MATH-438
Removed deprecated class. git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1034451 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
9c039e1789
commit
aa903d1819
|
@ -1,177 +0,0 @@
|
||||||
/*
|
|
||||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
|
||||||
* contributor license agreements. See the NOTICE file distributed with
|
|
||||||
* this work for additional information regarding copyright ownership.
|
|
||||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
|
||||||
* (the "License"); you may not use this file except in compliance with
|
|
||||||
* the License. You may obtain a copy of the License at
|
|
||||||
*
|
|
||||||
* http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
*
|
|
||||||
* Unless required by applicable law or agreed to in writing, software
|
|
||||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
* See the License for the specific language governing permissions and
|
|
||||||
* limitations under the License.
|
|
||||||
*/
|
|
||||||
package org.apache.commons.math.analysis.interpolation;
|
|
||||||
|
|
||||||
import org.apache.commons.math.DimensionMismatchException;
|
|
||||||
import org.apache.commons.math.MathRuntimeException;
|
|
||||||
import org.apache.commons.math.MathException;
|
|
||||||
import org.apache.commons.math.util.MathUtils;
|
|
||||||
import org.apache.commons.math.util.MathUtils.OrderDirection;
|
|
||||||
import org.apache.commons.math.analysis.UnivariateRealFunction;
|
|
||||||
import org.apache.commons.math.analysis.polynomials.PolynomialSplineFunction;
|
|
||||||
import org.apache.commons.math.exception.util.LocalizedFormats;
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Generates a bicubic interpolation function.
|
|
||||||
* Before interpolating, smoothing of the input data is performed using
|
|
||||||
* splines.
|
|
||||||
* See <b>Handbook on splines for the user</b>, ISBN 084939404X,
|
|
||||||
* chapter 2.
|
|
||||||
*
|
|
||||||
* @version $Revision$ $Date$
|
|
||||||
* @since 2.1
|
|
||||||
* @deprecated This class does not perform smoothing; the name is thus misleading.
|
|
||||||
* Please use {@link org.apache.commons.math.analysis.interpolation.BicubicSplineInterpolator}
|
|
||||||
* instead. If smoothing is desired, a tentative implementation is provided in class
|
|
||||||
* {@link org.apache.commons.math.analysis.interpolation.SmoothingPolynomialBicubicSplineInterpolator}.
|
|
||||||
* This class will be removed in math 3.0.
|
|
||||||
*/
|
|
||||||
@Deprecated
|
|
||||||
public class SmoothingBicubicSplineInterpolator
|
|
||||||
implements BivariateRealGridInterpolator {
|
|
||||||
/**
|
|
||||||
* {@inheritDoc}
|
|
||||||
*/
|
|
||||||
public BicubicSplineInterpolatingFunction interpolate(final double[] xval,
|
|
||||||
final double[] yval,
|
|
||||||
final double[][] zval)
|
|
||||||
throws MathException, IllegalArgumentException {
|
|
||||||
if (xval.length == 0 || yval.length == 0 || zval.length == 0) {
|
|
||||||
throw MathRuntimeException.createIllegalArgumentException(LocalizedFormats.NO_DATA);
|
|
||||||
}
|
|
||||||
if (xval.length != zval.length) {
|
|
||||||
throw new DimensionMismatchException(xval.length, zval.length);
|
|
||||||
}
|
|
||||||
|
|
||||||
MathUtils.checkOrder(xval, OrderDirection.INCREASING, true);
|
|
||||||
MathUtils.checkOrder(yval, OrderDirection.INCREASING, true);
|
|
||||||
|
|
||||||
final int xLen = xval.length;
|
|
||||||
final int yLen = yval.length;
|
|
||||||
|
|
||||||
// Samples (first index is y-coordinate, i.e. subarray variable is x)
|
|
||||||
// 0 <= i < xval.length
|
|
||||||
// 0 <= j < yval.length
|
|
||||||
// zX[j][i] = f(xval[i], yval[j])
|
|
||||||
final double[][] zX = new double[yLen][xLen];
|
|
||||||
for (int i = 0; i < xLen; i++) {
|
|
||||||
if (zval[i].length != yLen) {
|
|
||||||
