Added goodness of fit test for poisson deviates.

git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@819492 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Phil Steitz 2009-09-28 10:36:46 +00:00
parent 7dd8773ea3
commit a72bbf44cf
1 changed files with 133 additions and 0 deletions

View File

@ -18,11 +18,18 @@ package org.apache.commons.math.random;
import junit.framework.Test;
import junit.framework.TestSuite;
import junit.framework.AssertionFailedError;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import org.apache.commons.math.RetryTestCase;
import org.apache.commons.math.distribution.PoissonDistribution;
import org.apache.commons.math.distribution.PoissonDistributionImpl;
import org.apache.commons.math.stat.Frequency;
import org.apache.commons.math.stat.inference.ChiSquareTestImpl;
import org.apache.commons.math.stat.inference.ChiSquareTest;
import org.apache.commons.math.stat.descriptive.SummaryStatistics;
/**
@ -218,6 +225,132 @@ public class RandomDataTest extends RetryTestCase {
}
}
public void testNextPoissionConistency() throws Exception {
// TODO: increase upper bound to 40 when MATH-294 is resolved
for (int i = 1; i < 6; i++) {
checkNextPoissonConsistency(i);
}
}
/**
* Verifies that nextPoisson(mean) generates an empirical distribution of values
* consistent with PoissonDistributionImpl by generating 1000 values, computing a
* grouped frequency distribution of the observed values and comparing this distribution
* to the corresponding expected distribution computed using PoissonDistributionImpl.
* Uses ChiSquare test of goodness of fit to evaluate the null hypothesis that the
* distributions are the same. If the null hypothesis can be rejected with confidence
* 1 - alpha, the check fails. This check will fail randomly with probability alpha.
*/
public void checkNextPoissonConsistency(double mean) throws Exception {
// Generate sample values
int sampleSize = 1000; // Number of deviates to generate
int minExpectedCount = 7; // Minimum size of expected bin count
long maxObservedValue = 0;
double alpha = 0.001; // Probability of false failure
Frequency frequency = new Frequency();
for (int i = 0; i < sampleSize; i++) {
long value = randomData.nextPoisson(mean);
if (value > maxObservedValue) {
maxObservedValue = value;
}
frequency.addValue(value);
}
/*
* Set up bins for chi-square test.
* Ensure expected counts are all at least minExpectedCount.
* Start with upper and lower tail bins.
* Lower bin = [0, lower); Upper bin = [upper, +inf).
*/
PoissonDistribution poissonDistribution = new PoissonDistributionImpl(mean);
int lower = 1;
while (poissonDistribution.cumulativeProbability(lower - 1) * sampleSize < minExpectedCount) {
lower++;
}
int upper = (int) (5 * mean); // Even for mean = 1, not much mass beyond 5
while ((1 - poissonDistribution.cumulativeProbability(upper - 1)) * sampleSize < minExpectedCount) {
upper--;
}
// Set bin width for interior bins. For poisson, only need to look at end bins.
int binWidth = 1;
boolean widthSufficient = false;
double lowerBinMass = 0;
double upperBinMass = 0;
while (!widthSufficient) {
lowerBinMass = poissonDistribution.cumulativeProbability(lower, lower + binWidth - 1);
upperBinMass = poissonDistribution.cumulativeProbability(upper - binWidth + 1, upper);
widthSufficient = Math.min(lowerBinMass, upperBinMass) * sampleSize >= minExpectedCount;
binWidth++;
}
/*
* Determine interior bin bounds. Bins are
* [0, lower = binBounds[0]), [lower, binBounds[1]), [binBounds[0], binBounds[1]), ... ,
* [binBounds[binCount - 2], upper = binBounds[binCount - 1]), [upper, +inf)
*
*/
List<Integer> binBounds = new ArrayList<Integer>();
binBounds.add(lower);
int bound = lower + binWidth;
while (bound < upper - binWidth) {
binBounds.add(bound);
bound += binWidth;
}
binBounds.add(bound);
binBounds.add(upper);
// Compute observed and expected bin counts
final int binCount = binBounds.size() + 1;
long[] observed = new long[binCount];
double[] expected = new double[binCount];
// Bottom bin
observed[0] = 0;
for (int i = 0; i < lower; i++) {
observed[0] += frequency.getCount(i);
}
expected[0] = poissonDistribution.cumulativeProbability(lower - 1) * sampleSize;
// Top bin
observed[binCount - 1] = 0;
for (int i = upper; i <= maxObservedValue; i++) {
observed[binCount - 1] += frequency.getCount(i);
}
expected[binCount - 1] = (1 - poissonDistribution.cumulativeProbability(upper - 1)) * sampleSize;
// Interior bins
for (int i = 1; i < binCount - 1; i++) {
observed[i] = 0;
for (int j = binBounds.get(i - 1); j < binBounds.get(i); j++) {
observed[i] += frequency.getCount(j);
} // Expected count is (mass in [binBounds[i], binBounds[i+1])) * sampleSize
expected[i] = (poissonDistribution.cumulativeProbability(binBounds.get(i) - 1) -
poissonDistribution.cumulativeProbability(binBounds.get(i - 1) -1)) * sampleSize;
}
// Use chisquare test to verify that generated values are poisson(mean)-distributed
ChiSquareTest chiSquareTest = new ChiSquareTestImpl();
try {
// Fail if we can reject null hypothesis that distributions are the same
assertFalse(chiSquareTest.chiSquareTest(expected, observed, alpha));
} catch (AssertionFailedError ex) {
StringBuffer msgBuffer = new StringBuffer();
msgBuffer.append("Chisquare test failed for mean = ");
msgBuffer.append(mean);
msgBuffer.append(" p-value = ");
msgBuffer.append(chiSquareTest.chiSquareTest(expected, observed));
msgBuffer.append(" chisquare statistic = ");
msgBuffer.append(chiSquareTest.chiSquare(expected, observed));
msgBuffer.append(". \n");
msgBuffer.append("This test can fail randomly due to sampling error with probability ");
msgBuffer.append(alpha);
msgBuffer.append(".");
fail(msgBuffer.toString());
}
}
public void testNextPoissonLargeMean() {
for (int i = 0; i < 1000; i++) {