return sub;
}
/** Subtract two numbers, detecting overflows.
* @param a first number
* @param b second number to subtract from a
* @return a-b if no overflows occur
* @exception MathArithmeticException if an overflow occurs
* @since 3.4
*/
public static long subtractExact(final long a, final long b) {
// compute subtraction
final long sub = a - b;
// check for overflow
if ((a ^ b) < 0 && (sub ^ b) >= 0) {
throw new MathArithmeticException(LocalizedFormats.OVERFLOW_IN_SUBTRACTION, a, b);
}
return sub;
}
/** Multiply two numbers, detecting overflows.
* @param a first number to multiply
* @param b second number to multiply
* @return a*b if no overflows occur
* @exception MathArithmeticException if an overflow occurs
* @since 3.4
*/
public static int multiplyExact(final int a, final int b) {
if (((b > 0) && (a > Integer.MAX_VALUE / b || a < Integer.MIN_VALUE / b)) ||
((b < -1) && (a > Integer.MIN_VALUE / b || a < Integer.MAX_VALUE / b)) ||
((b == -1) && (a == Integer.MIN_VALUE))) {
throw new MathArithmeticException(LocalizedFormats.OVERFLOW_IN_MULTIPLICATION, a, b);
}
return a * b;
}
/** Multiply two numbers, detecting overflows.
* @param a first number to multiply
* @param b second number to multiply
* @return a*b if no overflows occur
* @exception MathArithmeticException if an overflow occurs
* @since 3.4
*/
public static long multiplyExact(final long a, final long b) {
if (((b > 0l) && (a > Long.MAX_VALUE / b || a < Long.MIN_VALUE / b)) ||
((b < -1l) && (a > Long.MIN_VALUE / b || a < Long.MAX_VALUE / b)) ||
((b == -1l) && (a == Long.MIN_VALUE))) {
throw new MathArithmeticException(LocalizedFormats.OVERFLOW_IN_MULTIPLICATION, a, b);
}
return a * b;
}
/** Finds q such that a = q b + r with 0 <= r < b if b > 0 and b < r <= 0 if b > 0.
* <p>
* This methods returns the same value as integer division when
* a and b are same signs, but returns a different value when
* they are opposite (i.e. q is negative).
* </p>
* @param a dividend
* @param b divisor
* @return q such that a = q b + r with 0 <= r < b if b > 0 and b < r <= 0 if b > 0
* @exception MathArithmeticException if b == 0
* @see #floorMod(int, int)
* @since 3.4
*/
public static int floorDiv(final int a, final int b) throws MathArithmeticException {
if (b == 0) {
throw new MathArithmeticException(LocalizedFormats.ZERO_DENOMINATOR);
}
final int m = a % b;
if ((a ^ b) >= 0 || m == 0) {
// a an b have same sign, or division is exact
return a / b;
} else {
// a and b have opposite signs and division is not exact
return (a / b) - 1;
}
}
/** Finds q such that a = q b + r with 0 <= r < b if b > 0 and b < r <= 0 if b > 0.
* <p>
* This methods returns the same value as integer division when
* a and b are same signs, but returns a different value when
* they are opposite (i.e. q is negative).
* </p>
* @param a dividend
* @param b divisor
* @return q such that a = q b + r with 0 <= r < b if b > 0 and b < r <= 0 if b > 0
* @exception MathArithmeticException if b == 0
* @see #floorMod(long, long)
* @since 3.4
*/
public static long floorDiv(final long a, final long b) throws MathArithmeticException {
if (b == 0l) {
throw new MathArithmeticException(LocalizedFormats.ZERO_DENOMINATOR);
}
final long m = a % b;
if ((a ^ b) >= 0l || m == 0l) {
// a an b have same sign, or division is exact
return a / b;
} else {
// a and b have opposite signs and division is not exact
return (a / b) - 1l;
}
}
/** Finds r such that a = q b + r with 0 <= r < b if b > 0 and b < r <= 0 if b > 0.
