Remove spurious "throws" clauses.
This commit is contained in:
parent
fb78e1af4f
commit
aeca88c72d
|
@ -80,8 +80,7 @@ public class DBSCANClusterer<T extends Clusterable> extends Clusterer<T> {
|
|||
* @param minPts minimum number of points needed for a cluster
|
||||
* @throws NotPositiveException if {@code eps < 0.0} or {@code minPts < 0}
|
||||
*/
|
||||
public DBSCANClusterer(final double eps, final int minPts)
|
||||
throws NotPositiveException {
|
||||
public DBSCANClusterer(final double eps, final int minPts) {
|
||||
this(eps, minPts, new EuclideanDistance());
|
||||
}
|
||||
|
||||
|
@ -93,8 +92,7 @@ public class DBSCANClusterer<T extends Clusterable> extends Clusterer<T> {
|
|||
* @param measure the distance measure to use
|
||||
* @throws NotPositiveException if {@code eps < 0.0} or {@code minPts < 0}
|
||||
*/
|
||||
public DBSCANClusterer(final double eps, final int minPts, final DistanceMeasure measure)
|
||||
throws NotPositiveException {
|
||||
public DBSCANClusterer(final double eps, final int minPts, final DistanceMeasure measure) {
|
||||
super(measure);
|
||||
|
||||
if (eps < 0.0d) {
|
||||
|
@ -131,8 +129,7 @@ public class DBSCANClusterer<T extends Clusterable> extends Clusterer<T> {
|
|||
* @throws NullArgumentException if the data points are null
|
||||
*/
|
||||
@Override
|
||||
public List<Cluster<T>> cluster(final Collection<T> points) throws NullArgumentException {
|
||||
|
||||
public List<Cluster<T>> cluster(final Collection<T> points) {
|
||||
// sanity checks
|
||||
MathUtils.checkNotNull(points);
|
||||
|
||||
|
|
|
@ -103,7 +103,7 @@ public class FuzzyKMeansClusterer<T extends Clusterable> extends Clusterer<T> {
|
|||
* @param fuzziness the fuzziness factor, must be > 1.0
|
||||
* @throws NumberIsTooSmallException if {@code fuzziness <= 1.0}
|
||||
*/
|
||||
public FuzzyKMeansClusterer(final int k, final double fuzziness) throws NumberIsTooSmallException {
|
||||
public FuzzyKMeansClusterer(final int k, final double fuzziness) {
|
||||
this(k, fuzziness, -1, new EuclideanDistance());
|
||||
}
|
||||
|
||||
|
@ -118,8 +118,7 @@ public class FuzzyKMeansClusterer<T extends Clusterable> extends Clusterer<T> {
|
|||
* @throws NumberIsTooSmallException if {@code fuzziness <= 1.0}
|
||||
*/
|
||||
public FuzzyKMeansClusterer(final int k, final double fuzziness,
|
||||
final int maxIterations, final DistanceMeasure measure)
|
||||
throws NumberIsTooSmallException {
|
||||
final int maxIterations, final DistanceMeasure measure) {
|
||||
this(k, fuzziness, maxIterations, measure, DEFAULT_EPSILON, RandomSource.create(RandomSource.MT_64));
|
||||
}
|
||||
|
||||
|
@ -137,9 +136,7 @@ public class FuzzyKMeansClusterer<T extends Clusterable> extends Clusterer<T> {
|
|||
*/
|
||||
public FuzzyKMeansClusterer(final int k, final double fuzziness,
|
||||
final int maxIterations, final DistanceMeasure measure,
|
||||
final double epsilon, final UniformRandomProvider random)
|
||||
throws NumberIsTooSmallException {
|
||||
|
||||
final double epsilon, final UniformRandomProvider random) {
|
||||
super(measure);
|
||||
|
||||
if (fuzziness <= 1.0d) {
|
||||
|
@ -265,9 +262,7 @@ public class FuzzyKMeansClusterer<T extends Clusterable> extends Clusterer<T> {
|
|||
* of clusters is larger than the number of data points