throw new DimensionMismatchException(zval[i].length, yLen);
|
|
||||||
}
|
|
||||||
|
|
||||||
for (int j = 0; j < yLen; j++) {
|
|
||||||
zX[j][i] = zval[i][j];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
final SplineInterpolator spInterpolator = new SplineInterpolator();
|
|
||||||
|
|
||||||
// For each line y[j] (0 <= j < yLen), construct a 1D spline with
|
|
||||||
// respect to variable x
|
|
||||||
final PolynomialSplineFunction[] ySplineX = new PolynomialSplineFunction[yLen];
|
|
||||||
for (int j = 0; j < yLen; j++) {
|
|
||||||
ySplineX[j] = spInterpolator.interpolate(xval, zX[j]);
|
|
||||||
}
|
|
||||||
|
|
||||||
// For every knot (xval[i], yval[j]) of the grid, calculate corrected
|
|
||||||
// values zY_1
|
|
||||||
final double[][] zY_1 = new double[xLen][yLen];
|
|
||||||
for (int j = 0; j < yLen; j++) {
|
|
||||||
final PolynomialSplineFunction f = ySplineX[j];
|
|
||||||
for (int i = 0; i < xLen; i++) {
|
|
||||||
zY_1[i][j] = f.value(xval[i]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// For each line x[i] (0 <= i < xLen), construct a 1D spline with
|
|
||||||
// respect to variable y generated by array zY_1[i]
|
|
||||||
final PolynomialSplineFunction[] xSplineY = new PolynomialSplineFunction[xLen];
|
|
||||||
for (int i = 0; i < xLen; i++) {
|
|
||||||
xSplineY[i] = spInterpolator.interpolate(yval, zY_1[i]);
|
|
||||||
}
|
|
||||||
|
|
||||||
// For every knot (xval[i], yval[j]) of the grid, calculate corrected
|
|
||||||
// values zY_2
|
|
||||||
final double[][] zY_2 = new double[xLen][yLen];
|
|
||||||
for (int i = 0; i < xLen; i++) {
|
|
||||||
final PolynomialSplineFunction f = xSplineY[i];
|
|
||||||
for (int j = 0; j < yLen; j++) {
|
|
||||||
zY_2[i][j] = f.value(yval[j]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Partial derivatives with respect to x at the grid knots
|
|
||||||
final double[][] dZdX = new double[xLen][yLen];
|
|
||||||
for (int j = 0; j < yLen; j++) {
|
|
||||||
final UnivariateRealFunction f = ySplineX[j].derivative();
|
|
||||||
for (int i = 0; i < xLen; i++) {
|
|
||||||
dZdX[i][j] = f.value(xval[i]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Partial derivatives with respect to y at the grid knots
|
|
||||||
final double[][] dZdY = new double[xLen][yLen];
|
|
||||||
for (int i = 0; i < xLen; i++) {
|
|
||||||
final UnivariateRealFunction f = xSplineY[i].derivative();
|
|
||||||
for (int j = 0; j < yLen; j++) {
|
|
||||||
dZdY[i][j] = f.value(yval[j]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Cross partial derivatives
|
|
||||||
final double[][] dZdXdY = new double[xLen][yLen];
|
|
||||||
for (int i = 0; i < xLen ; i++) {
|
|
||||||
final int nI = nextIndex(i, xLen);
|
|
||||||
final int pI = previousIndex(i);
|
|
||||||
for (int j = 0; j < yLen; j++) {
|
|
||||||
final int nJ = nextIndex(j, yLen);
|
|
||||||
final int pJ = previousIndex(j);
|
|
||||||
dZdXdY[i][j] = (zY_2[nI][nJ] - zY_2[nI][pJ] -
|
|
||||||
zY_2[pI][nJ] + zY_2[pI][pJ]) /
|
|
||||||
((xval[nI] - xval[pI]) * (yval[nJ] - yval[pJ]));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Create the interpolating splines
|
|
||||||
return new BicubicSplineInterpolatingFunction(xval, yval, zY_2,
|
|
||||||
dZdX, dZdY, dZdXdY);
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Compute the next index of an array, clipping if necessary.
|
|
||||||
* It is assumed (but not checked) that {@code i} is larger than or equal to 0}.
|
|
||||||
*
|
|
||||||
* @param i Index
|
|
||||||
* @param max Upper limit of the array
|
|
||||||
* @return the next index
|
|
||||||
*/
|
|
||||||
private int nextIndex(int i, int max) {
|
|
||||||
final int index = i + 1;
|
|
||||||
return index < max ? index : index - 1;
|
|
||||||
}
|
|
||||||
/**
|
|
||||||
* Compute the previous index of an array, clipping if necessary.
