MATH-1666: Hide "LineSearch".

This commit is contained in:
Gilles Sadowski 2023-11-22 02:25:27 +01:00
parent fc92ca62be
commit aaa39b8fd5
9 changed files with 368 additions and 120 deletions

View File

@ -23,8 +23,10 @@ import org.apache.commons.math4.legacy.core.IntegerSequence;
/** /**
* Base class for implementing optimizers. * Base class for implementing optimizers.
* It contains the boiler-plate code for counting the number of evaluations * It contains the boiler-plate code for counting the number of evaluations
* of the objective function and the number of iterations of the algorithm, * of the objective function and the number of iterations of the algorithm.
* and storing the convergence checker. * It also stores a {@link ConvergenceChecker convergence checker}, as well
* as {@link Tolerance default tolerances} (how the checker and tolerances
* are used is determined by subclasses).
* <em>It is not a "user" class.</em> * <em>It is not a "user" class.</em>
* *
* @param <PAIR> Type of the point/value pair returned by the optimization * @param <PAIR> Type of the point/value pair returned by the optimization
@ -48,6 +50,10 @@ public abstract class BaseOptimizer<PAIR> {
private IntegerSequence.Incrementor evaluations; private IntegerSequence.Incrementor evaluations;
/** Iterations counter. */ /** Iterations counter. */
private IntegerSequence.Incrementor iterations; private IntegerSequence.Incrementor iterations;
/** Relative tolerance. */
private double relativeTolerance = 1e-6;
/** Absolute tolerance. */
private double absoluteTolerance = 1e-6;
/** /**
* @param checker Convergence checker. * @param checker Convergence checker.
@ -69,6 +75,16 @@ public abstract class BaseOptimizer<PAIR> {
this.maxIterations = maxIter; this.maxIterations = maxIter;
} }
/** @return the relative tolerance. */
protected double getRelativeTolerance() {
return relativeTolerance;
}
/** @return the absolute tolerance. */
protected double getAbsoluteTolerance() {
return absoluteTolerance;
}
/** /**
* Gets the maximal number of function evaluations. * Gets the maximal number of function evaluations.
* *
@ -142,6 +158,7 @@ public abstract class BaseOptimizer<PAIR> {
* <li>{@link MaxEval}</li> * <li>{@link MaxEval}</li>
* <li>{@link MaxIter}</li> * <li>{@link MaxIter}</li>
* <li>{@link ConvergenceChecker}</li> * <li>{@link ConvergenceChecker}</li>
* <li>{@link Tolerance}</li>
* </ul> * </ul>
* @return a point/value pair that satisfies the convergence criteria. * @return a point/value pair that satisfies the convergence criteria.
* @throws TooManyEvaluationsException if the maximal number of * @throws TooManyEvaluationsException if the maximal number of
@ -230,6 +247,12 @@ public abstract class BaseOptimizer<PAIR> {
checker = (ConvergenceChecker<PAIR>) data; checker = (ConvergenceChecker<PAIR>) data;
continue; continue;
} }
if (data instanceof Tolerance) {
final Tolerance tol = (Tolerance) data;
relativeTolerance = tol.getRelativeTolerance();
absoluteTolerance = tol.getAbsoluteTolerance();
continue;
}
} }
} }

View File

@ -0,0 +1,53 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math4.legacy.optim;
/**
* Default tolerances values.
*
* @since 4.0
*/
public class Tolerance implements OptimizationData {
/** Relative tolerance. */
private final double relativeTolerance;
/** Absolute tolerance. */
private final double absoluteTolerance;
/**
* @param relative Relative tolerance.
* @param absolute Abolute tolerance.
*/
public Tolerance(double relative,
double absolute) {
relativeTolerance = relative;
absoluteTolerance = absolute;
}
/**
* @return the retlative tolerance.
*/
public double getRelativeTolerance() {
return relativeTolerance;
}
/**
* @return the absolute tolerance.
*/
public double getAbsoluteTolerance() {
return absoluteTolerance;
}
}

View File

@ -32,7 +32,12 @@ import org.apache.commons.math4.legacy.optim.univariate.UnivariatePointValuePair
* direction. * direction.
* *
* @since 3.3 * @since 3.3
* @deprecated as of 4.0-beta2.
* Class is now encapsulated in {@link MultivariateOptimizer}.
* Subclasses should call {@link MultivariateOptimizer#createLineSearch()}
* and {@link MultivariateOptimizer#lineSearch(double[],double[])} instead.
*/ */
@Deprecated
public class LineSearch { public class LineSearch {
/** /**
* Value that will pass the precondition check for {@link BrentOptimizer} * Value that will pass the precondition check for {@link BrentOptimizer}

View File

@ -0,0 +1,56 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math4.legacy.optim.nonlinear.scalar;
import org.apache.commons.math4.legacy.exception.NotStrictlyPositiveException;
import org.apache.commons.math4.legacy.optim.Tolerance;
/**
* Tolerances for line search.
*
* @since 4.0
*/
public class LineSearchTolerance extends Tolerance {
/** Range. */
private final double initialBracketingRange;
/**
* @param relative Relative tolerance.
* @param absolute Absolute tolerance.
* @param range Extent of the initial interval used to find an interval
* that brackets the optimum.
* If the optimized function varies a lot in the vicinity of the optimum,
* it may be necessary to provide a value lower than the distance between
* successive local minima.
*/
public LineSearchTolerance(double relative,
double absolute,
double range) {
super(relative, absolute);
if (range <= 0) {
throw new NotStrictlyPositiveException(range);
}
initialBracketingRange = range;
}
/** @return the initial bracketing range. */
public double getInitialBracketingRange() {
return initialBracketingRange;
}
}

