Removed remnants of junit 3.
git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1209247 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
fa73f3c50f
commit
b241c3962f
|
@ -23,12 +23,11 @@ import java.util.HashSet;
|
|||
import java.util.Iterator;
|
||||
import java.util.Random;
|
||||
|
||||
import junit.framework.Assert;
|
||||
|
||||
import org.apache.commons.math.analysis.UnivariateFunction;
|
||||
import org.apache.commons.math.analysis.function.Sin;
|
||||
import org.apache.commons.math.exception.MathUnsupportedOperationException;
|
||||
import org.apache.commons.math.linear.RealVector.Entry;
|
||||
import org.junit.Assert;
|
||||
import org.junit.Test;
|
||||
|
||||
/**
|
||||
|
|
|
@ -16,7 +16,6 @@
|
|||
package org.apache.commons.math.optimization;
|
||||
|
||||
import java.util.Arrays;
|
||||
import junit.framework.Assert;
|
||||
import org.apache.commons.math.MathRuntimeException;
|
||||
import org.apache.commons.math.TestUtils;
|
||||
import org.apache.commons.math.analysis.DifferentiableMultivariateFunction;
|
||||
|
@ -29,6 +28,7 @@ import org.apache.commons.math.optimization.general.AbstractScalarDifferentiable
|
|||
import org.apache.commons.math.optimization.general.ConjugateGradientFormula;
|
||||
import org.apache.commons.math.optimization.general.NonLinearConjugateGradientOptimizer;
|
||||
import org.apache.commons.math.util.FastMath;
|
||||
import org.junit.Assert;
|
||||
import org.junit.Test;
|
||||
|
||||
/**
|
||||
|
|
|
@ -16,11 +16,11 @@
|
|||
*/
|
||||
package org.apache.commons.math.random;
|
||||
|
||||
import junit.framework.TestCase;
|
||||
|
||||
import org.apache.commons.math.exception.OutOfRangeException;
|
||||
import org.apache.commons.math.stat.StatUtils;
|
||||
import org.apache.commons.math.stat.descriptive.DescriptiveStatistics;
|
||||
import org.junit.Assert;
|
||||
import org.junit.Test;
|
||||
|
||||
/**
|
||||
* The class <code>StableRandomGeneratorTest</code> contains tests for the class
|
||||
|
@ -28,26 +28,18 @@ import org.apache.commons.math.stat.descriptive.DescriptiveStatistics;
|
|||
*
|
||||
* @version $Revision$
|
||||
*/
|
||||
public class StableRandomGeneratorTest extends TestCase {
|
||||
public class StableRandomGeneratorTest {
|
||||
|
||||
private RandomGenerator rg = new Well19937c(100);
|
||||
private final static int sampleSize = 10000;
|
||||
|
||||
/**
|
||||
* Construct new test instance
|
||||
*
|
||||
* @param name the test name
|
||||
*/
|
||||
public StableRandomGeneratorTest(String name) {
|
||||
super(name);
|
||||
}
|
||||
|
||||
/**
|
||||
* Run the double nextDouble() method test Due to leptokurtic property the
|
||||
* acceptance range is widened.