* <p>
* This methods returns the same value as integer modulo when
* a and b are same signs, but returns a different value when
* they are opposite (i.e. q is negative).
* </p>
* @param a dividend
* @param b divisor
* @return r such that a = q b + r with 0 <= r < b if b > 0 and b < r <= 0 if b > 0
* @exception MathArithmeticException if b == 0
* @see #floorDiv(int, int)
* @since 3.4
*/
public static int floorMod(final int a, final int b) throws MathArithmeticException {
if (b == 0) {
throw new MathArithmeticException(LocalizedFormats.ZERO_DENOMINATOR);
}
final int m = a % b;
if ((a ^ b) >= 0 || m == 0) {
// a an b have same sign, or division is exact
return m;
} else {
// a and b have opposite signs and division is not exact
return b + m;
}
}
/** Finds r such that a = q b + r with 0 <= r < b if b > 0 and b < r <= 0 if b > 0.
* <p>
* This methods returns the same value as integer modulo when
* a and b are same signs, but returns a different value when
* they are opposite (i.e. q is negative).
* </p>
* @param a dividend
* @param b divisor
* @return r such that a = q b + r with 0 <= r < b if b > 0 and b < r <= 0 if b > 0
* @exception MathArithmeticException if b == 0
* @see #floorDiv(long, long)
* @since 3.4
*/
public static long floorMod(final long a, final long b) {
if (b == 0l) {
throw new MathArithmeticException(LocalizedFormats.ZERO_DENOMINATOR);
}
final long m = a % b;
if ((a ^ b) >= 0l || m == 0l) {
// a an b have same sign, or division is exact
return m;
} else {
// a and b have opposite signs and division is not exact
return b + m;
}
}
/** /**
* Returns the first argument with the sign of the second argument. * Returns the first argument with the sign of the second argument.
* A NaN {@code sign} argument is treated as positive. * A NaN {@code sign} argument is treated as positive.

View File

@ -265,6 +265,7 @@ OVERFLOW = d\u00e9passement de capacit\u00e9
OVERFLOW_IN_FRACTION = d\u00e9passement de capacit\u00e9 pour la fraction {0}/{1}, son signe ne peut \u00eatre chang\u00e9 OVERFLOW_IN_FRACTION = d\u00e9passement de capacit\u00e9 pour la fraction {0}/{1}, son signe ne peut \u00eatre chang\u00e9
OVERFLOW_IN_ADDITION = d\u00e9passement de capacit\u00e9 pour l''addition : {0} + {1} OVERFLOW_IN_ADDITION = d\u00e9passement de capacit\u00e9 pour l''addition : {0} + {1}
OVERFLOW_IN_SUBTRACTION = d\u00e9passement de capacit\u00e9 pour la soustraction : {0} - {1} OVERFLOW_IN_SUBTRACTION = d\u00e9passement de capacit\u00e9 pour la soustraction : {0} - {1}
OVERFLOW_IN_MULTIPLICATION = d\u00e9passement de capacit\u00e9 pour la multiplication : {0} * {1}
PERCENTILE_IMPLEMENTATION_CANNOT_ACCESS_METHOD = acc\u00e8s impossible \u00e0 la m\u00e9thode {0} dans la mise en \u0153uvre du pourcentage {1} PERCENTILE_IMPLEMENTATION_CANNOT_ACCESS_METHOD = acc\u00e8s impossible \u00e0 la m\u00e9thode {0} dans la mise en \u0153uvre du pourcentage {1}