View File

@ -17,10 +17,19 @@
package org.apache.commons.math4.legacy.optim.nonlinear.scalar; package org.apache.commons.math4.legacy.optim.nonlinear.scalar;
import org.apache.commons.math4.legacy.analysis.MultivariateFunction; import org.apache.commons.math4.legacy.analysis.MultivariateFunction;
import org.apache.commons.math4.legacy.analysis.UnivariateFunction;
import org.apache.commons.math4.legacy.optim.BaseMultivariateOptimizer; import org.apache.commons.math4.legacy.optim.BaseMultivariateOptimizer;
import org.apache.commons.math4.legacy.optim.ConvergenceChecker; import org.apache.commons.math4.legacy.optim.ConvergenceChecker;
import org.apache.commons.math4.legacy.optim.OptimizationData; import org.apache.commons.math4.legacy.optim.OptimizationData;
import org.apache.commons.math4.legacy.optim.PointValuePair; import org.apache.commons.math4.legacy.optim.PointValuePair;
import org.apache.commons.math4.legacy.optim.MaxEval;
import org.apache.commons.math4.legacy.optim.univariate.BracketFinder;
import org.apache.commons.math4.legacy.optim.univariate.BrentOptimizer;
import org.apache.commons.math4.legacy.optim.univariate.SearchInterval;
import org.apache.commons.math4.legacy.optim.univariate.SimpleUnivariateValueChecker;
import org.apache.commons.math4.legacy.optim.univariate.UnivariateObjectiveFunction;
import org.apache.commons.math4.legacy.optim.univariate.UnivariateOptimizer;
import org.apache.commons.math4.legacy.optim.univariate.UnivariatePointValuePair;
/** /**
* Base class for a multivariate scalar function optimizer. * Base class for a multivariate scalar function optimizer.
@ -33,6 +42,14 @@ public abstract class MultivariateOptimizer
private MultivariateFunction function; private MultivariateFunction function;
/** Type of optimization. */ /** Type of optimization. */
private GoalType goal; private GoalType goal;
/** Line search relative tolerance. */
private double lineSearchRelativeTolerance = 1e-8;
/** Line search absolute tolerance. */
private double lineSearchAbsoluteTolerance = 1e-8;
/** Line serach initial bracketing range. */
private double lineSearchInitialBracketingRange = 1d;
/** Line search. */
private LineSearch lineSearch;
/** /**
* @param checker Convergence checker. * @param checker Convergence checker.
@ -50,6 +67,7 @@ public abstract class MultivariateOptimizer
* <ul> * <ul>
* <li>{@link ObjectiveFunction}</li> * <li>{@link ObjectiveFunction}</li>
* <li>{@link GoalType}</li> * <li>{@link GoalType}</li>
* <li>{@link LineSearchTolerance}</li>
* </ul> * </ul>
* @return {@inheritDoc} * @return {@inheritDoc}
* @throws org.apache.commons.math4.legacy.exception.TooManyEvaluationsException * @throws org.apache.commons.math4.legacy.exception.TooManyEvaluationsException
@ -70,6 +88,7 @@ public abstract class MultivariateOptimizer
* <ul> * <ul>
* <li>{@link ObjectiveFunction}</li> * <li>{@link ObjectiveFunction}</li>
* <li>{@link GoalType}</li> * <li>{@link GoalType}</li>
* <li>{@link LineSearchTolerance}</li>
* </ul> * </ul>
*/ */
@Override @Override
@ -95,13 +114,45 @@ public abstract class MultivariateOptimizer
}; };
continue; continue;
} }
if (data instanceof LineSearchTolerance) {
final LineSearchTolerance tol = (LineSearchTolerance) data;
lineSearchRelativeTolerance = tol.getRelativeTolerance();
lineSearchAbsoluteTolerance = tol.getAbsoluteTolerance();
lineSearchInitialBracketingRange = tol.getInitialBracketingRange();
continue;
}
} }
} }
/**
* Intantiate the line search implementation.
*/
protected void createLineSearch() {
lineSearch = new LineSearch(this,
lineSearchRelativeTolerance,
lineSearchAbsoluteTolerance,
lineSearchInitialBracketingRange);
}
/**
* Finds the number {@code alpha} that optimizes
* {@code f(startPoint + alpha * direction)}.
*
* @param startPoint Starting point.
* @param direction Search direction.
* @return the optimum.
* @throws org.apache.commons.math4.legacy.exception.TooManyEvaluationsException
* if the number of evaluations is exceeded.
*/
protected UnivariatePointValuePair lineSearch(final double[] startPoint,
final double[] direction) {
return lineSearch.search(startPoint, direction);
}
/** /**
* @return the optimization type. * @return the optimization type.
