diff --git a/src/java/org/apache/commons/math/MathUtils.java b/src/java/org/apache/commons/math/MathUtils.java index f06cf8a0a..d6aa18420 100644 --- a/src/java/org/apache/commons/math/MathUtils.java +++ b/src/java/org/apache/commons/math/MathUtils.java @@ -14,7 +14,7 @@ * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the - * distribution. + * distribution. * * 3. The end-user documentation included with the redistribution, if * any, must include the following acknowlegement: @@ -58,31 +58,131 @@ package org.apache.commons.math; * Some useful additions to the built-in functions in lang.Math

* * @author Phil Steitz - * @version $Revision: 1.1 $ $Date: 2003/06/04 02:31:13 $ + * @version $Revision: 1.2 $ $Date: 2003/06/06 03:07:39 $ */ public class MathUtils { /** - * Returns an exact representation of the - * - * Binomial Coefficient, "n choose k", - * the number of k-element subsets that can be selected from - * an n-element set. - *

- * Preconditions:

- * - * @param n the size of the set - * @param k the size of the subsets to be counted - * @return n choose k + * For a double precision value x, this method returns +1.0 if x >= 0 + * and -1.0 if x < 0. + * + * @author Albert Davidson Chou + * @param x the value, a double + * @return +1.0 or -1.0, depending on the the sign of x */ + public static double sign( double x ) { + if ( x >= 0.0 ) { + return 1.0 ; + } else { + return -1.0 ; + } + } + + /** + * For a float value x, this method returns +1.0F if x >= 0 + * and -1.0F if x < 0. + * + * @author Albert Davidson Chou + * @param x the value, a float + * @return +1.0F or -1.0F, depending on the the sign of x + */ + public static float sign( float x ) { + if ( x >= 0.0F ) { + return 1.0F ; + } else { + return -1.0F ; + } + } + + /** + * For a byte value x, this method returns (byte)(+1) if x >= 0 + * and (byte)(-1) if x < 0. + * + * @author Albert Davidson Chou + * @param x the value, a byte + * @return (byte)(+1) or (byte)(-1), depending on the the sign of x + */ + public static byte sign( byte x ) { + if ( x >= (byte)0 ) { + return (byte)1 ; + } else { + return (byte)(-1) ; + } + } + + /** + * For a short value x, this method returns (short)(+1) if x >= 0 + * and (short)(-1) if x < 0. + * + * @author Albert Davidson Chou + * @param x the value, a short + * @return (short)(+1) or (short)(-1), depending on the the sign of x + */ + public static short sign( short x ) { + if ( x >= (short)0 ) { + return (short)1 ; + } else { + return (short)(-1) ; + } + } + + /** + * For an int value x, this method returns +1 if x >= 0 + * and -1 if x < 0. + * + * @author Albert Davidson Chou + * @param x the value, an int + * @return +1 or -1, depending on the the sign of x + */ + public static int sign( int x ) { + if ( x >= 0 ) { + return 1 ; + } else { + return -1 ; + } + } + + /** + * For a long value x, this method returns +1L if x >= 0 + * and -1L if x < 0. + * + * @author Albert Davidson Chou + * @param x the value, a long + * @return +1L or -1L, depending on the the sign of x + */ + public static long sign( long x ) { + if ( x >= 0L ) { + return 1L ; + } else { + return -1L ; + } + } + /** + * Returns an exact representation of the + * + * Binomial Coefficient, "n choose k", + * the number of k-element subsets that can be selected from + * an n-element set. + *

+ * Preconditions:

+ * + * + * @param n the size of the set + * @param k the size of the subsets to be counted + * @return n choose k + */ public static long binomialCoefficient(int n, int k) { if (n < k) { throw new IllegalArgumentException @@ -98,51 +198,51 @@ public class MathUtils { if ((k == 1) || (k == n - 1)) { return n; } - + long result = Math.round(binomialCoefficientDouble(n, k)); if (result == Long.MAX_VALUE) { throw new ArithmeticException ("result too large to represent in a long integer"); } - return result; - } - + return result; + } + /** - * Returns a double representation of the - * - * Binomial Coefficient, "n choose k", - * the number of k-element subsets that can be selected from + * Returns a double representation of the + * + * Binomial Coefficient, "n choose k", + * the number of k-element subsets that can be selected from * an n-element set. *