|
||||
*
|
||||
* TODO: verify that tolerance this wide is really OK
|
||||
*/
|
||||
@Test
|
||||
public void testNextDouble() {
|
||||
StableRandomGenerator generator = new StableRandomGenerator(rg, 1.3,
|
||||
0.1);
|
||||
|
@ -55,12 +47,13 @@ public class StableRandomGeneratorTest extends TestCase {
|
|||
for (int i = 0; i < sample.length; ++i) {
|
||||
sample[i] = generator.nextNormalizedDouble();
|
||||
}
|
||||
assertEquals(0.0, StatUtils.mean(sample), 0.3);
|
||||
Assert.assertEquals(0.0, StatUtils.mean(sample), 0.3);
|
||||
}
|
||||
|
||||
/**
|
||||
* If alpha = 2, than it must be Gaussian distribution
|
||||
*/
|
||||
@Test
|
||||
public void testGaussianCase() {
|
||||
StableRandomGenerator generator = new StableRandomGenerator(rg, 2d, 0.0);
|
||||
|
||||
|
@ -68,13 +61,14 @@ public class StableRandomGeneratorTest extends TestCase {
|
|||
for (int i = 0; i < sample.length; ++i) {
|
||||
sample[i] = generator.nextNormalizedDouble();
|
||||
}
|
||||
assertEquals(0.0, StatUtils.mean(sample), 0.02);
|
||||
assertEquals(1.0, StatUtils.variance(sample), 0.02);
|
||||
Assert.assertEquals(0.0, StatUtils.mean(sample), 0.02);
|
||||
Assert.assertEquals(1.0, StatUtils.variance(sample), 0.02);
|
||||
}
|
||||
|
||||
/**
|
||||
* If alpha = 1, than it must be Cauchy distribution
|
||||
*/
|
||||
@Test
|
||||
public void testCauchyCase() {
|
||||
StableRandomGenerator generator = new StableRandomGenerator(rg, 1d, 0.0);
|
||||
DescriptiveStatistics summary = new DescriptiveStatistics();
|
||||
|
@ -86,49 +80,53 @@ public class StableRandomGeneratorTest extends TestCase {
|
|||
|
||||
// Standard Cauchy distribution should have zero median and mode
|
||||
double median = summary.getPercentile(50);
|
||||
assertEquals(0.0, median, 0.2);
|
||||
Assert.assertEquals(0.0, median, 0.2);
|
||||
}
|
||||
|
||||
/**
|
||||
* Input parameter range tests
|
||||
*/
|
||||
@Test
|
||||
public void testAlphaRangeBelowZero() {
|
||||
try {
|
||||
new StableRandomGenerator(rg,
|
||||
-1.0, 0.0);
|
||||
fail("Expected OutOfRangeException");
|
||||
Assert.fail("Expected OutOfRangeException");
|
||||
} catch (OutOfRangeException e) {
|
||||
assertEquals(-1.0, e.getArgument());
|
||||
Assert.assertEquals(-1.0, e.getArgument());
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testAlphaRangeAboveTwo() {
|
||||
try {
|
||||
new StableRandomGenerator(rg,
|
||||
3.0, 0.0);
|
||||
fail("Expected OutOfRangeException");
|
||||
Assert.fail("Expected OutOfRangeException");
|
||||
} catch (OutOfRangeException e) {
|
||||
assertEquals(3.0, e.getArgument());
|
||||
Assert.assertEquals(3.0, e.getArgument());
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testBetaRangeBelowMinusOne() {
|
||||
try {
|
||||
new StableRandomGenerator(rg,
|
||||
1.0, -2.0);
|
||||
fail("Expected OutOfRangeException");
|
||||
Assert.fail("Expected OutOfRangeException");
|
||||
} catch (OutOfRangeException e) {
|
||||
assertEquals(-2.0, e.getArgument());
|
||||
Assert.assertEquals(-2.0, e.getArgument());
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testBetaRangeAboveOne() {
|
||||
try {
|
||||
new StableRandomGenerator(rg,
|
||||
1.0, 2.0);
|
||||
fail("Expected OutOfRangeException");
|
||||
Assert.fail("Expected OutOfRangeException");
|
||||
} catch (OutOfRangeException e) {
|
||||
assertEquals(2.0, e.getArgument());
|
||||
Assert.assertEquals(2.0, e.getArgument());
|
||||
}
|
||||
}
|
||||
}
|
|
@ -16,14 +16,12 @@
|
|||
*/
|
||||
package org.apache.commons.math.stat.regression;
|
||||
|
||||
import junit.framework.Assert;
|
||||
|
||||
import org.apache.commons.math.linear.RealMatrix;
|
||||
import org.apache.commons.math.stat.correlation.PearsonsCorrelation;
|
||||
import org.apache.commons.math.TestUtils;
|
||||
import org.apache.commons.math.util.FastMath;
|
||||
import org.junit.Assert;
|
||||
import org.junit.Test;
|
||||
import static org.junit.Assert.*;
|
||||
|
||||
/**
|
||||
* MillerUpdatingRegression tests.