*/ */
public GoalType getGoalType() { protected GoalType getGoalType() {
return goal; return goal;
} }
@ -129,4 +180,115 @@ public abstract class MultivariateOptimizer
public double computeObjectiveValue(double[] params) { public double computeObjectiveValue(double[] params) {
return function.value(params); return function.value(params);
} }
/**
* Find the minimum of the objective function along a given direction.
*
* @since 4.0
*/
private static class LineSearch {
/**
* Value that will pass the precondition check for {@link BrentOptimizer}
* but will not pass the convergence check, so that the custom checker
* will always decide when to stop the line search.
*/
private static final double REL_TOL_UNUSED = 1e-15;
/**
* Value that will pass the precondition check for {@link BrentOptimizer}
* but will not pass the convergence check, so that the custom checker
* will always decide when to stop the line search.
*/
private static final double ABS_TOL_UNUSED = Double.MIN_VALUE;
/**
* Optimizer used for line search.
*/
private final UnivariateOptimizer lineOptimizer;
/**
* Automatic bracketing.
*/
private final BracketFinder bracket = new BracketFinder();
/**
* Extent of the initial interval used to find an interval that
* brackets the optimum.
*/
private final double initialBracketingRange;
/**
* Optimizer on behalf of which the line search must be performed.
*/
private final MultivariateOptimizer mainOptimizer;
/**
* The {@code BrentOptimizer} default stopping criterion uses the
* tolerances to check the domain (point) values, not the function
* values.
* The {@code relativeTolerance} and {@code absoluteTolerance}
* arguments are thus passed to a {@link SimpleUnivariateValueChecker
* custom checker} that will use the function values.
*
* @param optimizer Optimizer on behalf of which the line search
* be performed.
* Its {@link MultivariateOptimizer#getObjectiveFunction() objective
* function} will be called by the {@link #search(double[],double[])
* search} method.
* @param relativeTolerance Search will stop when the function relative
* difference between successive iterations is below this value.
* @param absoluteTolerance Search will stop when the function absolute
* difference between successive iterations is below this value.
* @param initialBracketingRange Extent of the initial interval used to
* find an interval that brackets the optimum.
* If the optimized function varies a lot in the vicinity of the optimum,
* it may be necessary to provide a value lower than the distance between
* successive local minima.
*/
/* package-private */ LineSearch(MultivariateOptimizer optimizer,
double relativeTolerance,
double absoluteTolerance,
double initialBracketingRange) {
mainOptimizer = optimizer;
lineOptimizer = new BrentOptimizer(REL_TOL_UNUSED,
ABS_TOL_UNUSED,
new SimpleUnivariateValueChecker(relativeTolerance,
absoluteTolerance));
this.initialBracketingRange = initialBracketingRange;
}
/**
* Finds the number {@code alpha} that optimizes
* {@code f(startPoint + alpha * direction)}.
*
* @param startPoint Starting point.
* @param direction Search direction.
* @return the optimum.
* @throws org.apache.commons.math4.legacy.exception.TooManyEvaluationsException
* if the number of evaluations is exceeded.
*/
/* package-private */ UnivariatePointValuePair search(final double[] startPoint,
final double[] direction) {
final int n = startPoint.length;
final MultivariateFunction func = mainOptimizer.getObjectiveFunction();
final UnivariateFunction f = new UnivariateFunction() {
/** {@inheritDoc} */
@Override
public double value(double alpha) {
final double[] x = new double[n];
for (int i = 0; i < n; i++) {
x[i] = startPoint[i] + alpha * direction[i];
}
return func.value(x);
}
};
final GoalType goal = mainOptimizer.getGoalType();
bracket.search(f, goal, 0, initialBracketingRange);
// Passing "MAX_VALUE" as a dummy value because it is the enclosing
// class that counts the number of evaluations (and will eventually
// generate the exception).
return lineOptimizer.optimize(new MaxEval(Integer.MAX_VALUE),
new UnivariateObjectiveFunction(f),
goal,
new SearchInterval(bracket.getLo(),
bracket.getHi(),
bracket.getMid()));
}
}
} }