PERCENTILE_IMPLEMENTATION_UNSUPPORTED_METHOD = l''implantation de pourcentage {0} ne dispose pas de la m\u00e9thode {1} PERCENTILE_IMPLEMENTATION_UNSUPPORTED_METHOD = l''implantation de pourcentage {0} ne dispose pas de la m\u00e9thode {1}
PERMUTATION_EXCEEDS_N = la taille de la permutation ({0}) d\u00e9passe le domaine de la permutation ({1}) PERMUTATION_EXCEEDS_N = la taille de la permutation ({0}) d\u00e9passe le domaine de la permutation ({1})

View File

@ -23,14 +23,13 @@ import java.util.Locale;
import java.util.ResourceBundle; import java.util.ResourceBundle;
import org.junit.Assert; import org.junit.Assert;
import org.junit.Test; import org.junit.Test;
public class LocalizedFormatsTest { public class LocalizedFormatsTest {
@Test @Test
public void testMessageNumber() { public void testMessageNumber() {
Assert.assertEquals(319, LocalizedFormats.values().length); Assert.assertEquals(320, LocalizedFormats.values().length);
} }
@Test @Test

View File

@ -19,13 +19,16 @@ package org.apache.commons.math3.util;
import java.lang.reflect.Method; import java.lang.reflect.Method;
import java.lang.reflect.Modifier; import java.lang.reflect.Modifier;
import java.lang.reflect.Type; import java.lang.reflect.Type;
import java.math.BigInteger;
import org.apache.commons.math3.TestUtils; import org.apache.commons.math3.TestUtils;
import org.apache.commons.math3.dfp.Dfp; import org.apache.commons.math3.dfp.Dfp;
import org.apache.commons.math3.dfp.DfpField; import org.apache.commons.math3.dfp.DfpField;
import org.apache.commons.math3.dfp.DfpMath; import org.apache.commons.math3.dfp.DfpMath;
import org.apache.commons.math3.exception.MathArithmeticException;
import org.apache.commons.math3.random.MersenneTwister; import org.apache.commons.math3.random.MersenneTwister;
import org.apache.commons.math3.random.RandomGenerator; import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.random.Well1024a;
import org.junit.Assert; import org.junit.Assert;
import org.junit.Before; import org.junit.Before;
import org.junit.Ignore; import org.junit.Ignore;
@ -958,13 +961,13 @@ public class FastMathTest {
@Test @Test
public void testNextAfter() { public void testNextAfter() {
// 0x402fffffffffffff 0x404123456789abcd -> 4030000000000000 // 0x402fffffffffffff 0x404123456789abcd -> 4030000000000000
Assert.assertEquals(16.0, FastMath.nextAfter(15.999999999999998, 34.27555555555555), 0.0); Assert.assertEquals(16.0, FastMath.nextUp(15.999999999999998), 0.0);
// 0xc02fffffffffffff 0x404123456789abcd -> c02ffffffffffffe // 0xc02fffffffffffff 0x404123456789abcd -> c02ffffffffffffe
Assert.assertEquals(-15.999999999999996, FastMath.nextAfter(-15.999999999999998, 34.27555555555555), 0.0); Assert.assertEquals(-15.999999999999996, FastMath.nextAfter(-15.999999999999998, 34.27555555555555), 0.0);
// 0x402fffffffffffff 0x400123456789abcd -> 402ffffffffffffe // 0x402fffffffffffff 0x400123456789abcd -> 402ffffffffffffe