|
||||
|
@ -51,11 +49,11 @@ public class MillerUpdatingRegressionTest {
|
|||
public void testHasIntercept() {
|
||||
MillerUpdatingRegression instance = new MillerUpdatingRegression(10, false);
|
||||
if (instance.hasIntercept()) {
|
||||
fail("Should not have intercept");
|
||||
Assert.fail("Should not have intercept");
|
||||
}
|
||||
instance = new MillerUpdatingRegression(10, true);
|
||||
if (!instance.hasIntercept()) {
|
||||
fail("Should have intercept");
|
||||
Assert.fail("Should have intercept");
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -76,14 +74,14 @@ public class MillerUpdatingRegressionTest {
|
|||
}
|
||||
instance.addObservations(xAll, y);
|
||||
if (instance.getN() != xAll.length) {
|
||||
fail("Number of observations not correct in bulk addition");
|
||||
Assert.fail("Number of observations not correct in bulk addition");
|
||||
}
|
||||
instance.clear();
|
||||
for (int i = 0; i < xAll.length; i++) {
|
||||
instance.addObservation(xAll[i], y[i]);
|
||||
}
|
||||
if (instance.getN() != xAll.length) {
|
||||
fail("Number of observations not correct in drip addition");
|
||||
Assert.fail("Number of observations not correct in drip addition");
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
@ -93,44 +91,44 @@ public class MillerUpdatingRegressionTest {
|
|||
MillerUpdatingRegression instance = new MillerUpdatingRegression(3, true);
|
||||
try {
|
||||
instance.addObservation(new double[]{1.0}, 0.0);
|
||||
fail("Should throw IllegalArgumentException");
|
||||
Assert.fail("Should throw IllegalArgumentException");
|
||||
} catch (IllegalArgumentException iae) {
|
||||
} catch (Exception e) {
|
||||
fail("Should throw IllegalArgumentException");
|
||||
Assert.fail("Should throw IllegalArgumentException");
|
||||
}
|
||||
try {
|
||||
instance.addObservation(new double[]{1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0}, 0.0);
|
||||
fail("Should throw IllegalArgumentException");
|
||||
Assert.fail("Should throw IllegalArgumentException");
|
||||
} catch (IllegalArgumentException iae) {
|
||||
} catch (Exception e) {
|
||||
fail("Should throw IllegalArgumentException");
|
||||
Assert.fail("Should throw IllegalArgumentException");
|
||||
}
|
||||
try {
|
||||
instance.addObservation(new double[]{1.0, 1.0, 1.0}, 0.0);
|
||||
} catch (Exception e) {
|
||||
fail("Should throw IllegalArgumentException");
|
||||
Assert.fail("Should throw IllegalArgumentException");
|
||||
}
|
||||
|
||||
//now we try it without an intercept
|
||||
instance = new MillerUpdatingRegression(3, false);
|
||||
try {
|
||||
instance.addObservation(new double[]{1.0}, 0.0);
|
||||
fail("Should throw IllegalArgumentException [NOINTERCEPT]");
|
||||
Assert.fail("Should throw IllegalArgumentException [NOINTERCEPT]");
|
||||
} catch (IllegalArgumentException iae) {
|
||||
} catch (Exception e) {
|
||||
fail("Should throw IllegalArgumentException [NOINTERCEPT]");
|
||||
Assert.fail("Should throw IllegalArgumentException [NOINTERCEPT]");
|
||||
}
|
||||
try {
|
||||
instance.addObservation(new double[]{1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0}, 0.0);
|
||||
fail("Should throw IllegalArgumentException [NOINTERCEPT]");
|
||||
Assert.fail("Should throw IllegalArgumentException [NOINTERCEPT]");
|
||||
} catch (IllegalArgumentException iae) {
|
||||
} catch (Exception e) {
|
||||
fail("Should throw IllegalArgumentException [NOINTERCEPT]");
|
||||