View File

@ -27,8 +27,6 @@ import org.apache.commons.math4.legacy.optim.OptimizationData;
import org.apache.commons.math4.legacy.optim.PointValuePair; import org.apache.commons.math4.legacy.optim.PointValuePair;
import org.apache.commons.math4.legacy.optim.nonlinear.scalar.GoalType; import org.apache.commons.math4.legacy.optim.nonlinear.scalar.GoalType;
import org.apache.commons.math4.legacy.optim.nonlinear.scalar.GradientMultivariateOptimizer; import org.apache.commons.math4.legacy.optim.nonlinear.scalar.GradientMultivariateOptimizer;
import org.apache.commons.math4.legacy.optim.nonlinear.scalar.LineSearch;
/** /**
* Non-linear conjugate gradient optimizer. * Non-linear conjugate gradient optimizer.
@ -37,6 +35,8 @@ import org.apache.commons.math4.legacy.optim.nonlinear.scalar.LineSearch;
* update formulas for the conjugate search directions. * update formulas for the conjugate search directions.
* It also supports optional preconditioning. * It also supports optional preconditioning.
* <br> * <br>
* Line search must be setup via {@link org.apache.commons.math4.legacy.optim.nonlinear.scalar.LineSearchTolerance}.
* <br>
* Constraints are not supported: the call to * Constraints are not supported: the call to
* {@link #optimize(OptimizationData[]) optimize} will throw * {@link #optimize(OptimizationData[]) optimize} will throw
* {@link MathUnsupportedOperationException} if bounds are passed to it. * {@link MathUnsupportedOperationException} if bounds are passed to it.
@ -49,8 +49,6 @@ public class NonLinearConjugateGradientOptimizer
private final Formula updateFormula; private final Formula updateFormula;
/** Preconditioner (may be null). */ /** Preconditioner (may be null). */
private final Preconditioner preconditioner; private final Preconditioner preconditioner;
/** Line search algorithm. */
private final LineSearch line;
/** /**
* Available choices of update formulas for the updating the parameter * Available choices of update formulas for the updating the parameter
@ -77,25 +75,6 @@ public class NonLinearConjugateGradientOptimizer
POLAK_RIBIERE POLAK_RIBIERE
} }
/**
* Constructor with default tolerances for the line search (1e-8) and
* {@link IdentityPreconditioner preconditioner}.
*
* @param updateFormula formula to use for updating the &beta; parameter,
* must be one of {@link Formula#FLETCHER_REEVES} or
* {@link Formula#POLAK_RIBIERE}.
* @param checker Convergence checker.
*/
public NonLinearConjugateGradientOptimizer(final Formula updateFormula,
ConvergenceChecker<PointValuePair> checker) {
this(updateFormula,
checker,
1e-8,
1e-8,
1e-8,
new IdentityPreconditioner());
}
/** /**
* Constructor with default {@link IdentityPreconditioner preconditioner}. * Constructor with default {@link IdentityPreconditioner preconditioner}.
* *
@ -103,25 +82,13 @@ public class NonLinearConjugateGradientOptimizer
* must be one of {@link Formula#FLETCHER_REEVES} or * must be one of {@link Formula#FLETCHER_REEVES} or
* {@link Formula#POLAK_RIBIERE}. * {@link Formula#POLAK_RIBIERE}.
* @param checker Convergence checker. * @param checker Convergence checker.
* @param relativeTolerance Relative threshold for line search.
* @param absoluteTolerance Absolute threshold for line search.
* @param initialBracketingRange Extent of the initial interval used to
* find an interval that brackets the optimum in order to perform the
* line search.
* *
* @see LineSearch#LineSearch(org.apache.commons.math4.legacy.optim.nonlinear.scalar.MultivariateOptimizer,double,double,double)
* @since 3.3 * @since 3.3
*/ */
public NonLinearConjugateGradientOptimizer(final Formula updateFormula, public NonLinearConjugateGradientOptimizer(final Formula updateFormula,
ConvergenceChecker<PointValuePair> checker, ConvergenceChecker<PointValuePair> checker) {
double relativeTolerance,
double absoluteTolerance,
double initialBracketingRange) {
this(updateFormula, this(updateFormula,
checker, checker,
relativeTolerance,
absoluteTolerance,
initialBracketingRange,
new IdentityPreconditioner()); new IdentityPreconditioner());
} }
@ -131,29 +98,16 @@ public class NonLinearConjugateGradientOptimizer
* {@link Formula#POLAK_RIBIERE}. * {@link Formula#POLAK_RIBIERE}.
* @param checker Convergence checker. * @param checker Convergence checker.
* @param preconditioner Preconditioner. * @param preconditioner Preconditioner.
* @param relativeTolerance Relative threshold for line search.
* @param absoluteTolerance Absolute threshold for line search.
* @param initialBracketingRange Extent of the initial interval used to
* find an interval that brackets the optimum in order to perform the
* line search.
* *
* @see LineSearch#LineSearch(org.apache.commons.math4.legacy.optim.nonlinear.scalar.MultivariateOptimizer, double, double, double)
* @since 3.3 * @since 3.3
*/ */
public NonLinearConjugateGradientOptimizer(final Formula updateFormula, public NonLinearConjugateGradientOptimizer(final Formula updateFormula,
ConvergenceChecker<PointValuePair> checker, ConvergenceChecker<PointValuePair> checker,
double relativeTolerance,
double absoluteTolerance,
double initialBracketingRange,
final Preconditioner preconditioner) { final Preconditioner preconditioner) {
super(checker); super(checker);
this.updateFormula = updateFormula; this.updateFormula = updateFormula;
this.preconditioner = preconditioner; this.preconditioner = preconditioner;
line = new LineSearch(this,
relativeTolerance,
absoluteTolerance,
initialBracketingRange);
} }
/** /**
@ -190,6 +144,8 @@ public class NonLinearConjugateGradientOptimizer
delta += r[i] * searchDirection[i]; delta += r[i] * searchDirection[i];
} }
createLineSearch();
PointValuePair current = null; PointValuePair current = null;
while (true) { while (true) {
incrementIterationCount(); incrementIterationCount();
@ -197,12 +153,13 @@ public class NonLinearConjugateGradientOptimizer
final double objective = func.value(point); final double objective = func.value(point);
PointValuePair previous = current; PointValuePair previous = current;
current = new PointValuePair(point, objective); current = new PointValuePair(point, objective);
if (previous != null && checker.converged(getIterations(), previous, current)) { if (previous != null &&
checker.converged(getIterations(), previous, current)) {
// We have found an optimum. // We have found an optimum.
return current; return current;
} }
final double step = line.search(point, searchDirection).getPoint(); final double step = lineSearch(point, searchDirection).getPoint();
// Validate new point. // Validate new point.
for (int i = 0; i < point.length; ++i) { for (int i = 0; i < point.length; ++i) {