Assert.assertEquals(15.999999999999996, FastMath.nextAfter(15.999999999999998, 2.142222222222222), 0.0); Assert.assertEquals(15.999999999999996, FastMath.nextDown(15.999999999999998), 0.0);
// 0xc02fffffffffffff 0x400123456789abcd -> c02ffffffffffffe // 0xc02fffffffffffff 0x400123456789abcd -> c02ffffffffffffe
Assert.assertEquals(-15.999999999999996, FastMath.nextAfter(-15.999999999999998, 2.142222222222222), 0.0); Assert.assertEquals(-15.999999999999996, FastMath.nextAfter(-15.999999999999998, 2.142222222222222), 0.0);
@ -1037,8 +1040,8 @@ public class FastMathTest {
Assert.assertEquals(-Float.MAX_VALUE,FastMath.nextAfter(Float.NEGATIVE_INFINITY, 0F), 0F); Assert.assertEquals(-Float.MAX_VALUE,FastMath.nextAfter(Float.NEGATIVE_INFINITY, 0F), 0F);
Assert.assertEquals(Float.MAX_VALUE,FastMath.nextAfter(Float.POSITIVE_INFINITY, 0F), 0F); Assert.assertEquals(Float.MAX_VALUE,FastMath.nextAfter(Float.POSITIVE_INFINITY, 0F), 0F);
Assert.assertEquals(Float.NaN,FastMath.nextAfter(Float.NaN, 0F), 0F); Assert.assertEquals(Float.NaN,FastMath.nextAfter(Float.NaN, 0F), 0F);
Assert.assertEquals(Float.POSITIVE_INFINITY,FastMath.nextAfter(Float.MAX_VALUE, Float.POSITIVE_INFINITY), 0F); Assert.assertEquals(Float.POSITIVE_INFINITY,FastMath.nextUp(Float.MAX_VALUE), 0F);
Assert.assertEquals(Float.NEGATIVE_INFINITY,FastMath.nextAfter(-Float.MAX_VALUE, Float.NEGATIVE_INFINITY), 0F); Assert.assertEquals(Float.NEGATIVE_INFINITY,FastMath.nextDown(-Float.MAX_VALUE), 0F);
Assert.assertEquals(Float.MIN_VALUE, FastMath.nextAfter(0F, 1F), 0F); Assert.assertEquals(Float.MIN_VALUE, FastMath.nextAfter(0F, 1F), 0F);
Assert.assertEquals(-Float.MIN_VALUE, FastMath.nextAfter(0F, -1F), 0F); Assert.assertEquals(-Float.MIN_VALUE, FastMath.nextAfter(0F, -1F), 0F);
Assert.assertEquals(0F, FastMath.nextAfter(Float.MIN_VALUE, -1F), 0F); Assert.assertEquals(0F, FastMath.nextAfter(Float.MIN_VALUE, -1F), 0F);
@ -1182,4 +1185,422 @@ public class FastMathTest {
} }
} }
@Test
public void testIncrementExactInt() {
int[] specialValues = new int[] {
Integer.MIN_VALUE, Integer.MIN_VALUE + 1, Integer.MIN_VALUE + 2,
Integer.MAX_VALUE, Integer.MAX_VALUE - 1, Integer.MAX_VALUE - 2,
-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
-1 - (Integer.MIN_VALUE / 2), 0 - (Integer.MIN_VALUE / 2), 1 - (Integer.MIN_VALUE / 2),
-1 + (Integer.MAX_VALUE / 2), 0 + (Integer.MAX_VALUE / 2), 1 + (Integer.MAX_VALUE / 2),
};
for (int a : specialValues) {
BigInteger bdA = BigInteger.valueOf(a);
BigInteger bdSum = bdA.add(BigInteger.ONE);
if (bdSum.compareTo(BigInteger.valueOf(Integer.MIN_VALUE)) < 0 ||
bdSum.compareTo(BigInteger.valueOf(Integer.MAX_VALUE)) > 0) {
try {
FastMath.incrementExact(a);
Assert.fail("an exception should have been thrown");
} catch (MathArithmeticException mae) {
// expected
}
} else {
Assert.assertEquals(bdSum, BigInteger.valueOf(FastMath.incrementExact(a)));
}
}
}
@Test
public void testDecrementExactInt() {