* Preconditions:

- * + * * @param n the size of the set * @param k the size of the subsets to be counted * @return n choose k */ - public static double binomialCoefficientDouble(int n, int k) { - return Math.floor(Math.exp(binomialCoefficientLog(n, k)) + .5); + public static double binomialCoefficientDouble(int n, int k) { + return Math.floor(Math.exp(binomialCoefficientLog(n, k)) + .5); } - + /** * Returns the natural log of the - * - * Binomial Coefficient, "n choose k", - * the number of k-element subsets that can be selected from + * + * Binomial Coefficient, "n choose k", + * the number of k-element subsets that can be selected from * an n-element set. *

* Preconditions:

- * + * * @param n the size of the set * @param k the size of the subsets to be counted * @return n choose k @@ -161,38 +261,38 @@ public class MathUtils { } if ((k == 1) || (k == n - 1)) { return Math.log((double) n); - } - double logSum = 0; - + } + double logSum = 0; + // n!/k! for (int i = k + 1; i <= n; i++) { logSum += Math.log((double) i); } - + // divide by (n-k)! for (int i = 2; i <= n - k; i++) { logSum -= Math.log((double) i); } - + return logSum; } - + /** * Returns n - * - * Factorial, or n!, + * + * Factorial, or n!, * the product of the numbers 1,...,n. *

* Preconditions:

- * + * * @param n argument * @return n! */ @@ -202,25 +302,25 @@ public class MathUtils { throw new ArithmeticException ("result too large to represent in a long integer"); } - return result; + return result; } - + /** * Returns n - * - * Factorial, or n!, - * the product of the numbers 1,...,n, as as + * + * Factorial, or n!, + * the product of the numbers 1,...,n, as as * double. *

* Preconditions:

- * + * * @param n argument * @return n! */ @@ -229,21 +329,21 @@ public class MathUtils { throw new IllegalArgumentException ("must have n > 0 for n!"); } - return Math.floor(Math.exp(factorialLog(n)) + 0.5); + return Math.floor(Math.exp(factorialLog(n)) + 0.5); } - + /** * Returns the natural log of n - * - * Factorial, or n!, - * the product of the numbers 1,...,n, as as + * + * Factorial, or n!, + * the product of the numbers 1,...,n, as as * double. *

* Preconditions:

- * + * * @param n argument * @return n! */ @@ -255,7 +355,7 @@ public class MathUtils { double logSum = 0; for (int i = 2; i <= n; i++) { logSum += Math.log((double) i); - } + } return logSum; - } + } } \ No newline at end of file diff --git a/src/test/org/apache/commons/math/MathUtilsTest.java b/src/test/org/apache/commons/math/MathUtilsTest.java index 314d71ad7..34922250c 100644 --- a/src/test/org/apache/commons/math/MathUtilsTest.java +++ b/src/test/org/apache/commons/math/MathUtilsTest.java @@ -14,7 +14,7 @@ * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the - * distribution. + * distribution. * * 3. The end-user documentation included with the redistribution, if * any, must include the following acknowlegement: @@ -62,16 +62,16 @@ import junit.framework.AssertionFailedError; * Test cases for the MathUtils class. * * @author Phil Steitz - * @version $Revision: 1.1 $ $Date: 2003/06/04 02:31:14 $ + * @version $Revision: 1.2 $ $Date: 2003/06/06 03:07:39 $ */ public final class MathUtilsTest extends TestCase { public MathUtilsTest(String name) { super(name); - } - - public void setUp() { + } + + public void setUp() { } public static Test suite() { @@ -157,10 +157,10 @@ public final class MathUtilsTest extends TestCase { ; } double x = MathUtils.binomialCoefficientDouble(1030,515); - assertTrue("expecting infinite binomial coefficient", + assertTrue("expecting infinite binomial coefficient", Double.isInfinite(x)); } - + public void testFactorial() { for (int i = 1; i < 10; i++) { assertEquals(i + "! ",factorial(i),MathUtils.factorial(i)); @@ -170,7 +170,7 @@ public final class MathUtilsTest extends TestCase { MathUtils.factorialLog(i),10E-12); } } - + public void testFactorialFail() { try { long x = MathUtils.factorial(0); @@ -196,26 +196,26 @@ public final class MathUtilsTest extends TestCase { } catch (ArithmeticException ex) { ; } - assertTrue("expecting infinite factorial value", + assertTrue("expecting infinite factorial value", Double.isInfinite(MathUtils.factorialDouble(171))); - + } - - - /** + + + /** * Exact recursive implementation to test against */ - private long binomialCoefficient(int n, int k) { + private long binomialCoefficient(int n, int k) { if ((n == k) || (k == 0)) { return 1; } if ((k == 1) || (k == n - 1)) { return n; } - return binomialCoefficient(n - 1, k - 1) + + return binomialCoefficient(n - 1, k - 1) + binomialCoefficient(n - 1, k); - } - + } + /** * Finds the largest values of n for which binomialCoefficient and * binomialCoefficientDouble will return values that fit in a long, double, @@ -225,7 +225,7 @@ public final class MathUtilsTest extends TestCase { findBinomialLimits(); } */ - + private void findBinomialLimits() { /** * will kick out 66 as the limit for long @@ -241,8 +241,8 @@ public final class MathUtilsTest extends TestCase { ("largest n for binomialCoefficient = " + (test - 1) ); } test++; - } - + } + /** * will kick out 1029 as the limit for double */ @@ -256,19 +256,19 @@ public final class MathUtilsTest extends TestCase { ("largest n for binomialCoefficientD = " + (test - 1) ); } test++; - } + } } - + /** * Finds the largest values of n for which factiorial and * factorialDouble will return values that fit in a long, double, * resp. Remove comments around test below to get this in test-report - + public void testFactiorialLimits() { findFactorialLimits(); } */ - + private void findFactorialLimits() { /** * will kick out 20 as the limit for long @@ -284,8 +284,8 @@ public final class MathUtilsTest extends TestCase { ("largest n for factorial = " + (test - 1) ); } test++; - } - + } + /** * will kick out 170 as the limit for double */ @@ -299,21 +299,56 @@ public final class MathUtilsTest extends TestCase { ("largest n for factorialDouble = " + (test - 1) ); } test++; - } + } } - - - /** + + + /** * Exact direct multiplication implementation to test against */ - private long factorial(int n) { + private long factorial(int n) { long result = 1; for (int i = 2; i <= n; i++) { result *= i; } return result; - } - - + } + + public void testSignDouble() { + double delta = 0.0 ; + assertEquals( 1.0, MathUtils.sign( 2.0 ), delta ) ; + assertEquals( -1.0, MathUtils.sign( -2.0 ), delta ) ; + } + + + public void testSignFloat() { + float delta = 0.0F ; + assertEquals( 1.0F, MathUtils.sign( 2.0F ), delta ) ; + assertEquals( -1.0F, MathUtils.sign( -2.0F ), delta ) ; + } + + + public void testSignByte() { + assertEquals( (byte)1, MathUtils.sign( (byte)2 ) ) ; + assertEquals( (byte)(-1), MathUtils.sign( (byte)(-2) ) ) ; + } + + + public void testSignShort() { + assertEquals( (short)1, MathUtils.sign( (short)2 ) ) ; + assertEquals( (short)(-1), MathUtils.sign( (short)(-2) ) ) ; + } + + + public void testSignInt() { + assertEquals( (int)1, MathUtils.sign( (int)(2) ) ) ; + assertEquals( (int)(-1), MathUtils.sign( (int)(-2) ) ) ; + } + + + public void testSignLong() { + assertEquals( 1L, MathUtils.sign( 2L ) ) ; + assertEquals( -1L, MathUtils.sign( -2L ) ) ; + } } \ No newline at end of file