Assert.fail("Should throw IllegalArgumentException [NOINTERCEPT]");
|
||||
}
|
||||
try {
|
||||
instance.addObservation(new double[]{1.0, 1.0, 1.0}, 0.0);
|
||||
} catch (Exception e) {
|
||||
fail("Should throw IllegalArgumentException [NOINTERCEPT]");
|
||||
Assert.fail("Should throw IllegalArgumentException [NOINTERCEPT]");
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -142,10 +140,10 @@ public class MillerUpdatingRegressionTest {
|
|||
double[] y = {1.0};
|
||||
instance.addObservations(tst, y);
|
||||
|
||||
fail("Should throw IllegalArgumentException");
|
||||
Assert.fail("Should throw IllegalArgumentException");
|
||||
} catch (IllegalArgumentException iae) {
|
||||
} catch (Exception e) {
|
||||
fail("Should throw IllegalArgumentException");
|
||||
Assert.fail("Should throw IllegalArgumentException");
|
||||
}
|
||||
|
||||
try {
|
||||
|
@ -153,10 +151,10 @@ public class MillerUpdatingRegressionTest {
|
|||
double[] y = {1.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0};
|
||||
instance.addObservations(tst, y);
|
||||
|
||||
fail("Should throw IllegalArgumentException");
|
||||
Assert.fail("Should throw IllegalArgumentException");
|
||||
} catch (IllegalArgumentException iae) {
|
||||
} catch (Exception e) {
|
||||
fail("Should throw IllegalArgumentException");
|
||||
Assert.fail("Should throw IllegalArgumentException");
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -192,7 +190,7 @@ public class MillerUpdatingRegressionTest {
|
|||
|
||||
TestUtils.assertEquals(0.01552839, result.getMeanSquareError(), 1.0e-8);
|
||||
} catch (Exception e) {
|
||||
fail("Should not throw exception but does");
|
||||
Assert.fail("Should not throw exception but does");
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -225,7 +223,7 @@ public class MillerUpdatingRegressionTest {
|
|||
TestUtils.assertEquals(0.9883, result.getRSquared(), 1.0e-4);
|
||||
TestUtils.assertEquals(0.01552839, result.getMeanSquareError(), 1.0e-8);
|
||||
} catch (Exception e) {
|
||||
fail("Should not throw exception but does");
|
||||
Assert.fail("Should not throw exception but does");
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -733,7 +731,7 @@ public class MillerUpdatingRegressionTest {
|
|||
// instance.addObservations(x, y);
|
||||
// RegressionResults result = instance.regress();
|
||||
// if (result == null) {
|
||||
// fail("Null result....");
|
||||
// Assert.fail("Null result....");
|
||||
// }
|
||||
//
|
||||
// instance.reorderRegressors(new int[]{3, 2}, 0);
|
||||
|
@ -742,16 +740,16 @@ public class MillerUpdatingRegressionTest {
|
|||
// double[] beta = result.getParameterEstimates();
|
||||
// double[] betar = resultInverse.getParameterEstimates();
|
||||
// if (Math.abs(beta[0] - betar[0]) > 1.0e-14) {
|
||||
// fail("Parameters not correct after reorder (0,3)");
|
||||
// Assert.fail("Parameters not correct after reorder (0,3)");
|
||||
// }
|
||||
// if (Math.abs(beta[1] - betar[1]) > 1.0e-14) {
|
||||
// fail("Parameters not correct after reorder (1,2)");
|
||||
// Assert.fail("Parameters not correct after reorder (1,2)");
|
||||
// }
|
||||
// if (Math.abs(beta[2] - betar[2]) > 1.0e-14) {
|
||||
// fail("Parameters not correct after reorder (2,1)");
|
||||
// Assert.fail("Parameters not correct after reorder (2,1)");
|
||||
// }
|
||||
// if (Math.abs(beta[3] - betar[3]) > 1.0e-14) {
|
||||
// fail("Parameters not correct after reorder (3,0)");
