Fixed some errors; changed to use standard terminology.
git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1540566 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
1b4f1ef040
commit
b3b5e6c869
|
@ -27,7 +27,7 @@
|
||||||
<section name="8 Probability Distributions">
|
<section name="8 Probability Distributions">
|
||||||
<subsection name="8.1 Overview" href="overview">
|
<subsection name="8.1 Overview" href="overview">
|
||||||
<p>
|
<p>
|
||||||
The distributions package provide a framework for some commonly used
|
The distributions package provides a framework and implementations for some commonly used
|
||||||
probability distributions.
|
probability distributions.
|
||||||
</p>
|
</p>
|
||||||
<p>
|
<p>
|
||||||
|
@ -38,49 +38,54 @@
|
||||||
<subsection name="8.2 Distribution Framework" href="distributions">
|
<subsection name="8.2 Distribution Framework" href="distributions">
|
||||||
<p>
|
<p>
|
||||||
The distribution framework provides the means to compute probability density
|
The distribution framework provides the means to compute probability density
|
||||||
function (PDF) probabilities and cumulative distribution function (CDF)
|
functions (<code>density(·)</code>), probability mass functions
|
||||||
probabilities for common probability distributions. Along with the direct
|
(<code>probability(·)</code>) and distribution functions
|
||||||
computation of PDF and CDF probabilities, the framework also allows for the
|
(<code>cumulativeProbability(·)</code>) for both
|
||||||
computation of inverse PDF and inverse CDF values.
|
discrete (integer-valued) and continuous probability distributions.
|
||||||
|
The framework also allows for the computation of inverse cumulative probabilities.
|
||||||
</p>
|
</p>
|
||||||
<p>
|
<p>
|
||||||
Using a distribution object, PDF and CDF probabilities are easily computed
|
For an instance <code>f</code> of a distribution <code>F</code>,
|
||||||
using the <code>cumulativeProbability</code> methods. For a distribution
|
and a domain value, <code>x</code>, <code>f.cumulativeProbability(x)</code>
|
||||||
<code>X</code>, and a domain value, <code>x</code>,
|
computes <code>P(X <= x)</code> where <code>X</code> is a random variable distributed
|
||||||
<code>cumulativeProbability</code> computes <code>P(X <= x)</code>
|
as <code>f</code>, i.e., <code>f.cumulativeProbability(·)</code> represents
|
||||||
(i.e. the lower tail probability of <code>X</code>).
|
the distribution function of <code>f</code>. If <code>f</code> is continuous,
|
||||||
|
(implementing the <code>RealDistribution</code> interface) the probability density
|
||||||
|
function of <code>f</code> is represented by <code>f.density(·)</code>.
|
||||||
|
For discrete <code>f</code> (implementing <code>IntegerDistribution</code>), the probability
|
||||||
|
mass function is represented by <code>f.probability(·)</code>. Continuous
|
||||||
|
distributions also implement <code>probability(·)</code> with the same
|
||||||
|
definition (<code>f.probability(x)</code> represents <code>P(X = x)</code>
|
||||||
|
where <code>X</code> is distributed as <code>f</code>), though in the continuous
|
||||||
|
case, this will usually be identically 0.