View File

@ -25,7 +25,6 @@ import org.apache.commons.math4.legacy.exception.util.LocalizedFormats;
import org.apache.commons.math4.legacy.optim.ConvergenceChecker; import org.apache.commons.math4.legacy.optim.ConvergenceChecker;
import org.apache.commons.math4.legacy.optim.PointValuePair; import org.apache.commons.math4.legacy.optim.PointValuePair;
import org.apache.commons.math4.legacy.optim.nonlinear.scalar.GoalType; import org.apache.commons.math4.legacy.optim.nonlinear.scalar.GoalType;
import org.apache.commons.math4.legacy.optim.nonlinear.scalar.LineSearch;
import org.apache.commons.math4.legacy.optim.nonlinear.scalar.MultivariateOptimizer; import org.apache.commons.math4.legacy.optim.nonlinear.scalar.MultivariateOptimizer;
import org.apache.commons.math4.legacy.optim.univariate.UnivariatePointValuePair; import org.apache.commons.math4.legacy.optim.univariate.UnivariatePointValuePair;
import org.apache.commons.math4.core.jdkmath.JdkMath; import org.apache.commons.math4.core.jdkmath.JdkMath;
@ -41,8 +40,6 @@ import org.apache.commons.math4.core.jdkmath.JdkMath;
* to define a custom convergence checker that might terminate the algorithm * to define a custom convergence checker that might terminate the algorithm
* earlier. * earlier.
* <br> * <br>
* Line search is performed by the {@link LineSearch} class.
* <br>
* Constraints are not supported: the call to * Constraints are not supported: the call to
* {@link #optimize(org.apache.commons.math4.legacy.optim.OptimizationData...)} will throw * {@link #optimize(org.apache.commons.math4.legacy.optim.OptimizationData...)} will throw
* {@link MathUnsupportedOperationException} if bounds are passed to it. * {@link MathUnsupportedOperationException} if bounds are passed to it.
@ -61,18 +58,14 @@ public class PowellOptimizer
* Minimum relative tolerance. * Minimum relative tolerance.
*/ */
private static final double MIN_RELATIVE_TOLERANCE = 2 * JdkMath.ulp(1d); private static final double MIN_RELATIVE_TOLERANCE = 2 * JdkMath.ulp(1d);
/** /** Relative threshold. */
* Relative threshold.
*/
private final double relativeThreshold; private final double relativeThreshold;
/** /** Absolute threshold. */
* Absolute threshold.
*/
private final double absoluteThreshold; private final double absoluteThreshold;
/** /** Relative threshold. */
* Line search. private final double lineSearchRelativeThreshold;
*/ /** Absolute threshold. */
private final LineSearch line; private final double lineSearchAbsoluteThreshold;
/** /**
* This constructor allows to specify a user-defined convergence checker, * This constructor allows to specify a user-defined convergence checker,
@ -120,14 +113,11 @@ public class PowellOptimizer
if (abs <= 0) { if (abs <= 0) {
throw new NotStrictlyPositiveException(abs); throw new NotStrictlyPositiveException(abs);
} }
relativeThreshold = rel; relativeThreshold = rel;
absoluteThreshold = abs; absoluteThreshold = abs;
lineSearchRelativeThreshold = lineRel;
// Create the line search optimizer. lineSearchAbsoluteThreshold = lineAbs;
line = new LineSearch(this,
lineRel,
lineAbs,
1d);
} }
/** /**
@ -168,6 +158,9 @@ public class PowellOptimizer
protected PointValuePair doOptimize() { protected PointValuePair doOptimize() {
checkParameters(); checkParameters();
// Line search optimizer.
createLineSearch();
final GoalType goal = getGoalType(); final GoalType goal = getGoalType();
final double[] guess = getStartPoint(); final double[] guess = getStartPoint();
final MultivariateFunction func = getObjectiveFunction(); final MultivariateFunction func = getObjectiveFunction();
@ -198,7 +191,7 @@ public class PowellOptimizer
fX2 = fVal; fX2 = fVal;
final UnivariatePointValuePair optimum = line.search(x, d); final UnivariatePointValuePair optimum = lineSearch(x, d);
fVal = optimum.getValue(); fVal = optimum.getValue();
alphaMin = optimum.getPoint(); alphaMin = optimum.getPoint();
final double[][] result = newPointAndDirection(x, d, alphaMin); final double[][] result = newPointAndDirection(x, d, alphaMin);
@ -246,7 +239,7 @@ public class PowellOptimizer
t -= delta * temp * temp; t -= delta * temp * temp;
if (t < 0.0) { if (t < 0.0) {
final UnivariatePointValuePair optimum = line.search(x, d); final UnivariatePointValuePair optimum = lineSearch(x, d);
fVal = optimum.getValue(); fVal = optimum.getValue();
alphaMin = optimum.getPoint(); alphaMin = optimum.getPoint();
final double[][] result = newPointAndDirection(x, d, alphaMin); final double[][] result = newPointAndDirection(x, d, alphaMin);

View File

@ -44,10 +44,7 @@ public class MultiStartMultivariateOptimizerTest {
circle.addPoint(110.0, -20.0); circle.addPoint(110.0, -20.0);
circle.addPoint( 35.0, 15.0); circle.addPoint( 35.0, 15.0);
circle.addPoint( 45.0, 97.0); circle.addPoint( 45.0, 97.0);
// TODO: the wrapper around NonLinearConjugateGradientOptimizer is a temporary hack for final GradientMultivariateOptimizer underlying
// version 3.1 of the library. It should be removed when NonLinearConjugateGradientOptimizer
// will officially be declared as implementing MultivariateDifferentiableOptimizer
GradientMultivariateOptimizer underlying
= new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE, = new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE,
new SimpleValueChecker(1e-10, 1e-10)); new SimpleValueChecker(1e-10, 1e-10));
final Supplier<double[]> generator = gaussianRandom(new double[] { 50, 50 }, final Supplier<double[]> generator = gaussianRandom(new double[] { 50, 50 },
@ -62,12 +59,13 @@ public class MultiStartMultivariateOptimizerTest {
circle.getObjectiveFunctionGradient(), circle.getObjectiveFunctionGradient(),
new NelderMeadTransform(), new NelderMeadTransform(),
GoalType.MINIMIZE, GoalType.MINIMIZE,
new InitialGuess(new double[] { 98.680, 47.345 })); new InitialGuess(new double[] { 98.680, 47.345 }),
new LineSearchTolerance(1e-10, 1e-10, 1));
Assert.assertEquals(1000, optimizer.getMaxEvaluations()); Assert.assertEquals(1000, optimizer.getMaxEvaluations());
PointValuePair[] optima = optimizer.getOptima(); final PointValuePair[] optima = optimizer.getOptima();
Assert.assertEquals(nbStarts, optima.length); Assert.assertEquals(nbStarts, optima.length);
for (PointValuePair o : optima) { for (PointValuePair o : optima) {
// we check the results of all intermediate restarts here (there are 10 such results) // Check the results of all intermediate restarts.
Vector2D center = Vector2D.of(o.getPointRef()[0], o.getPointRef()[1]); Vector2D center = Vector2D.of(o.getPointRef()[0], o.getPointRef()[1]);
Assert.assertEquals(69.9597, circle.getRadius(center), 1e-3); Assert.assertEquals(69.9597, circle.getRadius(center), 1e-3);
Assert.assertEquals(96.07535, center.getX(), 1.4e-3); Assert.assertEquals(96.07535, center.getX(), 1.4e-3);

