[MATH-1197] Computation of 2-sample KS statistic was wrong in case of ties.

This commit is contained in:
Thomas Neidhart 2015-04-26 20:55:17 +02:00
parent 8ed40d5302
commit a6abb8b003
3 changed files with 118 additions and 20 deletions

View File

@ -54,6 +54,10 @@ If the output is not quite correct, check for invisible trailing spaces!
</release>
<release version="4.0" date="XXXX-XX-XX" description="">
<action dev="tn" type="fix" issue="MATH-1197">
Computation of 2-sample Kolmogoriv-Smirnov statistic in case of ties
was not correct.
</action>
<action dev="tn" type="remove" issue="MATH-1205">
Removed methods "test(...)" from "AbstractUnivariateStatistic".
The already existing methods "MathArrays#verifyValues(...)" shall

View File

@ -298,9 +298,13 @@ public class KolmogorovSmirnovTest {
double supD = 0d;
// First walk x points
for (int i = 0; i < n; i++) {
final double cdf_x = (i + 1d) / n;
final int yIndex = Arrays.binarySearch(sy, sx[i]);
final double cdf_y = yIndex >= 0 ? (yIndex + 1d) / m : (-yIndex - 1d) / m;
final double x_i = sx[i];
// ties can be safely ignored
if (i > 0 && x_i == sx[i-1]) {
continue;
}
final double cdf_x = edf(x_i, sx);
final double cdf_y = edf(x_i, sy);
final double curD = FastMath.abs(cdf_x - cdf_y);
if (curD > supD) {
supD = curD;
@ -308,9 +312,13 @@ public class KolmogorovSmirnovTest {
}
// Now look at y
for (int i = 0; i < m; i++) {
final double cdf_y = (i + 1d) / m;
final int xIndex = Arrays.binarySearch(sx, sy[i]);
final double cdf_x = xIndex >= 0 ? (xIndex + 1d) / n : (-xIndex - 1d) / n;
final double y_i = sy[i];
// ties can be safely ignored
if (i > 0 && y_i == sy[i-1]) {
continue;
}
final double cdf_x = edf(y_i, sx);
final double cdf_y = edf(y_i, sy);
final double curD = FastMath.abs(cdf_x - cdf_y);
if (curD > supD) {
supD = curD;
@ -319,6 +327,24 @@ public class KolmogorovSmirnovTest {
return supD;
}
/**
* Computes the empirical distribution function.
*
* @param x the given x
* @param samples the observations
* @return the empirical distribution function \(F_n(x)\)
*/
private double edf(final double x, final double[] samples) {
final int n = samples.length;
int index = Arrays.binarySearch(samples, x);
if (index >= 0) {
while(index < (n - 1) && samples[index+1] == x) {
++index;
}
}
return index >= 0 ? (index + 1d) / n : (-index - 1d) / n;
}
/**
* Computes the <i>p-value</i>, or <i>observed significance level</i>, of a one-sample <a
* href="http://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test"> Kolmogorov-Smirnov test</a>
@ -429,7 +455,7 @@ public class KolmogorovSmirnovTest {
return 1;
}
if (exact) {
return exactK(d,n);
return exactK(d, n);
}
if (n <= 140) {
return roundedK(d, n);
@ -501,7 +527,6 @@ public class KolmogorovSmirnovTest {
* @since 3.4
*/
public double pelzGood(double d, int n) {
// Change the variable since approximation is for the distribution evaluated at d / sqrt(n)
final double sqrtN = FastMath.sqrt(n);
final double z = d * sqrtN;
@ -834,8 +859,13 @@ public class KolmogorovSmirnovTest {
* @throws TooManyIterationsException if the series does not converge
*/
public double ksSum(double t, double tolerance, int maxIterations) {
if (t == 0.0) {
return 1.0;
}
// TODO: for small t (say less than 1), the alternative expansion in part 3 of [1]
// from class javadoc should be used.
final double x = -2 * t * t;
int sign = -1;
long i = 1;
@ -926,7 +956,8 @@ public class KolmogorovSmirnovTest {
public double approximateP(double d, int n, int m) {
final double dm = m;
final double dn = n;
return 1 - ksSum(d * FastMath.sqrt((dm * dn) / (dm + dn)), KS_SUM_CAUCHY_CRITERION, MAXIMUM_PARTIAL_SUM_COUNT);
return 1 - ksSum(d * FastMath.sqrt((dm * dn) / (dm + dn)),
KS_SUM_CAUCHY_CRITERION, MAXIMUM_PARTIAL_SUM_COUNT);
}
/**