int[] specialValues = new int[] {
Integer.MIN_VALUE, Integer.MIN_VALUE + 1, Integer.MIN_VALUE + 2,
Integer.MAX_VALUE, Integer.MAX_VALUE - 1, Integer.MAX_VALUE - 2,
-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
-1 - (Integer.MIN_VALUE / 2), 0 - (Integer.MIN_VALUE / 2), 1 - (Integer.MIN_VALUE / 2),
-1 + (Integer.MAX_VALUE / 2), 0 + (Integer.MAX_VALUE / 2), 1 + (Integer.MAX_VALUE / 2),
};
for (int a : specialValues) {
BigInteger bdA = BigInteger.valueOf(a);
BigInteger bdSub = bdA.subtract(BigInteger.ONE);
if (bdSub.compareTo(BigInteger.valueOf(Integer.MIN_VALUE)) < 0 ||
bdSub.compareTo(BigInteger.valueOf(Integer.MAX_VALUE)) > 0) {
try {
FastMath.decrementExact(a);
Assert.fail("an exception should have been thrown");
} catch (MathArithmeticException mae) {
// expected
}
} else {
Assert.assertEquals(bdSub, BigInteger.valueOf(FastMath.decrementExact(a)));
}
}
}
@Test
public void testAddExactInt() {
int[] specialValues = new int[] {
Integer.MIN_VALUE, Integer.MIN_VALUE + 1, Integer.MIN_VALUE + 2,
Integer.MAX_VALUE, Integer.MAX_VALUE - 1, Integer.MAX_VALUE - 2,
-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
-1 - (Integer.MIN_VALUE / 2), 0 - (Integer.MIN_VALUE / 2), 1 - (Integer.MIN_VALUE / 2),
-1 + (Integer.MAX_VALUE / 2), 0 + (Integer.MAX_VALUE / 2), 1 + (Integer.MAX_VALUE / 2),
};
for (int a : specialValues) {
for (int b : specialValues) {
BigInteger bdA = BigInteger.valueOf(a);
BigInteger bdB = BigInteger.valueOf(b);
BigInteger bdSum = bdA.add(bdB);
if (bdSum.compareTo(BigInteger.valueOf(Integer.MIN_VALUE)) < 0 ||
bdSum.compareTo(BigInteger.valueOf(Integer.MAX_VALUE)) > 0) {
try {
FastMath.addExact(a, b);
Assert.fail("an exception should have been thrown");
} catch (MathArithmeticException mae) {
// expected
}
} else {
Assert.assertEquals(bdSum, BigInteger.valueOf(FastMath.addExact(a, b)));
}
}
}
}
@Test
public void testAddExactLong() {
long[] specialValues = new long[] {
Long.MIN_VALUE, Long.MIN_VALUE + 1, Long.MIN_VALUE + 2,
Long.MAX_VALUE, Long.MAX_VALUE - 1, Long.MAX_VALUE - 2,
-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
-1 - (Long.MIN_VALUE / 2), 0 - (Long.MIN_VALUE / 2), 1 - (Long.MIN_VALUE / 2),
-1 + (Long.MAX_VALUE / 2), 0 + (Long.MAX_VALUE / 2), 1 + (Long.MAX_VALUE / 2),
};
for (long a : specialValues) {
for (long b : specialValues) {
BigInteger bdA = BigInteger.valueOf(a);
BigInteger bdB = BigInteger.valueOf(b);
BigInteger bdSum = bdA.add(bdB);
if (bdSum.compareTo(BigInteger.valueOf(Long.MIN_VALUE)) < 0 ||
bdSum.compareTo(BigInteger.valueOf(Long.MAX_VALUE)) > 0) {
try {
FastMath.addExact(a, b);
Assert.fail("an exception should have been thrown");
} catch (MathArithmeticException mae) {
// expected
}
} else {
Assert.assertEquals(bdSum, BigInteger.valueOf(FastMath.addExact(a, b)));
}
}
}
}
@Test
public void testSubtractExactInt() {
int[] specialValues = new int[] {
Integer.MIN_VALUE, Integer.MIN_VALUE + 1, Integer.MIN_VALUE + 2,