|
||||||
</p>
|
</p>
|
||||||
<source>TDistribution t = new TDistribution(29);
|
<source>TDistribution t = new TDistribution(29);
|
||||||
double lowerTail = t.cumulativeProbability(-2.656); // P(T <= -2.656)
|
double lowerTail = t.cumulativeProbability(-2.656); // P(T(29) <= -2.656)
|
||||||
double upperTail = 1.0 - t.cumulativeProbability(2.75); // P(T >= 2.75)</source>
|
double upperTail = 1.0 - t.cumulativeProbability(2.75); // P(T(29) >= 2.75)</source>
|
||||||
<p>
|
<p>
|
||||||
The inverse PDF and CDF values are just as easily computed using the
|
Inverse distribution functions can be computed using the
|
||||||
<code>inverseCumulativeProbability</code> methods. For a distribution <code>X</code>,
|
<code>inverseCumulativeProbability</code> methods. For continuous <code>f</code>
|
||||||
and a probability, <code>p</code>, <code>inverseCumulativeProbability</code>
|
and <code>p</code> a probability, <code>f.inverseCumulativeProbability(p)</code> returns
|
||||||
computes the domain value <code>x</code>, such that:
|
<code><ul>
|
||||||
<ul>
|
<li>inf{x in R | P(X≤x) ≥ p} for 0 < p < 1},</li>
|
||||||
<li><code>P(X <= x) = p</code>, for continuous distributions</li>
|
<li>inf{x in R | P(X≤x) > 0} for p = 0}.</li>
|
||||||
<li><code>P(X <= x) <= p</code>, for discrete distributions</li>
|
</ul></code> where <code>X</code> is distributed as <code>f</code>.<br/>
|
||||||
</ul>
|
For discrete <code>f</code>, the definition is the same, with <code>Z</code> (the integers)
|
||||||
Notice the different cases for continuous and discrete distributions. This is the result
|
in place of <code>R</code>. Note that in the discrete case, the ≥ in the definition
|
||||||
of PDFs not being invertible functions. As such, for discrete distributions, an exact
|
can make a difference when <code>p</code> is an attained value of the distribution.
|
||||||
domain value can not be returned. Only the "best" domain value. For Commons-Math, the "best"
|
|
||||||
domain value is determined by the largest domain value whose cumulative probability is
|
|
||||||
less-than or equal to the given probability.
|
|
||||||
</p>
|
</p>
|
||||||
</subsection>
|
</subsection>
|
||||||
|
<!--
|
||||||
|
TODO: add section on multivariate distributions
|
||||||
|
-->
|
||||||
<subsection name="8.3 User Defined Distributions" href="userdefined">
|
<subsection name="8.3 User Defined Distributions" href="userdefined">
|
||||||
<p>
|
<p>
|
||||||
Since there are numerous distributions and Commons-Math only directly
|
User-defined distributions can be implemented using
|
||||||
supports a handful, it may be necessary to extend the distribution
|
|
||||||
framework to satisfy individual needs. It is recommended that the
|
|
||||||
<a href="../apidocs/org/apache/commons/math3/distribution/RealDistribution.html">RealDistribution</a>,
|
<a href="../apidocs/org/apache/commons/math3/distribution/RealDistribution.html">RealDistribution</a>,
|
||||||
<a href="../apidocs/org/apache/commons/math3/distribution/IntegerDistribution.html">IntegerDistribution</a> and
|
<a href="../apidocs/org/apache/commons/math3/distribution/IntegerDistribution.html">IntegerDistribution</a> and
|
||||||
<a href="../apidocs/org/apache/commons/math3/distribution/MultivariateRealDistribution.html">MultivariateRealDistribution</a>
|
<a href="../apidocs/org/apache/commons/math3/distribution/MultivariateRealDistribution.html">MultivariateRealDistribution</a>
|
||||||
interfaces serve as base types for any extension. These serve as the basis for all the
|
interfaces serve as base types. These serve as the basis for all the distributions directly supported by
|
||||||
distributions directly supported by Commons-Math and using those interfaces
|
Apache Commons Math. To aid in implementing distributions,
|
||||||
for implementation purposes will ensure any extension is compatible with the
|
|
||||||
remainder of Commons-Math. To aid in implementing a distribution extension,
|
|
||||||
the <a href="../apidocs/org/apache/commons/math3/distribution/AbstractRealDistribution.html">AbstractRealDistribution</a>,
|
the <a href="../apidocs/org/apache/commons/math3/distribution/AbstractRealDistribution.html">AbstractRealDistribution</a>,
|
||||||
<a href="../apidocs/org/apache/commons/math3/distribution/AbstractIntegerDistribution.html">AbstractIntegerDistribution</a> and
|
<a href="../apidocs/org/apache/commons/math3/distribution/AbstractIntegerDistribution.html">AbstractIntegerDistribution</a> and
|
||||||
<a href="../apidocs/org/apache/commons/math3/distribution/AbstractMultivariateRealDistribution.html">AbstractMultivariateRealDistribution</a>
|
<a href="../apidocs/org/apache/commons/math3/distribution/AbstractMultivariateRealDistribution.html">AbstractMultivariateRealDistribution</a>
|
||||||
|
|
Loading…
Reference in New Issue