|
||||
// Assert.fail("Parameters not correct after reorder (3,0)");
|
||||
// }
|
||||
// }
|
||||
|
||||
|
@ -793,15 +791,15 @@ public class MillerUpdatingRegressionTest {
|
|||
|
||||
for (int i = 0; i < beta.length; i++) {
|
||||
if (Math.abs(beta[i] - betar[i]) > 1.0e-8) {
|
||||
fail("Parameters not correctly estimated");
|
||||
Assert.fail("Parameters not correctly estimated");
|
||||
}
|
||||
if (Math.abs(se[i] - ser[i]) > 1.0e-8) {
|
||||
fail("Standard errors not correctly estimated");
|
||||
Assert.fail("Standard errors not correctly estimated");
|
||||
}
|
||||
for (int j = 0; j < i; j++) {
|
||||
if (Math.abs(result.getCovarianceOfParameters(i, j)
|
||||
- resultRedundant.getCovarianceOfParameters(i, j)) > 1.0e-8) {
|
||||
fail("Variance Covariance not correct");
|
||||
Assert.fail("Variance Covariance not correct");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -854,72 +852,72 @@ public class MillerUpdatingRegressionTest {
|
|||
double[] ser = resultRedundant.getStdErrorOfEstimates();
|
||||
|
||||
if (Math.abs(beta[0] - betar[0]) > 1.0e-8) {
|
||||
fail("Parameters not correct after reorder (0,3)");
|
||||
Assert.fail("Parameters not correct after reorder (0,3)");
|
||||
}
|
||||
if (Math.abs(beta[1] - betar[2]) > 1.0e-8) {
|
||||
fail("Parameters not correct after reorder (1,2)");
|
||||
Assert.fail("Parameters not correct after reorder (1,2)");
|
||||
}
|
||||
if (Math.abs(beta[2] - betar[3]) > 1.0e-8) {
|
||||
fail("Parameters not correct after reorder (2,1)");
|
||||
Assert.fail("Parameters not correct after reorder (2,1)");
|
||||
}
|
||||
if (Math.abs(beta[3] - betar[5]) > 1.0e-8) {
|
||||
fail("Parameters not correct after reorder (3,0)");
|
||||
Assert.fail("Parameters not correct after reorder (3,0)");
|
||||
}
|
||||
|
||||
if (Math.abs(se[0] - ser[0]) > 1.0e-8) {
|
||||
fail("Se not correct after reorder (0,3)");
|
||||
Assert.fail("Se not correct after reorder (0,3)");
|
||||
}
|
||||
if (Math.abs(se[1] - ser[2]) > 1.0e-8) {
|
||||
fail("Se not correct after reorder (1,2)");
|
||||
Assert.fail("Se not correct after reorder (1,2)");
|
||||
}
|
||||
if (Math.abs(se[2] - ser[3]) > 1.0e-8) {
|
||||
fail("Se not correct after reorder (2,1)");
|
||||
Assert.fail("Se not correct after reorder (2,1)");
|
||||
}
|
||||
if (Math.abs(se[3] - ser[5]) > 1.0e-8) {
|
||||
fail("Se not correct after reorder (3,0)");
|
||||
Assert.fail("Se not correct after reorder (3,0)");
|
||||
}
|
||||
|
||||
if (Math.abs(result.getCovarianceOfParameters(0, 0)
|
||||
- resultRedundant.getCovarianceOfParameters(0, 0)) > 1.0e-8) {
|
||||
fail("VCV not correct after reorder (0,0)");
|
||||
Assert.fail("VCV not correct after reorder (0,0)");
|
||||
}
|
||||
if (Math.abs(result.getCovarianceOfParameters(0, 1)
|
||||
- resultRedundant.getCovarianceOfParameters(0, 2)) > 1.0e-8) {
|
||||
fail("VCV not correct after reorder (0,1)<->(0,2)");
|
||||
Assert.fail("VCV not correct after reorder (0,1)<->(0,2)");
|
||||
}
|
||||
if (Math.abs(result.getCovarianceOfParameters(0, 2)
|
||||
- resultRedundant.getCovarianceOfParameters(0, 3)) > 1.0e-8) {
|
||||
fail("VCV not correct after reorder (0,2)<->(0,1)");
|
||||
Assert.fail("VCV not correct after reorder (0,2)<->(0,1)");
|
||||
}
|
||||
if (Math.abs(result.getCovarianceOfParameters(0, 3)
|
||||
- resultRedundant.getCovarianceOfParameters(0, 5)) > 1.0e-8) {
|
||||
fail("VCV not correct after reorder (0,3)<->(0,3)");