View File

@ -31,6 +31,7 @@ import org.apache.commons.math4.legacy.optim.SimpleValueChecker;
import org.apache.commons.math4.legacy.optim.nonlinear.scalar.GoalType; import org.apache.commons.math4.legacy.optim.nonlinear.scalar.GoalType;
import org.apache.commons.math4.legacy.optim.nonlinear.scalar.ObjectiveFunction; import org.apache.commons.math4.legacy.optim.nonlinear.scalar.ObjectiveFunction;
import org.apache.commons.math4.legacy.optim.nonlinear.scalar.ObjectiveFunctionGradient; import org.apache.commons.math4.legacy.optim.nonlinear.scalar.ObjectiveFunctionGradient;
import org.apache.commons.math4.legacy.optim.nonlinear.scalar.LineSearchTolerance;
import org.junit.Assert; import org.junit.Assert;
import org.junit.Test; import org.junit.Test;
@ -104,15 +105,15 @@ public class NonLinearConjugateGradientOptimizerTest {
= new LinearProblem(new double[][] { { 2 } }, new double[] { 3 }); = new LinearProblem(new double[][] { { 2 } }, new double[] { 3 });
NonLinearConjugateGradientOptimizer optimizer NonLinearConjugateGradientOptimizer optimizer
= new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE, = new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE,
new SimpleValueChecker(1e-6, 1e-6), new SimpleValueChecker(1e-6, 1e-6));
1e-3, 1e-3, 1);
optimizer.optimize(new MaxEval(100), optimizer.optimize(new MaxEval(100),
problem.getObjectiveFunction(), problem.getObjectiveFunction(),
problem.getObjectiveFunctionGradient(), problem.getObjectiveFunctionGradient(),
GoalType.MINIMIZE, GoalType.MINIMIZE,
new InitialGuess(new double[] { 0 }), new InitialGuess(new double[] { 0 }),
new SimpleBounds(new double[] { -1 }, new SimpleBounds(new double[] { -1 },
new double[] { 1 })); new double[] { 1 }),
new LineSearchTolerance(1e-3, 1e-3, 1));
} }
@Test @Test
@ -121,14 +122,14 @@ public class NonLinearConjugateGradientOptimizerTest {
= new LinearProblem(new double[][] { { 2 } }, new double[] { 3 }); = new LinearProblem(new double[][] { { 2 } }, new double[] { 3 });
NonLinearConjugateGradientOptimizer optimizer NonLinearConjugateGradientOptimizer optimizer
= new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE, = new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE,
new SimpleValueChecker(1e-6, 1e-6), new SimpleValueChecker(1e-6, 1e-6));
1e-3, 1e-3, 1);
PointValuePair optimum PointValuePair optimum
= optimizer.optimize(new MaxEval(100), = optimizer.optimize(new MaxEval(100),
problem.getObjectiveFunction(), problem.getObjectiveFunction(),
problem.getObjectiveFunctionGradient(), problem.getObjectiveFunctionGradient(),
GoalType.MINIMIZE, GoalType.MINIMIZE,
new InitialGuess(new double[] { 0 })); new InitialGuess(new double[] { 0 }),
new LineSearchTolerance(1e-3, 1e-3, 1));
Assert.assertEquals(1.5, optimum.getPoint()[0], 1.0e-10); Assert.assertEquals(1.5, optimum.getPoint()[0], 1.0e-10);
Assert.assertEquals(0.0, optimum.getValue(), 1.0e-10); Assert.assertEquals(0.0, optimum.getValue(), 1.0e-10);
@ -144,14 +145,14 @@ public class NonLinearConjugateGradientOptimizerTest {
NonLinearConjugateGradientOptimizer optimizer NonLinearConjugateGradientOptimizer optimizer
= new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE, = new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE,
new SimpleValueChecker(1e-6, 1e-6), new SimpleValueChecker(1e-6, 1e-6));
1e-3, 1e-3, 1);
PointValuePair optimum PointValuePair optimum
= optimizer.optimize(new MaxEval(100), = optimizer.optimize(new MaxEval(100),
problem.getObjectiveFunction(), problem.getObjectiveFunction(),
problem.getObjectiveFunctionGradient(), problem.getObjectiveFunctionGradient(),
GoalType.MINIMIZE, GoalType.MINIMIZE,
new InitialGuess(new double[] { 0, 0 })); new InitialGuess(new double[] { 0, 0 }),
new LineSearchTolerance(1e-3, 1e-3, 1));
Assert.assertEquals(7.0, optimum.getPoint()[0], 1.0e-10); Assert.assertEquals(7.0, optimum.getPoint()[0], 1.0e-10);
Assert.assertEquals(3.0, optimum.getPoint()[1], 1.0e-10); Assert.assertEquals(3.0, optimum.getPoint()[1], 1.0e-10);
Assert.assertEquals(0.0, optimum.getValue(), 1.0e-10); Assert.assertEquals(0.0, optimum.getValue(), 1.0e-10);
@ -169,14 +170,14 @@ public class NonLinearConjugateGradientOptimizerTest {
}, new double[] { 0.0, 1.1, 2.2, 3.3, 4.4, 5.5 }); }, new double[] { 0.0, 1.1, 2.2, 3.3, 4.4, 5.5 });
NonLinearConjugateGradientOptimizer optimizer NonLinearConjugateGradientOptimizer optimizer
= new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE, = new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE,
new SimpleValueChecker(1e-6, 1e-6), new SimpleValueChecker(1e-6, 1e-6));
1e-3, 1e-3, 1);
PointValuePair optimum PointValuePair optimum
= optimizer.optimize(new MaxEval(100), = optimizer.optimize(new MaxEval(100),
problem.getObjectiveFunction(), problem.getObjectiveFunction(),
problem.getObjectiveFunctionGradient(), problem.getObjectiveFunctionGradient(),
GoalType.MINIMIZE, GoalType.MINIMIZE,
new InitialGuess(new double[] { 0, 0, 0, 0, 0, 0 })); new InitialGuess(new double[] { 0, 0, 0, 0, 0, 0 }),
new LineSearchTolerance(1e-3, 1e-3, 1));