Integer.MAX_VALUE, Integer.MAX_VALUE - 1, Integer.MAX_VALUE - 2,
-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
-1 - (Integer.MIN_VALUE / 2), 0 - (Integer.MIN_VALUE / 2), 1 - (Integer.MIN_VALUE / 2),
-1 + (Integer.MAX_VALUE / 2), 0 + (Integer.MAX_VALUE / 2), 1 + (Integer.MAX_VALUE / 2),
};
for (int a : specialValues) {
for (int b : specialValues) {
BigInteger bdA = BigInteger.valueOf(a);
BigInteger bdB = BigInteger.valueOf(b);
BigInteger bdSub = bdA.subtract(bdB);
if (bdSub.compareTo(BigInteger.valueOf(Integer.MIN_VALUE)) < 0 ||
bdSub.compareTo(BigInteger.valueOf(Integer.MAX_VALUE)) > 0) {
try {
FastMath.subtractExact(a, b);
Assert.fail("an exception should have been thrown");
} catch (MathArithmeticException mae) {
// expected
}
} else {
Assert.assertEquals(bdSub, BigInteger.valueOf(FastMath.subtractExact(a, b)));
}
}
}
}
@Test
public void testSubtractExactLong() {
long[] specialValues = new long[] {
Long.MIN_VALUE, Long.MIN_VALUE + 1, Long.MIN_VALUE + 2,
Long.MAX_VALUE, Long.MAX_VALUE - 1, Long.MAX_VALUE - 2,
-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
-1 - (Long.MIN_VALUE / 2), 0 - (Long.MIN_VALUE / 2), 1 - (Long.MIN_VALUE / 2),
-1 + (Long.MAX_VALUE / 2), 0 + (Long.MAX_VALUE / 2), 1 + (Long.MAX_VALUE / 2),
};
for (long a : specialValues) {
for (long b : specialValues) {
BigInteger bdA = BigInteger.valueOf(a);
BigInteger bdB = BigInteger.valueOf(b);
BigInteger bdSub = bdA.subtract(bdB);
if (bdSub.compareTo(BigInteger.valueOf(Long.MIN_VALUE)) < 0 ||
bdSub.compareTo(BigInteger.valueOf(Long.MAX_VALUE)) > 0) {
try {
FastMath.subtractExact(a, b);
Assert.fail("an exception should have been thrown");
} catch (MathArithmeticException mae) {
// expected
}
} else {
Assert.assertEquals(bdSub, BigInteger.valueOf(FastMath.subtractExact(a, b)));
}
}
}
}
@Test
public void testMultiplyExactInt() {
int[] specialValues = new int[] {
Integer.MIN_VALUE, Integer.MIN_VALUE + 1, Integer.MIN_VALUE + 2,
Integer.MAX_VALUE, Integer.MAX_VALUE - 1, Integer.MAX_VALUE - 2,
-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
-1 - (Integer.MIN_VALUE / 2), 0 - (Integer.MIN_VALUE / 2), 1 - (Integer.MIN_VALUE / 2),
-1 + (Integer.MAX_VALUE / 2), 0 + (Integer.MAX_VALUE / 2), 1 + (Integer.MAX_VALUE / 2),
};
for (int a : specialValues) {
for (int b : specialValues) {
BigInteger bdA = BigInteger.valueOf(a);
BigInteger bdB = BigInteger.valueOf(b);
BigInteger bdMul = bdA.multiply(bdB);
if (bdMul.compareTo(BigInteger.valueOf(Integer.MIN_VALUE)) < 0 ||
bdMul.compareTo(BigInteger.valueOf(Integer.MAX_VALUE)) > 0) {
try {
FastMath.multiplyExact(a, b);
Assert.fail("an exception should have been thrown " + a + b);
} catch (MathArithmeticException mae) {
// expected
}
} else {
Assert.assertEquals(bdMul, BigInteger.valueOf(FastMath.multiplyExact(a, b)));
}
}
}
}
@Test
public void testMultiplyExactLong() {
long[] specialValues = new long[] {
Long.MIN_VALUE, Long.MIN_VALUE + 1, Long.MIN_VALUE + 2,