View File

@ -27,7 +27,7 @@ import org.junit.Test;
/**
* Test cases for {@link KolmogorovSmirnovTest}.
*
*
* @since 3.3
*/
public class KolmogorovSmirnovTestTest {
@ -221,7 +221,7 @@ public class KolmogorovSmirnovTestTest {
}
}
}
@Test
public void testPelzGoodApproximation() {
KolmogorovSmirnovTest ksTest = new KolmogorovSmirnovTest();
@ -237,7 +237,7 @@ public class KolmogorovSmirnovTestTest {
0.9999999999999877, 0.9999999999999191, 0.9999999999999254, 0.9999999999998178, 0.9999999999917788,
0.9999999999998556, 0.9999999999992014, 0.9999999999988859, 0.9999999999999325, 0.9999999999821726
};
final double tol = 10e-15;
int k = 0;
for (int i = 0; i < 6; i++) {
@ -255,13 +255,13 @@ public class KolmogorovSmirnovTestTest {
Assert.assertEquals(0.0319983962391632, test.kolmogorovSmirnovTest(gaussian, gaussian2), TOLERANCE);
Assert.assertEquals(0.202352941176471, test.kolmogorovSmirnovStatistic(gaussian, gaussian2), TOLERANCE);
}
/**
/**
* MATH-1181
* Verify that large sample method is selected for sample product > Integer.MAX_VALUE
* (integer overflow in sample product)
*/
@Test(timeout=5000)
@Test//(timeout=5000)
public void testTwoSampleProductSizeOverflow() {
final int n = 50000;
Assert.assertTrue(n * n < 0);
@ -270,7 +270,7 @@ public class KolmogorovSmirnovTestTest {
final KolmogorovSmirnovTest test = new KolmogorovSmirnovTest();
Assert.assertFalse(Double.isNaN(test.kolmogorovSmirnovTest(x, y)));
}
/**
* Verifies that Monte Carlo simulation gives results close to exact p values. This test is a
@ -303,15 +303,78 @@ public class KolmogorovSmirnovTestTest {
}
}
@Test
public void testTwoSampleWithManyTies() {
// MATH-1197
final double[] x = {
0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 2.202653, 2.202653, 2.202653, 2.202653, 2.202653,
2.202653, 2.202653, 2.202653, 2.202653, 2.202653, 2.202653,
2.202653, 2.202653, 2.202653, 2.202653, 2.202653, 2.202653,
2.202653, 2.202653, 2.202653, 2.202653, 2.202653, 2.202653,
2.202653, 2.202653, 2.202653, 2.202653, 2.202653, 2.202653,
2.202653, 2.202653, 2.202653, 2.202653, 2.202653, 2.202653,
3.181199, 3.181199, 3.181199, 3.181199, 3.181199, 3.181199,
3.723539, 3.723539, 3.723539, 3.723539, 4.383482, 4.383482,
4.383482, 4.383482, 5.320671, 5.320671, 5.320671, 5.717284,
6.964001, 7.352165, 8.710510, 8.710510, 8.710510, 8.710510,
8.710510, 8.710510, 9.539004, 9.539004, 10.720619, 17.726077,
17.726077, 17.726077, 17.726077, 22.053875, 23.799144, 27.355308,
30.584960, 30.584960, 30.584960, 30.584960, 30.751808
};
final double[] y = {
0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000, 2.202653, 2.202653, 2.202653,
2.202653, 2.202653, 2.202653, 2.202653, 2.202653, 3.061758,
3.723539, 5.628420, 5.628420, 5.628420, 5.628420, 5.628420,
6.916982, 6.916982, 6.916982, 10.178538, 10.178538, 10.178538,
10.178538, 10.178538
};
final KolmogorovSmirnovTest test = new KolmogorovSmirnovTest();
Assert.assertEquals(0.0640394088, test.kolmogorovSmirnovStatistic(x, y), 1e-6);
Assert.assertEquals(0.9792777290, test.kolmogorovSmirnovTest(x, y), 1e-6);
}
/**
* Verifies the inequality exactP(criticalValue, n, m, true) < alpha < exactP(criticalValue, n,
* m, false).
*
*
* Note that the validity of this check depends on the fact that alpha lies strictly between two
* attained values of the distribution and that criticalValue is one of the attained values. The
* critical value table (reference below) uses attained values. This test therefore also
* verifies that criticalValue is attained.
*
*
* @param n first sample size
* @param m second sample size
* @param criticalValue critical value
@ -325,7 +388,7 @@ public class KolmogorovSmirnovTestTest {
/**
* Verifies that approximateP(criticalValue, n, m) is within epsilon of alpha.
*
*
* @param n first sample size
* @param m second sample size
* @param criticalValue critical value (from table)
@ -336,5 +399,5 @@ public class KolmogorovSmirnovTestTest {
final KolmogorovSmirnovTest test = new KolmogorovSmirnovTest();
Assert.assertEquals(alpha, test.approximateP(criticalValue, n, m), epsilon);
}
}