for (int i = 0; i < problem.target.length; ++i) { for (int i = 0; i < problem.target.length; ++i) {
Assert.assertEquals(0.55 * i, optimum.getPoint()[i], 1.0e-10); Assert.assertEquals(0.55 * i, optimum.getPoint()[i], 1.0e-10);
} }
@ -191,14 +192,14 @@ public class NonLinearConjugateGradientOptimizerTest {
}, new double[] { 1, 1, 1}); }, new double[] { 1, 1, 1});
NonLinearConjugateGradientOptimizer optimizer NonLinearConjugateGradientOptimizer optimizer
= new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE, = new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE,
new SimpleValueChecker(1e-6, 1e-6), new SimpleValueChecker(1e-6, 1e-6));
1e-3, 1e-3, 1);
PointValuePair optimum PointValuePair optimum
= optimizer.optimize(new MaxEval(100), = optimizer.optimize(new MaxEval(100),
problem.getObjectiveFunction(), problem.getObjectiveFunction(),
problem.getObjectiveFunctionGradient(), problem.getObjectiveFunctionGradient(),
GoalType.MINIMIZE, GoalType.MINIMIZE,
new InitialGuess(new double[] { 0, 0, 0 })); new InitialGuess(new double[] { 0, 0, 0 }),
new LineSearchTolerance(1e-3, 1e-3, 1));
Assert.assertEquals(1.0, optimum.getPoint()[0], 1.0e-10); Assert.assertEquals(1.0, optimum.getPoint()[0], 1.0e-10);
Assert.assertEquals(2.0, optimum.getPoint()[1], 1.0e-10); Assert.assertEquals(2.0, optimum.getPoint()[1], 1.0e-10);
Assert.assertEquals(3.0, optimum.getPoint()[2], 1.0e-10); Assert.assertEquals(3.0, optimum.getPoint()[2], 1.0e-10);
@ -234,7 +235,6 @@ public class NonLinearConjugateGradientOptimizerTest {
NonLinearConjugateGradientOptimizer optimizer NonLinearConjugateGradientOptimizer optimizer
= new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE, = new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE,
new SimpleValueChecker(1e-13, 1e-13), new SimpleValueChecker(1e-13, 1e-13),
1e-7, 1e-7, 1,
preconditioner); preconditioner);
PointValuePair optimum PointValuePair optimum
@ -242,7 +242,8 @@ public class NonLinearConjugateGradientOptimizerTest {
problem.getObjectiveFunction(), problem.getObjectiveFunction(),
problem.getObjectiveFunctionGradient(), problem.getObjectiveFunctionGradient(),
GoalType.MINIMIZE, GoalType.MINIMIZE,
new InitialGuess(new double[] { 0, 0, 0, 0, 0, 0 })); new InitialGuess(new double[] { 0, 0, 0, 0, 0, 0 }),
new LineSearchTolerance(1e-7, 1e-7, 1));
final double[] result = optimum.getPoint(); final double[] result = optimum.getPoint();
final double[] expected = {3, 4, -1, -2, 1 + epsilon, 1 - epsilon}; final double[] expected = {3, 4, -1, -2, 1 + epsilon, 1 - epsilon};
@ -264,14 +265,14 @@ public class NonLinearConjugateGradientOptimizerTest {
}, new double[] { 1, 1, 1 }); }, new double[] { 1, 1, 1 });
NonLinearConjugateGradientOptimizer optimizer NonLinearConjugateGradientOptimizer optimizer
= new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE, = new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE,
new SimpleValueChecker(1e-6, 1e-6), new SimpleValueChecker(1e-6, 1e-6));
1e-3, 1e-3, 1);
PointValuePair optimum PointValuePair optimum
= optimizer.optimize(new MaxEval(100), = optimizer.optimize(new MaxEval(100),
problem.getObjectiveFunction(), problem.getObjectiveFunction(),
problem.getObjectiveFunctionGradient(), problem.getObjectiveFunctionGradient(),
GoalType.MINIMIZE, GoalType.MINIMIZE,
new InitialGuess(new double[] { 0, 0, 0 })); new InitialGuess(new double[] { 0, 0, 0 }),
new LineSearchTolerance(1e-3, 1e-3, 1));
Assert.assertTrue(optimum.getValue() > 0.5); Assert.assertTrue(optimum.getValue() > 0.5);
} }
@ -285,14 +286,14 @@ public class NonLinearConjugateGradientOptimizerTest {
}, new double[] { 32, 23, 33, 31 }); }, new double[] { 32, 23, 33, 31 });
NonLinearConjugateGradientOptimizer optimizer NonLinearConjugateGradientOptimizer optimizer
= new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE, = new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE,
new SimpleValueChecker(1e-13, 1e-13), new SimpleValueChecker(1e-13, 1e-13));
1e-15, 1e-15, 1);
PointValuePair optimum1 PointValuePair optimum1
= optimizer.optimize(new MaxEval(200), = optimizer.optimize(new MaxEval(200),
problem1.getObjectiveFunction(), problem1.getObjectiveFunction(),
problem1.getObjectiveFunctionGradient(), problem1.getObjectiveFunctionGradient(),
GoalType.MINIMIZE, GoalType.MINIMIZE,
new InitialGuess(new double[] { 0, 1, 2, 3 })); new InitialGuess(new double[] { 0, 1, 2, 3 }),
new LineSearchTolerance(1e-15, 1e-15, 1));
Assert.assertEquals(1.0, optimum1.getPoint()[0], 1.0e-4); Assert.assertEquals(1.0, optimum1.getPoint()[0], 1.0e-4);
Assert.assertEquals(1.0, optimum1.getPoint()[1], 1.0e-3); Assert.assertEquals(1.0, optimum1.getPoint()[1], 1.0e-3);
Assert.assertEquals(1.0, optimum1.getPoint()[2], 1.0e-4); Assert.assertEquals(1.0, optimum1.getPoint()[2], 1.0e-4);
@ -330,14 +331,14 @@ public class NonLinearConjugateGradientOptimizerTest {
NonLinearConjugateGradientOptimizer optimizer NonLinearConjugateGradientOptimizer optimizer