|
||||
Assert.fail("VCV not correct after reorder (0,3)<->(0,3)");
|
||||
}
|
||||
if (Math.abs(result.getCovarianceOfParameters(1, 0)
|
||||
- resultRedundant.getCovarianceOfParameters(2, 0)) > 1.0e-8) {
|
||||
fail("VCV not correct after reorder (1,0)<->(2,0)");
|
||||
Assert.fail("VCV not correct after reorder (1,0)<->(2,0)");
|
||||
}
|
||||
if (Math.abs(result.getCovarianceOfParameters(1, 1)
|
||||
- resultRedundant.getCovarianceOfParameters(2, 2)) > 1.0e-8) {
|
||||
fail("VCV not correct (1,1)<->(2,1)");
|
||||
Assert.fail("VCV not correct (1,1)<->(2,1)");
|
||||
}
|
||||
if (Math.abs(result.getCovarianceOfParameters(1, 2)
|
||||
- resultRedundant.getCovarianceOfParameters(2, 3)) > 1.0e-8) {
|
||||
fail("VCV not correct (1,2)<->(2,2)");
|
||||
Assert.fail("VCV not correct (1,2)<->(2,2)");
|
||||
}
|
||||
|
||||
if (Math.abs(result.getCovarianceOfParameters(2, 0)
|
||||
- resultRedundant.getCovarianceOfParameters(3, 0)) > 1.0e-8) {
|
||||
fail("VCV not correct (2,0)<->(1,0)");
|
||||
Assert.fail("VCV not correct (2,0)<->(1,0)");
|
||||
}
|
||||
if (Math.abs(result.getCovarianceOfParameters(2, 1)
|
||||
- resultRedundant.getCovarianceOfParameters(3, 2)) > 1.0e-8) {
|
||||
fail("VCV not correct (2,1)<->(1,2)");
|
||||
Assert.fail("VCV not correct (2,1)<->(1,2)");
|
||||
}
|
||||
|
||||
if (Math.abs(result.getCovarianceOfParameters(3, 3)
|
||||
- resultRedundant.getCovarianceOfParameters(5, 5)) > 1.0e-8) {
|
||||
fail("VCV not correct (3,3)<->(3,2)");
|
||||
Assert.fail("VCV not correct (3,3)<->(3,2)");
|
||||
}
|
||||
|
||||
TestUtils.assertEquals(result.getAdjustedRSquared(), resultRedundant.getAdjustedRSquared(), 1.0e-8);
|
||||
|
@ -971,14 +969,14 @@ public class MillerUpdatingRegressionTest {
|
|||
for (int i = 0; i < 4; i++) {
|
||||
for (int j = 0; j < i; j++) {
|
||||
if (Math.abs(pc[idx] - cp[off] / (diag[i] * diag[j])) > 1.0e-8) {
|
||||
fail("Failed cross products... i = " + i + " j = " + j);
|
||||
Assert.fail("Failed cross products... i = " + i + " j = " + j);
|
||||
}
|
||||
++idx;
|
||||
++off;
|
||||
}
|
||||
++off;
|
||||
if (Math.abs(pc[i+off2] - yxcorr[ i] / (FastMath.sqrt(sumysq) * diag[i])) > 1.0e-8) {
|
||||
fail("failed cross product i = " + i + " y");
|
||||
Assert.fail("Assert.failed cross product i = " + i + " y");
|
||||
}
|
||||
}
|
||||
double[] pc2 = instance.getPartialCorrelations(1);
|
||||
|
@ -988,14 +986,14 @@ public class MillerUpdatingRegressionTest {
|
|||
for (int i = 1; i < 4; i++) {
|
||||
for (int j = 1; j < i; j++) {
|
||||
if (Math.abs(pc2[idx] - corr.getEntry(j, i)) > 1.0e-8) {
|
||||
fail("Failed cross products... i = " + i + " j = " + j);
|
||||
Assert.fail("Failed cross products... i = " + i + " j = " + j);
|
||||
}
|
||||
++idx;
|
||||
}
|
||||
}
|
||||
double[] pc3 = instance.getPartialCorrelations(2);
|
||||
if (pc3 == null) {
|
||||
fail("Should not be null");
|
||||
Assert.fail("Should not be null");
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
|
|
@ -64,7 +64,7 @@
|
|||
</equals>
|
||||
</condition>
|
||||
<!--Test if JUNIT is present in ANT classpath-->
|
||||
<available property="Junit.present" classname="junit.framework.Test">
|
||||
<available property="Junit.present" classname="org.junit.Test">
|
||||
</available>
|
||||
</target>
|
||||
<target name="test" description="o Run the test cases" if="test.failure" depends="internal-test">
|
||||
|
|
Loading…
Reference in New Issue