Long.MAX_VALUE, Long.MAX_VALUE - 1, Long.MAX_VALUE - 2,
-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
-1 - (Long.MIN_VALUE / 2), 0 - (Long.MIN_VALUE / 2), 1 - (Long.MIN_VALUE / 2),
-1 + (Long.MAX_VALUE / 2), 0 + (Long.MAX_VALUE / 2), 1 + (Long.MAX_VALUE / 2),
};
for (long a : specialValues) {
for (long b : specialValues) {
BigInteger bdA = BigInteger.valueOf(a);
BigInteger bdB = BigInteger.valueOf(b);
BigInteger bdMul = bdA.multiply(bdB);
if (bdMul.compareTo(BigInteger.valueOf(Long.MIN_VALUE)) < 0 ||
bdMul.compareTo(BigInteger.valueOf(Long.MAX_VALUE)) > 0) {
try {
FastMath.multiplyExact(a, b);
Assert.fail("an exception should have been thrown " + a + b);
} catch (MathArithmeticException mae) {
// expected
}
} else {
Assert.assertEquals(bdMul, BigInteger.valueOf(FastMath.multiplyExact(a, b)));
}
}
}
}
@Test(expected=MathArithmeticException.class)
public void testToIntExactTooLow() {
FastMath.toIntExact(-1l + Integer.MIN_VALUE);
}
@Test(expected=MathArithmeticException.class)
public void testToIntExactTooHigh() {
FastMath.toIntExact(+1l + Integer.MAX_VALUE);
}
@Test
public void testToIntExact() {
for (int n = -1000; n < 1000; ++n) {
Assert.assertEquals(n, FastMath.toIntExact(0l + n));
}
Assert.assertEquals(Integer.MIN_VALUE, FastMath.toIntExact(0l + Integer.MIN_VALUE));
Assert.assertEquals(Integer.MAX_VALUE, FastMath.toIntExact(0l + Integer.MAX_VALUE));
}
@Test
public void testFloorDivInt() {
Assert.assertEquals(+1, FastMath.floorDiv(+4, +3));
Assert.assertEquals(-2, FastMath.floorDiv(-4, +3));
Assert.assertEquals(-2, FastMath.floorDiv(+4, -3));
Assert.assertEquals(+1, FastMath.floorDiv(-4, -3));
try {
FastMath.floorDiv(1, 0);
Assert.fail("an exception should have been thrown");
} catch (MathArithmeticException mae) {
// expected
}
for (int a = -100; a <= 100; ++a) {
for (int b = -100; b <= 100; ++b) {
if (b != 0) {
Assert.assertEquals(poorManFloorDiv(a, b), FastMath.floorDiv(a, b));
}
}
}
}
@Test
public void testFloorModInt() {
Assert.assertEquals(+1, FastMath.floorMod(+4, +3));
Assert.assertEquals(+2, FastMath.floorMod(-4, +3));
Assert.assertEquals(-2, FastMath.floorMod(+4, -3));
Assert.assertEquals(-1, FastMath.floorMod(-4, -3));
try {
FastMath.floorMod(1, 0);
Assert.fail("an exception should have been thrown");
} catch (MathArithmeticException mae) {
// expected
}
for (int a = -100; a <= 100; ++a) {
for (int b = -100; b <= 100; ++b) {
if (b != 0) {
Assert.assertEquals(poorManFloorMod(a, b), FastMath.floorMod(a, b));
}
}
}
}
@Test
public void testFloorDivModInt() {
RandomGenerator generator = new Well1024a(0x7ccab45edeaab90al);
for (int i = 0; i < 10000; ++i) {
int a = generator.nextInt();
int b = generator.nextInt();
if (b == 0) {
try {
FastMath.floorDiv(a, b);
Assert.fail("an exception should have been thrown");
} catch (MathArithmeticException mae) {
// expected
}
} else {
int d = FastMath.floorDiv(a, b);