|
||||
*/
|
||||
@Override
|
||||
public List<CentroidCluster<T>> cluster(final Collection<T> dataPoints)
|
||||
throws MathIllegalArgumentException {
|
||||
|
||||
public List<CentroidCluster<T>> cluster(final Collection<T> dataPoints) {
|
||||
// sanity checks
|
||||
MathUtils.checkNotNull(dataPoints);
|
||||
|
||||
|
|
|
@ -193,9 +193,7 @@ public class KMeansPlusPlusClusterer<T extends Clusterable> extends Clusterer<T>
|
|||
* {@link #emptyStrategy} is set to {@code ERROR}
|
||||
*/
|
||||
@Override
|
||||
public List<CentroidCluster<T>> cluster(final Collection<T> points)
|
||||
throws MathIllegalArgumentException, ConvergenceException {
|
||||
|
||||
public List<CentroidCluster<T>> cluster(final Collection<T> points) {
|
||||
// sanity checks
|
||||
MathUtils.checkNotNull(points);
|
||||
|
||||
|
@ -410,9 +408,7 @@ public class KMeansPlusPlusClusterer<T extends Clusterable> extends Clusterer<T>
|
|||
* @return a random point from the selected cluster
|
||||
* @throws ConvergenceException if clusters are all empty
|
||||
*/
|
||||
private T getPointFromLargestVarianceCluster(final Collection<CentroidCluster<T>> clusters)
|
||||
throws ConvergenceException {
|
||||
|
||||
private T getPointFromLargestVarianceCluster(final Collection<CentroidCluster<T>> clusters) {
|
||||
double maxVariance = Double.NEGATIVE_INFINITY;
|
||||
Cluster<T> selected = null;
|
||||
for (final CentroidCluster<T> cluster : clusters) {
|
||||
|
@ -453,9 +449,7 @@ public class KMeansPlusPlusClusterer<T extends Clusterable> extends Clusterer<T>
|
|||
* @return a random point from the selected cluster
|
||||
* @throws ConvergenceException if clusters are all empty
|
||||
*/
|
||||
private T getPointFromLargestNumberCluster(final Collection<? extends Cluster<T>> clusters)
|
||||
throws ConvergenceException {
|
||||
|
||||
private T getPointFromLargestNumberCluster(final Collection<? extends Cluster<T>> clusters) {
|
||||
int maxNumber = 0;
|
||||
Cluster<T> selected = null;
|
||||
for (final Cluster<T> cluster : clusters) {
|
||||
|
@ -489,8 +483,7 @@ public class KMeansPlusPlusClusterer<T extends Clusterable> extends Clusterer<T>
|
|||
* @return point farthest to its cluster center
|
||||
* @throws ConvergenceException if clusters are all empty
|
||||
*/
|
||||
private T getFarthestPoint(final Collection<CentroidCluster<T>> clusters) throws ConvergenceException {
|
||||
|
||||
private T getFarthestPoint(final Collection<CentroidCluster<T>> clusters) {
|
||||
double maxDistance = Double.NEGATIVE_INFINITY;
|
||||
Cluster<T> selectedCluster = null;
|
||||
int selectedPoint = -1;
|
||||
|
|
|
@ -79,9 +79,7 @@ public class MultiKMeansPlusPlusClusterer<T extends Clusterable> extends Cluster
|
|||
* {@link KMeansPlusPlusClusterer.EmptyClusterStrategy} is set to {@code ERROR}.
|
||||
*/
|
||||
@Override
|
||||
public List<CentroidCluster<T>> cluster(final Collection<T> points)
|
||||
throws MathIllegalArgumentException, ConvergenceException {
|
||||
|
||||
public List<CentroidCluster<T>> cluster(final Collection<T> points) {
|
||||
// at first, we have not found any clusters list yet
|
||||
List<CentroidCluster<T>> best = null;
|
||||
double bestRank = Double.NEGATIVE_INFINITY;
|
||||
|
|
Loading…
Reference in New Issue