|
|
||||||
* It is assumed (but not checked) that {@code i} is smaller than the size of the array.
|
|
||||||
*
|
|
||||||
* @param i Index
|
|
||||||
* @return the previous index
|
|
||||||
*/
|
|
||||||
private int previousIndex(int i) {
|
|
||||||
final int index = i - 1;
|
|
||||||
return index >= 0 ? index : 0;
|
|
||||||
}
|
|
||||||
}
|
|
|
@ -1,179 +0,0 @@
|
||||||
/*
|
|
||||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
|
||||||
* contributor license agreements. See the NOTICE file distributed with
|
|
||||||
* this work for additional information regarding copyright ownership.
|
|
||||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
|
||||||
* (the "License"); you may not use this file except in compliance with
|
|
||||||
* the License. You may obtain a copy of the License at
|
|
||||||
*
|
|
||||||
* http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
*
|
|
||||||
* Unless required by applicable law or agreed to in writing, software
|
|
||||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
* See the License for the specific language governing permissions and
|
|
||||||
* limitations under the License.
|
|
||||||
*/
|
|
||||||
package org.apache.commons.math.analysis.interpolation;
|
|
||||||
|
|
||||||
import org.apache.commons.math.MathException;
|
|
||||||
import org.apache.commons.math.DimensionMismatchException;
|
|
||||||
import org.apache.commons.math.analysis.BivariateRealFunction;
|
|
||||||
import org.junit.Assert;
|
|
||||||
import org.junit.Test;
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Testcase for the bicubic interpolator.
|
|
||||||
*
|
|
||||||
* @version $Revision$ $Date$
|
|
||||||
* @deprecated To be removed in math 3.0 (when the class for which it is a test will also be removed).
|
|
||||||
*/
|
|
||||||
@Deprecated
|
|
||||||
public final class SmoothingBicubicSplineInterpolatorTest {
|
|
||||||
/**
|
|
||||||
* Test preconditions.
|
|
||||||
*/
|
|
||||||
@Test
|
|
||||||
public void testPreconditions() throws MathException {
|
|
||||||
double[] xval = new double[] {3, 4, 5, 6.5};
|
|
||||||
double[] yval = new double[] {-4, -3, -1, 2.5};
|
|
||||||
double[][] zval = new double[xval.length][yval.length];
|
|
||||||
|
|
||||||
BivariateRealGridInterpolator interpolator = new SmoothingBicubicSplineInterpolator();
|
|
||||||
|
|
||||||
@SuppressWarnings("unused")
|
|
||||||
BivariateRealFunction p = interpolator.interpolate(xval, yval, zval);
|
|
||||||
|
|
||||||
double[] wxval = new double[] {3, 2, 5, 6.5};
|
|
||||||
try {
|
|
||||||
p = interpolator.interpolate(wxval, yval, zval);
|
|
||||||
Assert.fail("an exception should have been thrown");
|
|
||||||
} catch (IllegalArgumentException e) {
|
|
||||||
// Expected
|
|
||||||
}
|
|
||||||
|
|
||||||
double[] wyval = new double[] {-4, -3, -1, -1};
|
|
||||||
try {
|
|
||||||
p = interpolator.interpolate(xval, wyval, zval);
|
|
||||||
Assert.fail("an exception should have been thrown");
|
|
||||||
} catch (IllegalArgumentException e) {
|
|
||||||
// Expected
|
|
||||||
}
|
|
||||||
|
|
||||||
double[][] wzval = new double[xval.length][yval.length + 1];
|
|
||||||
try {
|
|
||||||
p = interpolator.interpolate(xval, yval, wzval);
|
|
||||||
Assert.fail("an exception should have been thrown");
|
|
||||||
} catch (DimensionMismatchException e) {
|
|
||||||
// Expected
|
|
||||||
}
|
|
||||||
wzval = new double[xval.length - 1][yval.length];
|
|
||||||
try {
|
|
||||||
p = interpolator.interpolate(xval, yval, wzval);
|
|
||||||
Assert.fail("an exception should have been thrown");
|
|
||||||
} catch (DimensionMismatchException e) {
|
|
||||||
// Expected
|
|
||||||
}
|
|
||||||
wzval = new double[xval.length][yval.length - 1];
|
|
||||||
try {
|
|
||||||
p = interpolator.interpolate(xval, yval, wzval);
|
|
||||||
Assert.fail("an exception should have been thrown");
|
|
||||||
} catch (DimensionMismatchException e) {
|
|
||||||
// Expected
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Test of interpolator for a plane.