int m = FastMath.floorMod(a, b);
Assert.assertEquals(FastMath.toIntExact(poorManFloorDiv(a, b)), d);
Assert.assertEquals(FastMath.toIntExact(poorManFloorMod(a, b)), m);
Assert.assertEquals(a, d * b + m);
if (b < 0) {
Assert.assertTrue(m <= 0);
Assert.assertTrue(-m < -b);
} else {
Assert.assertTrue(m >= 0);
Assert.assertTrue(m < b);
}
}
}
}
@Test
public void testFloorDivLong() {
Assert.assertEquals(+1l, FastMath.floorDiv(+4l, +3l));
Assert.assertEquals(-2l, FastMath.floorDiv(-4l, +3l));
Assert.assertEquals(-2l, FastMath.floorDiv(+4l, -3l));
Assert.assertEquals(+1l, FastMath.floorDiv(-4l, -3l));
try {
FastMath.floorDiv(1l, 0l);
Assert.fail("an exception should have been thrown");
} catch (MathArithmeticException mae) {
// expected
}
for (long a = -100l; a <= 100l; ++a) {
for (long b = -100l; b <= 100l; ++b) {
if (b != 0) {
Assert.assertEquals(poorManFloorDiv(a, b), FastMath.floorDiv(a, b));
}
}
}
}
@Test
public void testFloorModLong() {
Assert.assertEquals(+1l, FastMath.floorMod(+4l, +3l));
Assert.assertEquals(+2l, FastMath.floorMod(-4l, +3l));
Assert.assertEquals(-2l, FastMath.floorMod(+4l, -3l));
Assert.assertEquals(-1l, FastMath.floorMod(-4l, -3l));
try {
FastMath.floorMod(1l, 0l);
Assert.fail("an exception should have been thrown");
} catch (MathArithmeticException mae) {
// expected
}
for (long a = -100l; a <= 100l; ++a) {
for (long b = -100l; b <= 100l; ++b) {
if (b != 0) {
Assert.assertEquals(poorManFloorMod(a, b), FastMath.floorMod(a, b));
}
}
}
}
@Test
public void testFloorDivModLong() {
RandomGenerator generator = new Well1024a(0xb87b9bc14c96ccd5l);
for (int i = 0; i < 10000; ++i) {
long a = generator.nextLong();
long b = generator.nextLong();
if (b == 0) {
try {
FastMath.floorDiv(a, b);
Assert.fail("an exception should have been thrown");
} catch (MathArithmeticException mae) {
// expected
}
} else {
long d = FastMath.floorDiv(a, b);
long m = FastMath.floorMod(a, b);
Assert.assertEquals(poorManFloorDiv(a, b), d);
Assert.assertEquals(poorManFloorMod(a, b), m);
Assert.assertEquals(a, d * b + m);
if (b < 0) {
Assert.assertTrue(m <= 0);
Assert.assertTrue(-m < -b);
} else {
Assert.assertTrue(m >= 0);
Assert.assertTrue(m < b);
}
}
}
}
private long poorManFloorDiv(long a, long b) {
// find q0, r0 such that a = q0 b + r0
BigInteger q0 = BigInteger.valueOf(a / b);
BigInteger r0 = BigInteger.valueOf(a % b);
BigInteger fd = BigInteger.valueOf(Integer.MIN_VALUE);
BigInteger bigB = BigInteger.valueOf(b);
for (int k = -2; k < 2; ++k) {
// find another pair q, r such that a = q b + r
BigInteger bigK = BigInteger.valueOf(k);
BigInteger q = q0.subtract(bigK);
BigInteger r = r0.add(bigK.multiply(bigB));
if (r.abs().compareTo(bigB.abs()) < 0 &&
(r.longValue() == 0l || ((r.longValue() ^ b) & 0x8000000000000000l) == 0)) {
if (fd.compareTo(q) < 0) {
fd = q;
}
}
}
return fd.longValue();
}
private long poorManFloorMod(long a, long b) {
return a - b * poorManFloorDiv(a, b);
}
} }