= new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE, = new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE,
new SimpleValueChecker(1e-6, 1e-6), new SimpleValueChecker(1e-6, 1e-6));
1e-3, 1e-3, 1);
PointValuePair optimum PointValuePair optimum
= optimizer.optimize(new MaxEval(100), = optimizer.optimize(new MaxEval(100),
problem.getObjectiveFunction(), problem.getObjectiveFunction(),
problem.getObjectiveFunctionGradient(), problem.getObjectiveFunctionGradient(),
GoalType.MINIMIZE, GoalType.MINIMIZE,
new InitialGuess(new double[] { 7, 6, 5, 4 })); new InitialGuess(new double[] { 7, 6, 5, 4 }),
new LineSearchTolerance(1e-3, 1e-3, 1));
Assert.assertEquals(0, optimum.getValue(), 1.0e-10); Assert.assertEquals(0, optimum.getValue(), 1.0e-10);
} }
@ -352,14 +353,14 @@ public class NonLinearConjugateGradientOptimizerTest {
}, new double[] { 3.0, 12.0, -1.0, 7.0, 1.0 }); }, new double[] { 3.0, 12.0, -1.0, 7.0, 1.0 });
NonLinearConjugateGradientOptimizer optimizer NonLinearConjugateGradientOptimizer optimizer
= new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE, = new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE,
new SimpleValueChecker(1e-6, 1e-6), new SimpleValueChecker(1e-6, 1e-6));
1e-3, 1e-3, 1);
PointValuePair optimum PointValuePair optimum
= optimizer.optimize(new MaxEval(100), = optimizer.optimize(new MaxEval(100),
problem.getObjectiveFunction(), problem.getObjectiveFunction(),
problem.getObjectiveFunctionGradient(), problem.getObjectiveFunctionGradient(),
GoalType.MINIMIZE, GoalType.MINIMIZE,
new InitialGuess(new double[] { 2, 2, 2, 2, 2, 2 })); new InitialGuess(new double[] { 2, 2, 2, 2, 2, 2 }),
new LineSearchTolerance(1e-3, 1e-3, 1));
Assert.assertEquals(0, optimum.getValue(), 1.0e-10); Assert.assertEquals(0, optimum.getValue(), 1.0e-10);
} }
@ -373,14 +374,14 @@ public class NonLinearConjugateGradientOptimizerTest {
NonLinearConjugateGradientOptimizer optimizer NonLinearConjugateGradientOptimizer optimizer
= new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE, = new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE,
new SimpleValueChecker(1e-6, 1e-6), new SimpleValueChecker(1e-6, 1e-6));
1e-3, 1e-3, 1);
PointValuePair optimum PointValuePair optimum
= optimizer.optimize(new MaxEval(100), = optimizer.optimize(new MaxEval(100),
problem.getObjectiveFunction(), problem.getObjectiveFunction(),
problem.getObjectiveFunctionGradient(), problem.getObjectiveFunctionGradient(),
GoalType.MINIMIZE, GoalType.MINIMIZE,
new InitialGuess(new double[] { 1, 1 })); new InitialGuess(new double[] { 1, 1 }),
new LineSearchTolerance(1e-3, 1e-3, 1));
Assert.assertEquals(2.0, optimum.getPoint()[0], 1.0e-8); Assert.assertEquals(2.0, optimum.getPoint()[0], 1.0e-8);
Assert.assertEquals(1.0, optimum.getPoint()[1], 1.0e-8); Assert.assertEquals(1.0, optimum.getPoint()[1], 1.0e-8);
} }
@ -395,14 +396,14 @@ public class NonLinearConjugateGradientOptimizerTest {
NonLinearConjugateGradientOptimizer optimizer NonLinearConjugateGradientOptimizer optimizer
= new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE, = new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE,
new SimpleValueChecker(1e-6, 1e-6), new SimpleValueChecker(1e-6, 1e-6));
1e-3, 1e-3, 1);
PointValuePair optimum PointValuePair optimum
= optimizer.optimize(new MaxEval(100), = optimizer.optimize(new MaxEval(100),
problem.getObjectiveFunction(), problem.getObjectiveFunction(),
problem.getObjectiveFunctionGradient(), problem.getObjectiveFunctionGradient(),
GoalType.MINIMIZE, GoalType.MINIMIZE,
new InitialGuess(new double[] { 1, 1 })); new InitialGuess(new double[] { 1, 1 }),
new LineSearchTolerance(1e-3, 1e-3, 1));
Assert.assertTrue(optimum.getValue() > 0.1); Assert.assertTrue(optimum.getValue() > 0.1);
} }
@ -416,14 +417,14 @@ public class NonLinearConjugateGradientOptimizerTest {
problem.addPoint( 45.0, 97.0); problem.addPoint( 45.0, 97.0);
NonLinearConjugateGradientOptimizer optimizer NonLinearConjugateGradientOptimizer optimizer
= new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE, = new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE,
new SimpleValueChecker(1e-30, 1e-30), new SimpleValueChecker(1e-30, 1e-30));
1e-15, 1e-13, 1);
PointValuePair optimum PointValuePair optimum
= optimizer.optimize(new MaxEval(100), = optimizer.optimize(new MaxEval(100),
problem.getObjectiveFunction(), problem.getObjectiveFunction(),
problem.getObjectiveFunctionGradient(), problem.getObjectiveFunctionGradient(),
GoalType.MINIMIZE, GoalType.MINIMIZE,
new InitialGuess(new double[] { 98.680, 47.345 })); new InitialGuess(new double[] { 98.680, 47.345 }),
new LineSearchTolerance(1e-15, 1e-13, 1));
Vector2D center = Vector2D.of(optimum.getPointRef()[0], optimum.getPointRef()[1]); Vector2D center = Vector2D.of(optimum.getPointRef()[0], optimum.getPointRef()[1]);
Assert.assertEquals(69.960161753, problem.getRadius(center), 1.0e-8); Assert.assertEquals(69.960161753, problem.getRadius(center), 1.0e-8);
Assert.assertEquals(96.075902096, center.getX(), 1.0e-7); Assert.assertEquals(96.075902096, center.getX(), 1.0e-7);