|
|
||||||
* <p>
|
|
||||||
* z = 2 x - 3 y + 5
|
|
||||||
*/
|
|
||||||
@Test
|
|
||||||
public void testPlane() throws MathException {
|
|
||||||
BivariateRealFunction f = new BivariateRealFunction() {
|
|
||||||
public double value(double x, double y) {
|
|
||||||
return 2 * x - 3 * y + 5;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
BivariateRealGridInterpolator interpolator = new SmoothingBicubicSplineInterpolator();
|
|
||||||
|
|
||||||
double[] xval = new double[] {3, 4, 5, 6.5};
|
|
||||||
double[] yval = new double[] {-4, -3, -1, 2, 2.5};
|
|
||||||
double[][] zval = new double[xval.length][yval.length];
|
|
||||||
for (int i = 0; i < xval.length; i++) {
|
|
||||||
for (int j = 0; j < yval.length; j++) {
|
|
||||||
zval[i][j] = f.value(xval[i], yval[j]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
BivariateRealFunction p = interpolator.interpolate(xval, yval, zval);
|
|
||||||
double x, y;
|
|
||||||
double expected, result;
|
|
||||||
|
|
||||||
x = 4;
|
|
||||||
y = -3;
|
|
||||||
expected = f.value(x, y);
|
|
||||||
result = p.value(x, y);
|
|
||||||
Assert.assertEquals("On sample point", expected, result, 1e-15);
|
|
||||||
|
|
||||||
x = 4.5;
|
|
||||||
y = -1.5;
|
|
||||||
expected = f.value(x, y);
|
|
||||||
result = p.value(x, y);
|
|
||||||
Assert.assertEquals("half-way between sample points (middle of the patch)", expected, result, 0.3);
|
|
||||||
|
|
||||||
x = 3.5;
|
|
||||||
y = -3.5;
|
|
||||||
expected = f.value(x, y);
|
|
||||||
result = p.value(x, y);
|
|
||||||
Assert.assertEquals("half-way between sample points (border of the patch)", expected, result, 0.3);
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Test of interpolator for a paraboloid.
|
|
||||||
* <p>
|
|
||||||
* z = 2 x<sup>2</sup> - 3 y<sup>2</sup> + 4 x y - 5
|
|
||||||
*/
|
|
||||||
@Test
|
|
||||||
public void testParaboloid() throws MathException {
|
|
||||||
BivariateRealFunction f = new BivariateRealFunction() {
|
|
||||||
public double value(double x, double y) {
|
|
||||||
return 2 * x * x - 3 * y * y + 4 * x * y - 5;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
BivariateRealGridInterpolator interpolator = new SmoothingBicubicSplineInterpolator();
|
|
||||||
|
|
||||||
double[] xval = new double[] {3, 4, 5, 6.5};
|
|
||||||
double[] yval = new double[] {-4, -3, -2, -1, 0.5, 2.5};
|
|
||||||
double[][] zval = new double[xval.length][yval.length];
|
|
||||||
for (int i = 0; i < xval.length; i++) {
|
|
||||||
for (int j = 0; j < yval.length; j++) {
|
|
||||||
zval[i][j] = f.value(xval[i], yval[j]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
BivariateRealFunction p = interpolator.interpolate(xval, yval, zval);
|
|
||||||
double x, y;
|
|
||||||
double expected, result;
|
|
||||||
|
|
||||||
x = 5;
|
|
||||||
y = 0.5;
|
|
||||||
expected = f.value(x, y);
|
|
||||||
result = p.value(x, y);
|
|
||||||
Assert.assertEquals("On sample point", expected, result, 1e-13);
|
|
||||||
|
|
||||||
x = 4.5;
|
|
||||||
y = -1.5;
|
|
||||||
expected = f.value(x, y);
|
|
||||||
result = p.value(x, y);
|
|
||||||
Assert.assertEquals("half-way between sample points (middle of the patch)", expected, result, 0.2);
|
|
||||||
|
|
||||||
x = 3.5;
|
|
||||||
y = -3.5;
|
|
||||||
expected = f.value(x, y);
|
|
||||||
result = p.value(x, y);
|
|
||||||
Assert.assertEquals("half-way between sample points (border of the patch)", expected, result, 0.2);
|
|
||||||
}
|
|
||||||
}
|
|
Loading…
Reference in New Issue